
Linear Programming1

In this lecture, my goal is to tell you a very large class of problems which can be solved efficiently in
polynomial time. In my opinion, this is the crown jewel in the algorithmic treasure chest. Unfortunately, the
algorithm is not simple and takes some time to explain. Nevertheless, I think all of you should know about
this class of problems so that if, in the future, you can fit your problem into this class, you can then look up
the algorithm itself. Moving to the problem itself.

1 Linear Programming

Let us recall some linear algebra. Suppose A is an n×n matrix, and b ∈ Rn is a column vector. We have all
probably see a system of linear equations Ax = b. If A is invertible (equivalently, determinant is non-zero),
then there is only one such x, namely x = A−1b. If A were an m× n matrix with m ≤ n, then there can be
multiple such x’s. In fact, the set of all {x : Ax = b} forms a vector space.

Remark: Given A how does one find A−1? This, after all, is also an algorithm. More generally,
solving Ax = b is done via an algorithm. One such algorithm transforms the matrix into “row-echelon”
form, or “upper-triangular” form, and then the solution is easy. Naively, this can be done in O(n3)
arithmetic operationsa. Do you recall this?

aOne has to be careful here. If any two numbers can be added/divided in O(1) time, then we get O(n3) algorithm. But
the numbers when you multiply them can get rather large especially if you multiply them n times. Nevertheless, there is an
O(n3) time algorithm, but that is not a trivial implementation.

The fun begins when we add inequalities in the mix. Suppose we are interested in the question whether
or not there is an x such that Ax = b and x ≥ 0, that is, all coordinates of x are non-negative. Suddenly the
problem is not so easy any more. Of course, if A is n × n and full-rank (that is A−1 exists) then of course
the problem doesn’t even change: there is only one x such that Ax = b and if that x is not all non-negative,
then the answer is NO. However, when A is m × n (or rank-deficient), then the question is asking whether
the vector space {x : Ax = b} has a all non-negative solution. This is the fundamental question in linear
programming.

LINEAR PROGRAMMING: FEASIBILITY VERSION

Input: An m× n constraint matrix A, an m-dimensional vector b ∈ Rm

Output: x ∈ Rn such that Ax = b and xi ≥ 0 for all i, or assert NO if no such vector exists.
Size: The number of bits required to describe the input (A, b).

Traditionally, the term linear programming is used for the optimization version of the problem. In this
problem, along with A and b, one is given a cost vector c ∈ Rn. The objective is to either say NO if there is
no x ≥ 0 satisfying Ax = b, or to return an x∗ which minimizes 〈c, x〉 over all {x ∈ Rn : Ax = b, x ≥ 0}.
Here 〈c, x〉 is the shorthand for the dot product

∑n
i=1 cixi.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 19th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1

LINEAR PROGRAMMING : OPTIMIZATION VERSION

Input: m × n constraint matrix A, an m dimensional constraint vector b, and an n-dimensional cost
vector c.
Output: An n-dimensional vector x which is a solution to

min 〈c, x〉
Ax = b

x ≥ 0 (1)

or assert there is no solution to {x : Ax = b, x ≥ 0}.
Size: The number of bits required to describe all the data.

Remark: Note that the entries of A, b, c can be arbitrary rational numbers. In particular, we can have
max replace the min and replace some of the ≥ 0 (of the n of them) with ≤ 0 and the problem remains
the same. This can be done by suitable negating. For instance, max〈c, x〉 is the same as min〈−c, x〉. If
xi ≤ 0, then this is identical to having xi ≥ 0 and negating the ith column of A.

One may also see linear programs which have only inequalities. Indeed, depending on your application
this version may capture your problem better. I am adding it just in case.

LINEAR PROGRAMMING : OPTIMIZATION VERSION “PART II”
Input: m × n constraint matrix A, an m dimensional constraint vector b, and an n-dimensional cost
vector c.
Output: An n-dimensional vector x which is a solution to

min 〈c, x〉
Ax ≥ b

or assert there is no solution to {x : Ax ≥ b}.
Size: The number of bits required to describe all the data.

There is really no difference between the two versions. That is, if we can solve the first version, then we
can solve the second version. Here’s how. We introduce slack variables s1, . . . , sm. If we let s be an
m-dimensional vector and assert2 {(x, s) : Ax − Ims = b, (x, s) ≥ 0}, then looking at this solution and
taking just the “x-part” gives a solution where Ax ≥ b, x ≥ 0. Similarly, given any solution x satisfying
Ax ≥ b, x ≥ 0, we can find s ∈ Rm such that s ≥ 0 and Ax − Is = b. Indeed, the most general linear
program looks like this.

LINEAR PROGRAMMING : “GENERAL VERSION”
Input: m× n inequality constraint matrix A with m dimensional constraint vector b≥, k × n equality
constraint matrix B with k dimensional constraint vector b=, and an n-dimensional cost vector c.

2Here Im is the m×m identity matrix

2

Output: An n-dimensional vector x which is a solution to

min 〈c, x〉
Ax ≥ b≥

Bx = b=

or assert there is no solution to the above constraints.
Size: The number of bits required to describe all the data.

Here is the crown jewel.

Theorem 1 (Dantzig, Shor, Nemirovskii, Khachiyan, Karmarkar,...). There is a polynomial time
algorithm for linear programming.

This, by any means, is not a trivial theorem. It is one of the deepest facts uncovered in the last 50 years.

1.1 Some Examples

Maximum Flows. We now see that the maximum flow problem is a simple special case of linear program-
ming. To see this, we need to describe the constraint matrices, constraint vector, and the cost vector.

Consider the signed edge-incidence matrix. It is an |V | × |E| matrix. The rows correspond to the
vertices. The columns correspond to the edges. For every edge (u, v), the column corresponding to this
edge has two non-zero entries: it has a −1 in the uth row and a +1 in the vth row, and 0 everywhere else.
Note that given any xe for all edges e ∈ E¡ we get that B · x is an |V |-dimensional vector whose uth
coordinate corresponds to precisely

∑
(w,u)∈E xwu −

∑
(u,v)∈E xuv. This is simply the excess excessx(u).

Now, we know what the equality constraint matrix and equality constraint vector is. The matrix is simply
the rows of B except the row corresponding to s and t are deleted. The equality vector is the all 0s vector.
This captures the conservation constraints: excessx(v) = 0 for all v /∈ {s, t}.

The capacity constraints are easily captured by the |E|-dimensional identity matrix with the constraint
vector being the vector of the capacities.

The cost vector is simply −1 on all edges of the form (w, t) and +1 for edges of the form (t, u). This,
〈c, x〉 measures −excessx(t) and since we want to maximize the value of the flow, that is, excessx(t), this is
equivalent to minimizing 〈c, x〉.

Thus, the maximum flow problem is a special case of linear programming. But we can now see some-
thing more. We can see that, in fact, put in any cost vector and get special kinds of flow problems. For
example, suppose every edge e ∈ E had a cost c(e) (as well as its capacity) which indicated the cost of
sending one unit of flow through it. One could ask to find a maximum flow of minimum possible cost.
Well, one can first solve the maximum flow to find the value F ∗ of the maximum flow. And then, one can
just add it as a constraint. The simplest way is to just let the equality constraint matrix be the whole of
the signed edge-incidence matrix with the constraint vector corresponding to s and t have values −F ∗ and
+F ∗. Now, just minimizing 〈c, x〉 satisfying these new constraints would give the minimim cost maximum
flow. Just like maximum flows had many applications, this also has many applications. For example, given
two vertices s and t, one can find k-edge disjoint paths (this was our first application of flow) such that the
total cost is minimized (and this is where we use minimum cost flows).

3

Remark: “Hold on!”, I hear you cry. The disjoint path application only makes sense if the flow on
any edge is either 0 or 1. And indeed, one thing that the Ford-Fulkerson algorithm assured is that if
the capacities are integer valued then there is an optimum solution which is also integer valued. Is that
true for linear programs? Is the solution to a linear program integer valued if the constraint vector
b is integer valued? In general, no. However, for certain constraint matrices the answer is yes. In
particular, if the matrix is totally unimodular (TU), that is, if the determinant of any square sub-matrix
of the constraint matrices (equality and inequality both taken together) is in the set {−1, 0,+1}, then
for any integer-valued constraint vector b the solution to the linear program is integer valued. This is
true even if the cost vector is not integer valued. The reason for this is not hard and stems from the fact
that if the determinant of an integer square matrix is ±1, then the inverse is also an integer matrix.

Now, the signed edge-incidence matrix is indeed TU. This is not hard to show, and I leave this as
an exercise to the interested reader.

Plane Fitting. Let’s do another example, one which we haven’t seen in class. Let us do an example from
machine learning. Suppose we are given data points (xi, yi) for 1 ≤ i ≤ m. Here, every xi ∈ Rn is an
n-dimensional point, while the yi ∈ R’s are scalar labels. Ideally, these labels are some affine measurements
on the data point. That is, there is some a ∈ Rn, b ∈ R, and all (xi, yi), in an ideal world, should lie in the
set {(x, y) : y = 〈a, x〉+ b}.

However, there is noise/inaccuracies in data collection, and so the objective is to find the closest affine
subspace to the obtained data. What does closest mean? Given any affine subspace {(x, y) : y = 〈a, x〉+b},
let us denote the error of (xi, yi) as |yi − (〈a, xi〉+ bi) |. That is, the absolute value3 of the deviation of yi
from what the affine function suggests. Question is: given the data point, can we find the best (a, b)?

Mathematically, the problem is to find a ∈ Rn, b ∈ R such that
∑m

i=1 |yi − (〈a, xi〉+ bi)| is minimized.
I claim that this is a linear program. At first glance, you may think there are no constraints at all. You
are correct at one level, but note that the objective function is not of the form 〈, 〉, that is, it is not a linear
function of the variables (a, b). One needs to do a little work to cast it as a linear program.

The idea is to introduce new variables zi, 1 ≤ i ≤ m which is supposed to capture the absolute value.
This is done by asserting that zi is greater than what is inside the absolute value, and also greater than the
negative of what is inside the absolute value. This leads to the constraints. Let me write the linear program
in a form that one usually writes linear programs in, and then elucidate what the matrices are.

min

m∑
i=1

zi

zi + 〈a, xi〉+ b ≥ yi, ∀1 ≤ i ≤ m

zi − 〈a, xi〉 − b ≥ − yi, ∀1 ≤ i ≤ m

Note that I have not described the matrix. But one can easily tease it out. There is an inequality constraint
matrix. It has 2m rows, with 2 inequalities corresponding to the ith data point. There are m+n+1 columns.
The first m columns correspond to zi’s, the next n + 1 to the variables (a, b). One of the two rows corr. to
ith data point has 1 in the zith column, followed by (xi,+1) and the constraint vector has yi. The other row
has (−xi − 1) and the constraint vector has value −yi.

3In linear regression, which is the problem you probably have studied in a machine learning course, one usually takes the square
of this absolute value as the measure. There are technical and statistical reasons for that. As a computation problem, they become
slightly different

4

	Linear Programming
	Some Examples

