
Introduction, Worst Case Running Times1

Algorithms solve computational problems. Any computational problem has a clearly specified input
which defines an instance of the problem. An algorithm is simply a function which maps every input of the
problem to solutions or outputs for this problem. Good algorithms are correct and efficient.

Correctness. Every well-defined computational problem must have a spec, that is, a clear definition of de-
sired input/output behavior. An algorithm is correct if for every input, the output/solution it returns satisfies
the spec.

Let us take an example. Suppose my computation problem is the following.

Given an array, find the maximum element of the array.

The spec of the problem is as follows. The input is an array2 A[1 : n]. The output could be many things.
For concreteness, we wish the output to be any index j with 1 ≤ j ≤ n, such that A[j] ≥ A[i] for any
1 ≤ i ≤ n. This is the spec of the problem. An algorithm is correct if for every input array A[1 : n] it
returns a correct output. Note: there can be multiple correct answers if there are repetitions allowed in the
array. The spec doesn’t specify how to disambiguate, and so neither is the algorithm required to do so.

Remark: It is an extremely good practice to write down the spec before writing any algorithm, or
indeed, writing any piece of code. Like most good practices, it is easier to preach it than to practice it.

How do we know if an algorithm is correct? It is not trivial and one need proofs3 of correctness. Indeed
often times (in this course) the design of the algorithm keeps correctness in mind – the proof of correctness
will often follow from the way we designed it. Having said that, in this course, mainly since we have finite
time, we will not spend too much energy in trying to formally prove correctness of algorithms.

Efficiency. In plain English, this is asking how “fast” is the algorithm given the “size” of the input. What
is fast? What is size?

Every input of a computation problem is associated with a notion of size, a parameter which defines the
magnitude of the input. This often needs to be spelled out (or will be implicitly assumed, but it is good to
know what it is). For instance, in the illustrative example of finding the maximum entry of an array, the
input is the array A[1 : n]. What is the size of the array? At the most detailed level, it is the number of bits
required to store the array in memory. This involves the number of bits for each element, the number of bits
required to maintain an array, etc, etc. This number differs for the same array on different programming
languages, and is thus hard to concretely define.

One of the first things one needs to learn in this course is to let go of the “weedy” details and
focus on the “higher-order” stuff. Aka abstraction.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 19th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2Most of my arrays are indexed from 1 unlike most programming languages.
3“Proof” is not a four-letter word. It is just a synonym for argument, justification, logical derivation. Proof doesn’t necessarily

mean Greek symbols and tons of math. Math is to be used when it helps. And it usually helps a lot.
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What do we mean? Instead of bothering on how many bits precisely are needed to store the array, one asks
given an array which parameter really affects the size. In most applications, it is probably the number of
elements in the array. Think about it. If your array had integers in the range [−1010,+1010], then each such
integer maybe requires 35 bits to store. Maintaining the array may require 5 or so bits per element. But the
number of elements, n, is the main driver of size. And so, in this particular example, it is not too bad an
approximation to say that the size of the input is simply n. Or, as we will say soon, “order of” n.

Next, we come to the notion of running time of an algorithm. Again, one could measure the “wall-
clock” time, but you can see that this is not well-defined. Whose machine are you running it on? What else
is running on that machine? etc, etc. Just like size, one has to abstract out the notion of time when measuring
the performance of algorithms, and not spend too much time (no pun intended) in these weeds. At least for
the high level understanding of the algorithm.

One notion of time often used is the number of elementary operations that needs to be performed to
solve the problem. What an elementary operation is needs to be specified, but is often clear from context.
Again using the array example, one notion of elementary operation could be the number of comparisons
one makes. Or it could be the number of iterations in a for-loop. It could be the number of arithmetic
operations. The number of comparisons is the one that is usually used for this particular problem (but again,
if your particular application needs something else, one may need to change this).

Once the notion of size and time are defined, we can be more precise. Formally, let’s use Π to denote
the computational problem, and let I be an instance of Π and let |I| denote the size of the instance. Given
an algorithm A for Π, let TA(I) denote the time taken by A to solve I. Throughout, we will be using the
worst case running time notion. Given a natural number n > 0, we define

TA(n) := max
I∈Π:|I|≤n

TA(I)

In plain English, any instance of Π whose size is ≤ n can be solved by A in time TA(n).
Again, let us take the “finding the maximum element in the array” example. One can probably define

many algorithms. For instance, one could have an algorithm that compares every pair of elements in the
array. In the worst case, one can see that the runtime of this algorithm TA(n) would be roughly the number
of pairs which is

(
n
2

)
≈ n2/2. But hopefully you can devise an algorithm which makes only (n − 1)

comparisons no matter what the array: the algorithm scans the array from left-to-right keeping a running
max index (initialized to 1) which is replaced by j if A[j] is bigger than the array element the current running
max points to. A pseudocode description is below.

1: procedure MAX(A[1 : n]):
2: ▷ Returns j where A[j] ≥ A[i] for all 1 ≤ i ≤ n.
3: rmax← 1. ▷ Initialize running-max to 1

4: for 2 ≤ j ≤ n do:
5: if A[j] > A[rmax] then: ▷ If A[j] bigger than running-max, swap.
6: rmax← j

7: return rmax.
b

Exercise: Given the above example, you can probably see how to find the maximum and the minimum in
(n− 1)+ (n− 2) comparisons. Can you think of an algorithm which makes roughly 3n

2 comparisons?

In this course, you will learn some basic algorithm design principles. But, it takes creativity and ingenuity
to design good algorithms. Like all creative forms, one gets better at it only by hours and hours of practice.
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1 Supplement: Correctness of Procedure MAX

To formally prove correctness of algorithms, one takes two broad approaches. If the algorithm is recursive,
then one uses induction to prove correctness. Here I will refer to these notes4 to see how this is done.

All algorithms, however, are not necessarily written in a recursive fashion; like the MAX algorithm
above. To prove the correctness of this algorithm, the main idea is to introduce loop invariants. These are
assertions which we will make for every loop such that after the loop is over, some other useful assertion is
true. For the above algorithm, here I am writing it below with loop invariants.

1: procedure MAX(A[1 : n]):
2: ▷ Returns j where A[j] ≥ A[i] for all 1 ≤ i ≤ n.
3: rmax← 1. ▷ Initialize running-max to 1

4: for 2 ≤ j ≤ n do:
5: ▷ Pre: A[rmax] is the maximum element in A[1 : j − 1]
6: if A[j] > A[rmax] then: ▷ If A[j] bigger than running-max, swap.
7: rmax← j

8: ▷ Post: A[rmax] is the maximum element in A[1 : j]

9: return rmax.

The Pre invariant asserts that as soon as one enters the jth loop (the for-loop with index j), A[rmax]
stores a maximum element of A[1 : j−1]. The Post invariant asserts that after running the jth loop, A[rmax]
stores a maximum element of A[1 : j]. We begin with a crucial observation which is common to Pre and
Post conditions for any for-loop correctness.

Observation 1. For any j, the Post condition for loop j is the Pre condition for loop (j + 1).

We now make a few claims to prove the algorithm’s correctness.

Claim 1. If the Pre and Post invariants hold for all 2 ≤ j ≤ n, then on termination A[rmax] is a maximum
element of A[1 : n].

Proof. Indeed, at the end of the last for-loop, j = n, and thus A[rmax] will contain the maximum element
of A[1 : n]. And after the for-loop, rmax is not modified.

So, we are now left with proving the Pre and Post conditions hold for all 2 ≤ j ≤ n. This is done via
(no surprises) induction.

Claim 2 (Base Case.). At the beginning of the first for-loop (the case j = 2), Pre condition holds.

Proof. At the beginning of the first for-loop, rmax = 1 (this is set in Line 3). We therefore need to show
A[1] is a maximum element of A[1 : 1]. Indeed, there is only one element in A[1 : 1]. Nothing to show.

Claim 3 (Inductive Case.). Suppose the Pre condition is true before loop j, for any 2 ≤ j ≤ n. Then the
Post condition is true after loop j.

4https://www.cs.dartmouth.edu/˜deepc/Courses/W20/lecs/lec8.pdf
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Proof. Let r1 = rmax be the value of rmax at the beginning of loop j. Since Pre condition is true, we have
A[r1] ≥ A[i] for all 1 ≤ i ≤ j − 1. There are now only two cases possible:

Case 1. A[r1] ≥ A[j]. In this case, A[r1] ≥ A[i] for all 1 ≤ i ≤ j as well. That is, A[r1] is a maximum
element of A[1 : j]. Indeed, in this case rmax doesn’t change. Thus, Post is true after loop j.

Case 2. A[j] > A[r1]. In this case, A[j] > A[r1] ≥ A[i] for all 1 ≤ i ≤ j−1. That is, A[j] is the maximum
(note: this is actually at this point the unique maximum...but that is beside the point) of the array A[1 : j].
Indeed, in this case rmax is changed to j. And thus, even in this case Post is true after loop j.

The above three claims gives us the following theorem which formally asserts the correctness of MAX.

Theorem 1. The algorithm MAX returns index of a maximum element for any array A[1 : n].

Remark:

• As you can see, writing the formal proof can be a bit tedious. Important, but a bit tedious.
• Coming up with a loop invariant takes some practice; due to time-constraints, we will not focus

too much on proving correctness of algorithms. But hopefully the above example gave a flavor.

2 Supplement: A “Lower Bound”

Theorem 2. Any correct algorithm for finding the maximum of an n element array must make (n− 1)
comparisons among the array elements.

Remark: One should be careful about what the above theorem and the forthcoming proof is really
saying. The “time” is calculated as the number of comparisons made between elements of the array. So,
if for some reason, your algorithm compares A[1] + A[2] with A[3] + A[4], which elements are being
compared? The proof below will assume that there are four comparisons being made: (A[1], A[3]),
(A[1], A[4]), and (A[2], A[3]), (A[2], A[4]). More formally, it is a theorem in the “comparison model”
where the array items are assumed to be immutable objects which cannot be arithmetically manipulated,
but only compared against.

Proof. Any algorithm in the comparison model runs as follows: at any step it makes a comparison between
A[i] and A[j] for some two indices, and given the result of this comparison, it makes some calculations,
and then makes the next comparison. Fix any array A[1 : n] and consider the run of the algorithm. As the
algorithm runs, construct the following graph G = (V,E). The vertices V = {1, 2, . . . , n} correspond to
the indices of the array. Every time the array compares A[i] and A[j], add the edge (i, j) to the set E. After
the algorithm completes, and returns an answer, say A[k], our graph is fully defined. If the algorithm makes
< (n− 1) comparisons, then this graph has < (n− 1) edges.

To illustrate this, Figure 1 below shows what the graph is for the MAX algorithm we in the lecture notes,
on the array [20,−3, 14, 39, 7, 16].

Now, the graph G has n vertices but < (n − 1) edges. This implies that the graph G is not connected.
This spells trouble for the algorithm. The algorithm has decided to return the number A[k]. Let U be the

4



1 2 3 4 5 6

Figure 1: The graph obtained upon running MAX on [20,−3, 14, 39, 7, 16]. First (20,−3) are compared,
then (20, 14), and then (20, 39). At this point, we move running max to 39, and then compare (39, 7) and
(39, 16).

set of vertices v which are connected to k, that is, have a path in G from v to k. Since G is not connected,
there is some vertex ℓ which is not connected to k. Let X be the set of all these vertices. Note that there is
no edge (i, j) in G with i ∈ X and j /∈ X .

Here is the kicker. Consider an array B[1 : n] which is defined as: B[i] = A[i] + M for i ∈ X ,
and B[i] = A[i] otherwise, where M is a large enough integer such that B[k] (which is A[k]) is not the
maximum in B[1 : n]. On the other hand, note that the answers to the comparisons made by the algorithm
is exactly the same in both B and A. This is because, whenever the algorithm is comparing i and j, these
two either both lie in X (in which case the answer in B as the same as in A), or both outside X (in which
case B is the same as A). Why can’t it be that i ∈ X and j /∈ X? Because, then (i, j) would be an edge in
G, and such edges don’t exist.

Since the comparison results are the same in both A and B, the answers given by the algorithm also
must be the same. (Here we are using the comparison model; the algorithm is not using any “external data”
to make its decision.) So, the algorithm would again answer B[k], and thus would be wrong.
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