
Dynamic Programming: Longest Increasing Subsequence1

1 Longest Increasing Subsequence

Given a string s[1 : n], a subsequence is a subset of the entries of the string in the same order. Formally, a
length k subsequence is a string σ = (s[i1] ◦ s[i2] ◦ . . . ◦ s[ik]) where 1 ≤ i1 < i2 < · · · < ik ≤ n. For
example, if the string is algorithms, of length 10, then lot is a subsequence with i1 = 2, i2 = 4, and
i3 = 7. Similarly, grim is a subsequence. But, list is not a subsequence.

Remark: Note that the i1, i2, . . . , ik need not be contiguous; if they are indeed contiguous, then the
subsequence is called a substring. The number of substrings is O(n2), the number of subsequences is
2n (do you see this?).

In the Longest Increasing Subsequence, or simply LIS, problem the input is an array A[1 : n] of real
numbers. A subsequence (A[i1], A[i2], . . . , A[ik]) is increasing (actually non-decreasing would be more
apt) if A[i1] ≤ A[i2] ≤ · · · ≤ A[ik]. As before, we have i1 < i2 < · · · < ik. Our goal is to find a longest
increasing subsequence.

For example, suppose the array A = [13, 27, 15, 8, 19, 32, 20]. Then the subsequence (13, 32) is an increas-
ing subsequence, so is (15, 20). The longest one seems to be (13, 15, 19, 20). There could be many such
LISs of length 4. For example, (13, 15, 19, 32) is another one.

A First try that doesn’t work. As we have done before, let us imagine a longest increasing subsequence
of A. Let it be σ = (A[i1], A[i2], . . . , A[ik]). We try to break this solution into solutionettes of smaller LIS
problems. As hopefully by now is usual. we ask of ik = n, that if the last element of the array participates
in the solution. If not, then this σ should be an LIS of A[1 : n− 1], a smaller instance. And if, ik = n, then
σ′ := (A[i1], . . . , A[ik−1]) should be an LIS of (A[1 : ik−1]). We don’t know what ik−1 is, but we do know
A[ik−1] ≤ A[n] since σ was an LIS. So, perhaps we look at all j < n such that A[j] ≤ A[n], and assert |σ′|
is at least as long as LIS of A[1 : j] for all such j.

If you have agreed with the above intuition, you may come up with the definition L(i) := length of an
LIS of A[1 : i] and we are interested in L(n), the base case of L(0) = 0, and the recurrence

L(i) = max

(
L(i− 1), 1 + max

j<i:A[j]<A[i]
L(j)

)
(A Wrong Recurrence!)

And as the name suggests, this recurrence is wrong! To show this, here is a simple example. Take the array
A = [20, 40, 10, 30]. First, convince yourself by inspection that L(4) = 2, that is, the longest increasing
subsequence of this array is of length 2. Now inspect what the recurrence gives. Working bottom up, it
sets L(0) = 0, then sets L(1) = 1. It then sets L(2) = 1 + L(1) since A[1] < A[2], and so L[2] = 2.
Continuing, it sets L[3] = max(L[2], 1) = L[2] = 2. Indeed, the LIS of [20, 40, 10] is of length 2. And then
it makes the mistake of setting L[4] = 1 + L[3] (since A[3] < A[4]), which evaluates to 3. Oh no!
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Remark: Many (including me) have made this mistake above. And indeed, if we argue only in English,
it is possible we can fool ourselves. Here is an exercise I want all of you to do. Imagine, you didn’t
know that the (A Wrong Recurrence!) was indeed wrong, and you write the proof as you have been
doing. You should see that one inequality (the ≤ one), will actually go through. You will catch the bug
when you try to argue the ≥. This will make you appreciate why one needs to argue both sides.

Now that we know we made an error, what did we miss? We missed that an arbitrary LIS ofA[1 : n−1]
cannot be extended by adding A[n] at the end; it only can be extended if the LIS of A[1 : n− 1] ends with a
number at mostA[n]. In the above example, when we were writingL(4) = 1+L(3) becauseA[3] ≤ A[4] we
were inadvertently assuming that the LIS of A[1 : 3] ends at A[3] and thus can be extended. Unfortunately,
that assumption is wrong.

But when you do realize what is the error, you can also get out of it. The idea is to make the assumption
we made explicit by asking for it. So, we will massage our definition such that L(i) will not give us the LIS
in the array A[1 : i], but rather give us the length of the longest increasing subsequence of A[1 : i] which
ends at A[i]. We make this explicit.

a. Why is this interesting? Because, if we knew this for all A[1 : m], for 1 ≤ m ≤ n, then we could
scan all these n answers and choose the best one.

b. Why is this useful? Because now we can assert that if A[j] < A[n], then the LIS of A[1 : j] which
ends at A[n] can indeed be extended to an LIS of A[1 : n].

We are now armed to write the full DP solution. With this new twist of LIS, we are ready for our dynamic
programming solution, which we provide below.

a. Definition: For any 1 ≤ m ≤ n, define LIS(m) to be the length of the longest increasing subsequence
in A[1 : m] which ends with A[m]. We are interested in max1≤m≤n LIS(m).

b. Base Cases: LIS(0) = 0.

c. Recursive Formulation: For all m ≥ 1:

LIS(m) = 1 + max
1≤j<m:A[j]≤A[m]

LIS(j)

d. Formal Proof: To formally prove the above, it helps to introduce, as we have done for optimization
problems, the notation of Cand(m) to be the set of all increasing subsequences of A[1 : m] which
end with A[m]. Therefore,

LIS(m) = max
σ∈Cand(m)

|σ|

(≥): Fix any 1 ≤ j < m with A[j] ≤ A[m], and let σ′ be the LIS of A[1 : j] ending with A[j] of
length LIS(j). Well σ = σ′ ◦ A[m] is in Cand(m) and is of length 1 + LIS(j). This means,
LIS(m) ≥ 1 + LIS(j).

(≤): Fix the sequence σ ∈ Cand(m) of length LIS(m). If |σ| = 1, then the inequality is vacuous.
Otherwise, let A[j] be the second-last entry of σ. Note that σ′ = σ − A[m] is in Cand(j) and
has length LIS(m)− 1.

e. Pseudocode for computing LIS(m) and recovery pseudocode:
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1: procedure LIS(A[1 : n]):
2: . Returns the Longest Increasing Subsequence
3: Allocate space L[0 : n] . L[m] will contain LIS(m).
4: Maintain parent[1 : n] which is useful for recovery. Initialized to 0
5: L[0] = 0. . Base Case.
6: for 1 ≤ m ≤ n do:
7: L[m] = 1 + max1≤j<m:A[j]≤A[m] L[j] . Naively, takes O(n) time.
8: Set parent[m] to be the j which maximizes. If no such j, parent remains 0.
9: m = argmaxL[1 : n] . L[m] contains the length of the optimal LIS

10: Define σ to be the reverse of (A[m], A[parent[m]], A[parent[parent[m]]], . . . , ) till par-
ent becomes 0.

11: return σ.

f. Running time and space As written above, the space is O(n), and the running time is O(n2) since
Line 7 takes O(n) time when implemented naively. In fact this can be improved to O(n log n) time
as we show next.

1.1 A Faster Implementation

The time taking step is Line 7 which sets

L[m]← 1 + max
1≤j<m:A[j]≤A[m]

L[j] (Line 7)

As noted above, a naive implementation would take O(m) time as we would scan A[1 : m− 1] finding the
j’s with A[j] ≤ A[m] and then finding the one with maximum L[j]. If you feel in your bones that there is
something inefficient here, then you are getting a “feel” for good algorithms! Indeed, we can do way better.
Let me describe this idea leisurely, and then describe how you would change the pseudocode.

Suppose when you are trying to figure out L[m], we know that the longest LIS seen so far, that is,
maxj<m L[j], is some positive integer t. Suppose you also knew for every 1 ≤ s ≤ t, the locations
A[j] where L[j] = s. In English, for every s you knew the locations j such that the longest increasing
subsequence of A[1 : j] ending in A[j] is of length exactly s. Indeed, let’s give this set a name

For all 1 ≤ s ≤ t, Js := {j : L[j] = s}

Using this we can re-cast our value L[m] slightly differently. We can say that L[m] = 1 + s∗ where s∗ is
the largest s such that there is some j ∈ Js with A[j] ≤ A[m]. In particular, s∗ is the largest s such that
minj∈Js A[j] ≤ A[m]. Make sure you understand this. Thus, we can rewrite Line 7 as

L[m]← 1 + max
1≤s≤t : minj∈Js A[j]≤A[m]

s

It doesn’t seem we made any progress. Instead of searching over all A[1 : m] we are not searching from
1 ≤ s ≤ t, but then for each s, we are trying to find the smallest A[j] in Js. What did we achieve?

The key is to maintain, as we go along, the quantity minj∈Js A[j] for all 1 ≤ s ≤ t. More precisely, we
initialize a list D that, at every point of time, will have t entries D[1 : t] defined. Recall t is the maximum
LIS length seen so far. And, D[s] will contain the quantity minj∈Js A[j]. Again, in English, the smallest
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array element A[j] such that the LIS of A[1 : j] ending in A[j] is of length exactly s. In parallel, we also
maintain E[s] which just contains the index j such that A[E[s]] = D[s] (this can be stored in D[s] itself).
So, we can re-case the setting of L[m] yet again as

L[m]← 1 + max
1≤s≤t : D[s]≤A[m]

s (1)

Let us look at an example. Suppose A = [13, 27, 15, 8, 19, 32, 20] with n = 7. Suppose we have figured
out L[1 : 6] = [1, 2, 2, 1, 3, 4] and we want to figure out what L[7] should be. The value of t, at this point, is
4. And the lists D[1 : 4] and E[1 : 4] are D = [8, 15, 19, 32] and E = [4, 3, 5, 6] indicating the positions.
Indeed, D[2] = 15 means among all indices j with L[j] = 2, which are {2, 3}, we are storing the smallest
value, D[2] = min(A[2], A[3]) = 15.

Remark: Do you see E[s], the position where D[s] is attained, is the largest index in Js? This is not
an accident. Can you argue this?

The main reason why we make progress is the following key claim. You may have already noticed it in
the above example; the claim shows this is no accident.

Claim 1. The list D is sorted increasing (non-decreasing).

Proof. To prove this, let us take s and t such that s < t. Let us consider the positions j := D[s] and
k := D[t]. That is, j = E[s] and k = E[t]. Recall, by the definition, LIS(j) = s and LIS(k) = t We need
to prove A[j] ≤ A[k].

Since LIS(k) = t, there is a length t subsequence σ ending at A[k]. Look at the sth entry in this
sequence: suppose it is k′. By definition of LIS, A[k′] ≤ A[k]. Now note that LIS(k′) = s as well; there
definitely is a length s subsequence ending atA[k′] (the first s entries of σ), and if there was anything strictly
longer, than we can append the (t − s) entries of σ coming after A[k′] to get a longer than t LIS ending at
A[k]. Which is a contradiction to LIS(k) = t. So, LIS(k′) = s, that is, k′ ∈ Js. Which means D[s] ≤ A[k′],
and so D[s] ≤ A[k] = D[t].

Why is having D sorted non-decreasing allow us to run (1) faster than O(m) or O(t) time? The answer is
“binary search”. We need to find max1≤s≤t:D[s]≤A[m] s. That is, in the sorted array D[1 : t] we are trying
to find the largest entry ≤ A[m]. This is precisely what Binary Search does2. To give more details, we
start with L ← 0 and U ← t + 1, and we start with s =

⌈
L+U
2

⌉
. If D[s] ≤ A[m], then our s∗ ≥ s, and

so we set L ← s. Otherwise, if D[s] > A[m], then s∗ < s, and so we set U ← s. Thus, the invariant
L ≤ s∗ < U is always maintained. We stop when U − L ≤ 1, and we return the value of L. This takes
O(log t) = O(log n) time. Note that the answer could be 0, which would mean A[m] is smaller than D[1]
as well. In the pseudocode below, this bit is just called BINSEARCH(D,A[m]).

Are we done explaining the whole algorithm? Well, no. We need to tell how this list D is maintained.
We maintain the value t and D together. Initially t = 0 and D = []. After setting L[m] for a certain m,
we first check if the current t < L[m]. If so, then it must be L[m] = t + 1 (do you see why?) and so we
set t ← t + 1 and D[t] = A[m]. Otherwise, L[m] = s ≤ t. Then, we check if A[m] < D[s]. If so, we
modify D[s] ← A[m] thus maintaining D[s] = minj∈Js A[j]. Otherwise, we do nothing. This completes
the description of the algorithm.

2Ok, so binary search only answers YES or NO. But in the NO case, we can always make it return the largest entry of the array
≤ the element you are searching for
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1: procedure LISFASTER(A[1 : n]):
2: . Returns the Longest Increasing Subsequence
3: Allocate space L[0 : n] . L[m] will contain LIS(m).
4: Maintain parent[1 : n] which is useful for recovery. Initialized to 0.
5: Maintain t← 0 and D,E ← [].
6: L[0] = 0. . Base Case.
7: for 1 ≤ m ≤ n do:
8: s∗ ← BINSEARCH(D[1 : t], A[m]).
9: j∗ ← E[s∗] if s∗ 6= 0; otherwise, j∗ ← 0.

10: Set L[m]← 1 + s∗ and parent[m]← j∗

11: if L[m] > t then: . Then L[m] = t+ 1

12: t← t+ 1
13: D[t]← A[m]
14: E[t]← m
15: else if A[m] < D[L[m]] then: . m ∈ Js and A[m] is now the minimum, and D[s] should be

set, where s = L[m]

16: D[L[m]]← A[m]
17: E[L[m]]← m.
18: m = argmaxL[1 : n] . L[m] contains the length of the optimal LIS
19: return σ.

Theorem 1. The Longest Increasing Subsequence can be solved in O(n log n) time.

To see if you have understood the LIS problem above, try doing this weighted version. First get an O(n2)
time algorithm. Then get an O(n log n) time algorithm. b

Exercise: Imagine a weighted version of LIS. In this, every index 1 ≤ j ≤ n has a weight w(j). The
goal is to find an LIS (j1 < j2 < . . . < jk) which maximizes the total weight w(j1) + w(j2) + · · · +
w(jk). Solve this weighted LIS problem, hopefully in O(n log n) time.
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