Graphs : DFS Applications : Topological Sort!

1 Applications of DFS

We already saw two applications of DFS in the last lecture: the REACHABLE? problem and the CYCLE?
problem. In this lecture and the next, we see two more applications of DFS on directed graphs. The first
application actually gives a way to “order” all nodes in a directed acyclic graph (DAG). This is called the
topological order. This itself has many applications, which your problem sets explore.

1.1 Topological Ordering of DAGs

Throughout this subsection, G is a directed acyclic graph (DAG). Recall from the previous lecture, this
means that if we run DFS on G, there are no back edges. A topological ordering of (the vertices of) a DAG
is an ordering o of the vertices such that for any ¢ < j, there is no edge from o[j] to o[i]. That is, if we
write down the vertices from left to right in the o order, then all edges go from left to right. If one thinks
of an edge (u,v) as v being “bigger” than u, then the topological ordering is a linearization of the graph
according to this (partial) order. Of course, not every pair of vertices may be comparable.

Remark: Note that the first vertex v in the topological order must have deg™ (v) = 0. There is no
vertex to its left to “send” an edge to it. Such vertices are called sources. Similarly, the last vertex v in
the topological order must have deg™ (v) = 0. There is no vertex to its right to which it can “send” an
edge. Such vertices are called sinks. Furthermore, any source can be the first vertex of a topological
order, and any sink can be the last vertex in the topological order.

TOPOLOGICAL ORDERING
Input: Directed Acyclic Graph G.
Output: A topological ordering of G.

Does a topological order always exist of a DAG? Motivated by the previous remark, let us first ask ourselves,
does a DAG always have a source vertex? If you think for a minute you will see that the answer is yes: if
a vertex has an edge coming into it from another vertex, and that vertex has an edge coming into it from
yet another vertex, and so on, either we will reach a source, or we will reach a cycle. Since the latter is not
possible in a DAG, we must have a source vertex. This way we can find the first vertex of a topological
order. What about the rest? Well, delete the source vertex (putting it up front); the resulting graph remains
a DAG. Rinse and repeat. This way you will get a topological order; in particular, one exists. Indeed, this
actually gives an algorithm to find a topological order and if you are careful you can make that algorithm
run in O(n + m) time. The following lemma shows how a single DFS can return a topological order almost
immediately.

Lemma 1. Consider running DFS in any arbitrary order on the DAG G. Let ¢ be the ordering of the vertices
in decreasing order of last[v]. Then, o is a topological order.

'Lecture notes by Deeparnab Chakrabarty. Last modified : 19th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

Proof. To show o is a topological order, we need to show there is no edge going from right to left. To this
end, pick two vertices and y such that o[x] < o[y]. We need to show (y, z) is not an edge. Suppose, for
contradiction’s sake, it is. Now, o[z| < o[y| implies, by our definition, last[y| < last[z]. The edge property
now implies that first[z] < first[y]. Why? If not, that is, if first[y] < first|x], then since (y,x) is an edge
the edge property would imply last[z] < last[y]. But the reverse is true. Therefore, first[z] < first[y]. In
sum, we have first[x] < firstly] < last]y] < last]z]. The Nested Interval Property now tells us y must be a
descendant of , that is, (y, =) is a back-edge. This contradicts that G is acyclic. O

1: procedure TOPORDER(G): > G is assumed to be a DAG

2% Run DFS(G) for any arbitrary order of the vertices.

3: Return the decreasing order of last[v]’s. > Can use Count-Sort, or can return them as last’s are
being assigned.

Theorem 1. TOPORDER finds the topological order of any DAG G in O(n + m) time.

The topological order is super powerful as it allows us to run dynamic programming to solve many
problems on DAGs (which may be hard to solve on general directed graphs). The reason, as alluded to in
an earlier lecture on DPs, is that the topological ordering is an “ordering” (albeit partial) and we can think
of “last” element in our ordering and ask questions like “if they are in our solution”. Let us give an example
by showing how to find longest paths in DAGs in O(n + m) time. To contrast this, no one knows any
polynomial time algorithm (let alone linear time) for finding the longest path in a general directed graph?.

LONGEST PATH
Input: DAG G, costs c(e) on every edge which can be arbitrary real numbers, source vertex s.
Output: Find longest path from s to every vertex v € V.

We start with a topological order o of G. Let s = o[i], that is, in the ith position in o. Now consider
any vertex v = o[j]. If j < ¢, there can be no path from s to v, and so we answer L. Otherwise, the
longest path p from s to v must pass through a penultimate vertex o [k] with k < j where (o[k], o[j]) is an
edge. Furthermore, the path from s to o [k] must be the longest path to o[k] as well (do you see why? Proof
coming shortly). Therefore, the remaining edges of p (without the (o[k], o[j]) edge) can be found in the
smaller problem where we consider the graph only up to o[k]. This is our recursive substructure, and leads
to the following dynamic programming algorithm which we write in our usual six-step way.

a. Definition. Let P; denote all paths from o[i] to o[j]. Note this could be empty.

longest|j] := maxc
gest[j] max ()

where ¢(p) is the sum of the costs of edges in p.

b. Base Case. For all j < i, longest[j] = L. It will be useful to think of L as —oo; the longest path is
of length —oco means there is no path.

longest[i] = 0, the longest path from s to itself is of length 0, because there are no cycles in G.

2For those who know the jargon, the longest path problem on general directed graphs is NP-hard; more on NP-hardness (prob-
ably) later in the course

c. Recurrence. For j > 1,

longest|[j] = max longest[l| + c(oy, 0;
& [j] 0<j:(0¢,05)€E and Iongest[[];éi(& [] (¢ j))

If there is no such edge to take max over, then longest[j] = L.

d. Proof.

(<). If there is no path from o; to o, that is if P; = (), then longest[j] = _L, and it doesn’t matter
what the RHS is (here, the mnemonic of | = —oo is useful). So, suppose P; is not empty, and
fix a path p € P; with ¢(p) = longest[j]. Let this path p = (0; = o, 21, 22, .

Since j > 1, the vertex 1 is well-defined (it could be o).

Consider the vertex x;_1, the penultimate vertex in this path. Let ¢ be such that z;_; = o[¢]; by
the definition of topological order, ¢ < j (note, ¢ could be i). Also, p' := (0; = x, .
o) is a path from o; to o4. Therefore, ¢(p’) < longest[¢]. And, c(p) = ¢(p') +c(o¢, o). Putting

together, we get

longest[j] = c(p) = ¢(p') + c(ov, 05) < longest[{] + c(oy, 0;)

and thus, the LHS < the RHS which maximizes over all such £’s.

(>). Fix arbitrarily any ¢ < j such that longest[¢] # L and (o, 0;) is an edge. Since longest[¢] # L,
there is a path p € P, with ¢(p) = longest[¢]. Consider the path p’ = p o (0, 0;). This is a path

from o; to o, that is, p’ € P;. So,

Since ¢ was picked arbitrarily among the set the RHS is maximizing over, we get that the LHS

longest[j] > ¢(p') = ¢(p) + c(o¢, o) = longest[{] + c(o¢, 0;)

is at least the RHS.

e. Pseudocode.

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:

procedure LONGESTPATH(G, s, ¢): > G is a DAG.

Run Topological Order on G to obtain o.

> All edges of G are of the form (o, 0;) with i < j.

Let i be such that s = o[i].

Initialize longest[v] = L and parent[v] = L. i parent is used for recovery: see later

Set longest[o[i]] = 0 and parent[oi]] = L.

Set longest[o[j]] = parent[o[j]] = L for j < i.

for j =i+ 1tondo:
Set longest[o[j]] = MaXy<j:(oy,0;)€F and longest[o[¢]]#L (longest[o[€]] + c(oy, Uj))'
> If there is nothing to “max” over, then longest|o|j]] remains unchanged at .
If longest[o[j]] # L, set parent[c[j]] = o[¢], which maximizes the above term.
> Observe 1: longest[o[j]] = longest[parent[c[j]]] + c(parent[o[j]], o[4])-
> Observe 2: parent[v] if not L comes before v in the topological order.
> Observe 3: For all v # s : longest[v] # L implies parent[v] # L.

STy = 0j).

c L1 =

The above pseudocode returns the length of the longest paths from s to every vertex. How about
the paths itself? Well, the parent data-structure allows one to recover paths on query. So sup-
pose we want the longest path to a particular vertex v (and not all of them), then we would find
(v, parent[v], parent[parent[v]], .. .) till we reach s, and then reverse it. This is just a “slick” way of
doing the while-loop. I provide this below, but in the future I will use the above notation.

1: procedure RECOVERLONGESTPATH(G, s, ¢; longest, parent; v): > Find the longest path
from s to particular vertex v.
2% > Assumes you have obtained longest[v] by running LONGESTPATH
3 Let j be such that o[j] = v.
4: if longest[o[j]] = L then:
5: return No path from s to v.
6: w—aljlip=lofj]l.
7: > Invariant: c(p) + longest[w] = longest[o][j]]
8: while parent[w] # L do:
9: Append parent|w] to the front of p. > This increases the cost of p by c(parent|w], w).
10: > The invariant is maintained by the observation in Line 12
11: w < parent|w]
12: > At this point, we assert w = s. This is because s is the only vertex whose longest|[w]
is not L but parent[w] is L. Since longest[w| was defined by parent[w] = L, we get this.
13: > Why does the while loop end? Because parent[w)|, if not L, comes before w in the
Topological Order.

f. Running Time. Line 9 in LONGESTPATH takes time O(deg™ (c;)), the in-degree of ;. Ev-
ery other step in the jth for loop takes O(1) time. Thus, the total time taken by the for loop is

> i (O(1) + O(deg™(g;)) = O(n + m)

Theorem 2. LONGESTPATH can be used to find the longest path in a DAG in O(n + m) time to any
vertex v from s.

	Applications of DFS
	Topological Ordering of DAGs

