
More MST Algorithms: Prim and Kruskal’s Algorithm1

In this note we describe two other MST algorithms. Their correctness follows from the same property
we used for designing Borůvka’s algorithm. Namely,

Theorem 1 (Cut Crossing Property). Assume all costs are distinct. Let S ⊆ V be any subset of vertices.
Recall, ∂S := {(u, v) : u ∈ S, v /∈ S}. Then, the edge in ∂S with the minimum cost must be in every
minimum spanning tree.

The idea is similar to Boruvka’s in that the algorithm proceeds in phases, and in each phase the algorithm
recognizes some new edges of the MST. It does so by recognizing edges e which are the minimum cost edges
in ∂S for some S. Prim’s algorithm discovers exactly one edge per phase (thus, there are |V | − 1 phases in
all). The algorithm maintains a subset S ⊆ V and labels wt[v] for every vertex v ∈ V . The invariant we
will maintain is that wt[v] will denote the weight of the cheapest edge from S to v. parent[v] will point to
u ∈ S such that (u, v) is this minimum cost edge. That is, wt[v] will be minu∈S:(u,v)∈E c(u, v). If there is
no such edge, then we define wt[v] =∞. Initially, S = ∅ and wt[v] =∞ for all v ∈ V .

In each phase, the algorithm adds the cheapest edge in ∂S to F . This is found by looking at all wt[v]
for v /∈ S and taking the one with the minimum value. The edge (parent[v], v) is added to F and v is
added to S. As soon as v enters the subset, it modifies wt[w] for all w /∈ S with (v, w) ∈ E as wt[w] =
min(wt[w], c(v, w)). This is much like Dijkstra’s algorithm; indeed, the running time of Prim is exactly
the same as that of Dijkstra. That is, if implemented via priority queues with Fibonacci heaps, it takes
O(|E|+ |V | log |V |) time.

1: procedure PRIM(G = (V,E), c : E → R):
2: Initialize S ← ∅, wt[v] =∞.
3: Pick an arbitrary “root” vertex s ∈ V and set wt[v] = 0.
4: while S ̸= V do:
5: Let v be the vertex /∈ S with smallest wt[v]. ▷ Implemented using EXTRACTMIN

6: S ← S + v.
7: for all neighbors u of v do:
8: if (wt[u] > c(v, u)) then: ▷ Implemented using DECREASEVAL

9: Set wt[u]← c(v, u).
10: Set parent[u]← v.

Theorem 2. PRIM’s algorithm finds the minimum spanning tree of a graph in O(|E| + |V | log |V |)
time, if implemented via priority queues using Fibonacci heaps.

The next algorithm is probably the most famous algorithm for finding the MST and the most succinctly
state-able one: go over all the edges in an increasing order of cost and pick it in F if it doesn’t form a cycle
with the existing edges. This is called KRUSKAL’s algorithm.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 3rd Mar, 2025
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1

1: procedure KRUSKAL(G = (V,E), c : E → R):
2: F ← ∅.
3: Sort edges in increasing order of cost.
4: for edge e in this order do:
5: if F ∪ e has no cycles then: F ← F + e.
6: return F .

However, the succinct description might be the only thing going for this algorithm. Note that a naive
implementation takes O(|E| log |E|+ |E||V |) time with the bulk of time used to check if F ∪ e contains a
cycle (which one can do by say doing a DFS on F taking O(|V |) time). This is of course wasteful and we
will soon see how to get the time down to sorting time, which is O(|E| log |E|) = O(|E| log |V |) time.

Before we go to the implementation, why is the above algorithm correct? Is it always picking an edge
which is the minimum cost edge in ∂S for some S? The answer is yes. Consider the tth edge the algorithm
picks. Just before that time, suppose the content of F is Ft−1 and the tth edge is et = (u, v). Note that u
and v must be in different connected components of G[Ft−1] for otherwise we would have a cycle. Let U be
the connected component of Ft−1 which contains u. We claim that (u, v) is the cheapest edge in ∂U . This
is because if there was a cheaper edge e′ = (u′, v′), then that edge must have been considered before. This
edge doesn’t form a cycle with Ft−1, and therefore would not have formed a cycle earlier either (we only
had a subset of edges earlier). And yet it was not picked. Contradiction.

We now describe a faster implementation of Kruskal’s algorithm using a data-structure called the UNION-
FIND data structure. This data structure works over a universe of elements and in our case this universe is V ,
the vertices of the graph. It maintains a collection of disjoint sets of V which partitions the universe. There
are two operations. One is FIND(v) which returns the index of the set which contains the element v. And
the other is UNION(u, v) which merges the sets FIND(u) and FIND(v). We will show how to maintain this
data structure such the total time spent on UNION is at most O(n log n), where n is the size of the universe.
Believing this for the time-being, we should be ableto see how one can get a O(|E| log |V |) implementation
of Kruskal’s algorithm. Indeed, the sets we maintain are the connected components of F , and whenever we
add an edge (x, y), we perform a UNION. In particular,

1: procedure KRUSKAL-WITH-UNION-FIND(G = (V,E), c : E → R):
2: F ← ∅.
3: Sort edges in increasing order of cost.
4: for edge e = (x, y) in this order do:
5: if FIND(x) ̸= FIND(y) then: ▷ x and y are in different components
6: F ← F ∪ e.
7: UNION(x, y).
8: return F .

Now to the UNION-FIND data structure. Here is one implementation. We maintain a set object which
contains (a) an index/name, (b) a list of elements it contains, and (c) its size. So, if S is a set, we have
S.name as its index, S.elem to be a list of elements, and S.size to be the size of this array. We initially
create |V | sets initializing the ith sets Si.name← Si as Si, elem← [vi], and Si.size = 1. We also maintain
pointers such that every vertex v in S.elem points to this object S.

The FIND operation is trivial; on input v ∈ V , we just use the pointer from v to find the set which
contains it. When we call UNION(x, y) when x and y point to two different sets, we first let Si =FIND(x)

2

and Sj =FIND(y). Then we compare Si.size and Sj .size. If Si.size ≤ Sj .size, then we do the following (a)
we append Si.elem to Sj .elem, (b) we set Sj .size ← Sj .size + Si.size, and (c) for every v ∈ Si.elem, we
move their pointers from Si to Sj . At this point, we can delete Si. The time taken by UNION is O(Si.size).

Claim 1. Consider a seqeunce of UNION operations. The total time spent is O(n log n).

Proof. The sort of reasoning we are going to do is called amortized analysis. Although a single UNION

step can take Θ(n) time, and there can be n UNION calls, nevertheless the total time is not Θ(n2) but will
be much smaller. This may sound magical, but it is just saying that the Θ(n) time is worst-case and can’t
happen much of the time.

The proof is really a simple charging argument. Whenever two sets A and B are being union-ed, we
take approximate min(|A|, |B|) time. Let us “charge” this time to the elements of the smaller set. More
precisely, if |A| ≤ |B|, we put 1 unit of charge on every element of A. We do this at every UNION call. So,
at the end of the sequence of UNION calls, every element will have some non-zero charge, and the total time
taken is equal to O(C), where C is the total charge in the system.

It suffices to prove C ≤ n log2 n. Indeed, every time an element obtains a charge, its set (what we get
when we call FIND) more than doubles in size. Indeed, UNION(A,B) will move elements of A to A ∪ B,
which is of size ≥ 2|A| since |B| ≥ |A|. This doubling cannot occur more than log2 n times, and so the
total charge is at most n log2 n.

3

