
Divide and Conquer: Finding the top k elements of an array1

In the first lecture, we saw that the maximum of an array A[1 : n] with distinct integers can be found in n−1
comparisons. Naively generalizing, the maximum and minimum can be found in 2n − 3 comparisons, but
we saw how to actually do it in ≤ 3n

2 comparisons. A similar idea also led to a 3n
2 -comparison algorithm

for finding the maximum and the second maximum.
We now see how recursion allows us to get an even faster algorithm for finding the first and the second

maximum. As in the MAX-AND-MIN case, we pair the elements up, compare the pairs, and send the
larger of the two elements in B. If A has odd number of elements, then the last element would be unpaired,
and we send it to B as well. When we pair the elements up, we remember the partners using a helper partner
function. So an element e is paired with partner(e), and an unpaired element e with have partner(e) = ⊥.

Now, where does the maximum element of A lie? Well, as in the MAX-AND-MIN case, it lies in the
list B. Therefore max(A) = max(B). Where does the second maximum of A lie? One guess may be
that 2ndmax(A) = 2ndmax(B). But that is not correct. Consider the array A = [19, 20, 1, 2]; in this case,
B = [20, 2] but the second maximum of B is not the second maximum of A. And then you make the key
observation. The second maximum of A is either the second maximum of B, or it is the partner of the
maximum. Let’s write it as a claim.

Claim 1. Let A[1 : n] be an array of n elements, and let B be an array of dn/2e elements obtained as
described above. Let b∗ = max(B) = max(A). Then, 2ndmax(A) = max(2ndmax(B), partner(b∗)).

Proof. Suppose b∗, the maximum of both B and A, lies at A[i]. Suppose the second-max of A lies at A[j].
If A[j] 6= partner(b∗) (that is, if j 6= i+1 or i−1 depending on i), then A[j] must be bigger than its partner.
It is the second max after all, and the only element that can “defeat” it is A[i].

Now, we are ready to state our algorithm. Given A, we form the array B. We find the b1 = max(B)
and b2 = 2ndmax(B). We are guaranteed b1 = max(A). And by the above claim, we are guaranteed
a2 = max(b2, partner(b1)) is the second-max. How do we find b1 and b2? But that is exactly the same
question asked on B. So we recurse. Boom!

1: procedure MAX-AND-2ND-MAX(A[1 : n]):
2: . Returns the max-and-second-max of an n element array as a tuple.
3: if n ≤ 2 then:
4: return the max and second max by at most one comparison. . 1 comparison

5: We pair the elements (A[1], A[2]), (A[3], A[4]) and so on. If n is odd, then the last element is
left unpaired.

6: We maintain a pointer partner where partner(e) returns its pair. This is ⊥ if e is unpaired.
7: We compare e and partner(e) and send the larger element to a list B. . bn/2c comparisons.
8: If an element was unpaired, then it is sent to B.
9: (b1, b2)← MAX-AND-2ND-MAX(B).

10: return (b1,max(b2, partner(b1)) . 1 comparison

1Lecture notes by Deeparnab Chakrabarty. Last modified : 19th Mar, 2022
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

1

Analysis. Let T (n) be the worst-case number of comparisons on an array of length n. We have the base
cases:

T (1) = 0 T (2) = 1

Note that for running Line 4, we really don’t need both max and min; just a single comparison will tell us
the answer.

For a general n > 2, let us see what the number of comparisons are. The only comparisons are made
in Line 7, in the recursive call Line 9, and finally, in Line 10 (when we compare b2 and partner(b1)).
Therefore, we get the recurrence

For n ≥ 3, T (n) ≤ bn/2c+ T (dn/2e) + 1 (1)

where we have used the fact that the number of elements in B is exactly dn/2e (including the unpaired
elements).

Now, we can solve this recurrence using the kitty method. Note that we should not apply the Master
theorem as that would give a coarse answer of O(n) (you see this, right?) But we really want a much more
fine-grained answer, and then we have to resort to the kitty method (or the open-up the inequalities method).

For simplicity, let us assume n = 2` so that the pesky ceilings and floors don’t bother us (we’ll take care
of this at the end). So, we get

T (n) ≤ T (n/2) +
(n
2
+ 1

)
≤ T (n/4) +

(n
4
+ 1

)
+
(n
2
+ 1

)
≤ T (n/8) +

(n
8
+ 1

)
+
(n
4
+ 1

)
+
(n
2
+ 1

)
...

≤T (n/2`−1) +
(n

2`−1
+ 1

)
+
(n

2`−2
+ 1

)
+ ·+

(n
4
+ 1

)
+
(n
2
+ 1

)

We stop when at (` − 1), because then n/2`−1 becomes 2 (we have assumed n = 2`), and in that case we
get T (n/2`−1) = T (2) = 1, which we know by the base case. Putting this together, we get (at least for
n = 2`),

T (n) ≤ 1 +
(n

2`−1
+ 1

)
+
(n

2`−2
+ 1

)
+ ·+

(n
4
+ 1

)
+
(n
2
+ 1

)
To make sense of the RHS, let us see how many +1s are there. You will see there are exactly ` many of
them, and ` = log2 n. And then we are left with the geometric series: n

2 +
n
4 +

n
8 + · · ·+

n
2`−1 . Again, when

n = 2`, this is simply 2 + 4 + 8 + · · ·+ 2`−1 = 2` − 2 = n− 2. Adding both these terms, we get

When n = 2`, we get T (n) ≤ n+ log2 n− 2

How about the case of n when it’s not a power of 2? We now show a way to solve (1) by another method
of solving recurrences called “guess and prove”. Once we can guess the “shape” of a recurrence, then we
could assert it and prove by induction.

2

Theorem 1. MAX-AND-2ND-MAX makes at most n+ dlog2 ne − 2 comparisons.

Proof. We need to show that the solution to (1) satisfies T (n) ≤ n+dlog2 ne−2, for all n ≥ 2. We proceed
by induction. The base case holds for all n = 2 since T (2) = 1 and 2 + dlog2 2e − 2 = 1.

T (n) ≤ T (dn/2e) + bn/2c+ 1

and since dn/2e < n (since n > 2), by the induction hypothesis, we get

T (n) ≤
(
dn/2e+ dlog2 (dn/2e)e − 2

)
+ bn/2c+ 1

Rearranging, we get
T (n) ≤

(
dn/2e+ bn/2c

)
+ dlog2 (dn/2e)e − 1

To complete the proof, we need to prove the following algebraic claim. Then the inductive case would also
be proved.

Claim 2. dlog2 (dn/2e)e − 1 ≤ dlog2 ne − 2 for any n

Proof. Equivalently, we need to show for any n, dlog2 ne ≥ dlog2 (dn/2e)e + 1. Now, if n = 2` is a
power of 2, then we indeed have equality. So, ` < log2 n < ` + 1. n = 2` + q for some q < 2`. So,
dlog2 ne = `+ 1.

On the other hand, n/2 = 2`−1 + q
2 . Now, we want to put an upper bound on n/2. The largest q can

be is 2` − 1, and in that case, we have dn/2e = 2`. Thus, dn/2e ≤ 2` implying log2 dn/2e ≤ `. And thus,
dlog2 (dn/2e)e ≤ ` as well. This proves that dlog2 ne = `+ 1 ≥ dlog2 (dn/2e)e.

Finding the first 3, or in general the first k numbers. If you have understood the above algorithm, then
you should see an algorithm for finding the largest 3 numbers as well. Indeed, let’s describe an algorithm
for finding the largest k. The idea is the same: we form the array B from A by pairing and comparing. We
find the largest k numbers in B recursively. Let this list be L. These may not be the largest k numbers in
A, but the largest k numbers of A are in L or partner(L) := {partner(e) : e ∈ L}. Do you see this? The
following claim establishes it.

Claim 3. Let A[1 : n] be an array of n elements, and let B be an array of dn/2e elements obtained as
described pairing A and taking the larger number from each pair, and an unpaired numbered if any. Let
b1 > b2 > · · · > bk be the k largest numbers of B. Let ai := partner(bi) for 1 ≤ i ≤ k − 1. Then, the
largest k numbers of A lie in the set S := {a1, a2, . . . , ak−1, b1, b2, . . . , bk}.

Proof. Let me sketch a proof. Suppose not. Suppose there is some element e of A which is in the largest
k elements but it’s not in the set S. First observe that e /∈ B, for otherwise there are k elements (namely,
b1, b2, . . . , bk) which are larger than e, and thus e is not in the top k elements of A. So partner(e) ∈ B.
But since e /∈ {a1, . . . , ak−1}, the partner partner(e) /∈ {b1, . . . , bk−1}. That is, there are at least (k − 1)
numbers in B bigger than partner(e). And since partner(e) > e (for partner(e) was sent to B), we again
obtain ≥ k numbers bigger than e. This contradicts e was in the top k elements of A.

And so, we get the recursive algorithm.

3

1: procedure K-LARGEST(A[1 : n]):
2: . Returns the largest k elements of A
3: if n ≤ k then:
4: Sort A. . Ck = O(k log k) comparisons

5: Form B as in MAX-AND-2ND-MAX. . bn/2c comparisons.
6: L← k-Largest(B).
7: S ← L ∪ partner(L)
8: Sort S and return the largest k elements in S. . Ck = O(k log k) comparisons

The recurrence inequality governing the above algorithm is the following. Here Ck is some fixed constant
depending on k, and is O(k log k)

T (n) ≤ Ck, if n ≤ k, for n ≥ k, T (n) ≤ T (dn/2e) + bn/2c+ Ck (2)

For n = 2`, a power of 2, you can solve the recurrence using the kitty method, and then also use the
inductive argument above to prove the following theorem.

Theorem 2. For any integer k, the K-LARGEST algorithm makes n+Ck · dlog2(n/k)e many compari-
son, where Ck is the maximum number of comparisons needed to find the largest k elements in an array
of length (2k − 1). In short, this is n+O(k log k log(n/k)).

4

