
Divide and Conquer: Finding Median in Linear Time1

• In this lecture we see a beautiful application of the divide and conquer paradigm. We see an O(n)
time algorithm to find the median of n numbers. This algorithm was published in a paper2 in 1973; an
interesting feature of this paper is that four out of the five authors have won the Turing Award (though
this result isn’t what they won it for).

• We actually a look at the more general problem of selection. The input is an unsorted array/list
A[1 : n] of (distinct) integers/reals, and a parameter 1 ≤ k ≤ n. The objective is to find the kth
smallest number. There is a trivial O(nk) time algorithm, and in a previous lecture, we saw a faster
algorithm. However, when k = Θ(n), that algorithm still took O(n log n) time; and an O(n log n)
algorithm is trivial by sorting. We see an algorithm for solving the selection problem for any k in
O(n) time.

• Idea 1: Pivoting to reduce space. The first idea is one from a different sorting algorithm called
QuickSort: this idea is pivoting. To illustrate this, let us pick an element of the array a = A[i]; think
of i right now as arbitrary. The PIVOT operation takes A and a and generates two lists B and C (all
this can be done in-place) such that B contains all the elements < a and C contains all the elements
> a (we are assuming distinct elements). This can be done with one-scan and takes O(n) time.

1: procedure PIVOT(A[1 : n], a):
2: ▷ Return B and C which contains elements of A which are < a and > a respectively.
3: for 1 ≤ j ≤ n do:
4: if A[j] < a then:
5: Add A[j] to B
6: else if A[j] > a then:
7: Add A[j] to C

8: return (B,C).

• What does this buy us? First it tells us the rank of this particular element a. In particular, if |B| = r,
then the rank of a is (r + 1); it is the (r + 1)th smallest element.

And what does this buy us for the selection problem? If we were extremely lucky and r+1 happened
to be k, then a is the kth smallest element and there was nothing more to do. However, if r + 1 < k,
then (i) the kth smallest element belongs in present in C, and furthermore, (ii) it is the (k − r − 1)th
smallest in C. And, if r + 1 > k, well then (i) the kth smallest element is in B, and (ii) it is the
kth smallest element there. Therefore, in either case, we are handed a selection problem on a smaller
array.

How much smaller are the arrays? This depends on the size of B and C which itself depends on
what the pivot is; we haven’t discussed this process at all. For now, imagine there is a sub-routine

1Lecture notes by Deeparnab Chakrabarty. Last modified : 24th Jan, 2025
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2Blum, M.; Floyd, R. W.; Pratt, V. R.; Rivest, R. L.; Tarjan, R. E. (August 1973). “Time bounds for selection”. Journal of
Computer and System Sciences. 7 (4): 448–461.

1

FINDPIVOT which takes an array A[1 : n] and returns a pivot A[i]. For example, it could be as trivial
as returning i = 1 all the time. But if we had our hands such a routine, here is the recursive algorithm
for selection that arises out of this pivoting idea.

1: procedure SELECT(A[1 : n], k): ▷ assume 1 ≤ k ≤ n

2: ▷ Assumes existence of FINDPIVOT(A)
3: if n = 1 then:▷ k = 1 also then
4: return A[1]

5: p←FINDPIVOT(A) ▷ find a pivot
6: (B,C)←PIVOT(A, p)
7: if |B| = k − 1 then:
8: return p
9: else if |B| < k − 1 then:

10: SELECT(C, k − |B| − 1)
11: else:▷ ie, |B| ≥ k

12: SELECT(B, k)

• Analysis of SELECT.

Let’s try to analyze SELECT; in this process we will discover what a good FINDPIVOT-routine would
look like. For now, we proceed as we have proceeded before. As usual, we say T (n) is the worst
running time of SELECT when run on any A of length at most n and any 1 ≤ k ≤ n.

We see that Line 5 takes time which depends on the pivot finding algorithm. Let’s call this P (n) for
now; it’s a function whose properties will dictate the runtime of T (n). Line 6 takes O(n) time. The
recursive call at Line 10, if run, takes T (|C|) time, and the recursive call at Line 12 takes T (|B|) time.
Then the recurrence becomes

T (1) = O(1); ∀n ≥ 2, T (n) ≤ P (n) + O(n) + max (T (|B|), T (|C|)) (1)

• Let us engage in some wishful thinking: what would be great for us. Firstly, since we are shooting
for an overall O(n) runtime, the function P (n) should be O(n). Let’s say this is true. Indeed, the
simpleminded algorithm which returns the first element as the pivot is an O(1) time algorithm; so
such candidates do exist.

What is actually the problematic bit is max (T (|B|), T (|C|)). We know that |B| + |C| < n. If both
of these were “roughly equal” in size, then |B| and |C| would both ≤ n/2. Then, we would get that
(1) becomes

T (n) ≤ O(n) + T (n/2) which is great since it evaluates to O(n)

Indeed even if max(|B|, |C|) ≤ 9n/10, even then we would be in great shape: the recurrence would
be T (n) ≤ O(n) + T (9n/10) which also, by Master theorem, evaluates to O(n). This lets us
crystallize what the properties of a good FINDPIVOT would be.

a. It should run in P (n) = O(n) time.

b. It should return a pivot p such that PIVOT(A, p) returns lists which are both Θ(n) sized.

2

• Before we describe how the paper mentioned above does it, let’s actually say a simple procedure which
gets both of the above with high probability: simply pick a pivot at random from A. (a) is obvious,
and (b) occurs with constant probability. More precisely, the chance that we get a pivot which falls in
the “middle third” is 1/3 and if it does so, then |B| and |C| are both of size ≤ 2n/3. And that’s great.
However, this is a randomized algorithm; can we obtain such a nice pivot deterministically?

• Idea 2: Good FINDPIVOT by Median-of-Medians. To recap, we wish to design a deterministic
algorithm which for any array finds a pivot element which (a) breaks array into “balanced” pieces (the
sizes B and C are both Θ(n) size), and (b) one can find this pivot in O(n) time. To solve problem (a),
the “median-of-median” algorithm by Blum, Floyd, Pratt, Rivest and Tarjan uses recursion again! In
retrospect, the idea is simple. The run time would be O(n) plus a recursive call...but that won’t matter
as you will see.

We divide the array A into n/5 “quintets” each with 5 elements. In each piece, we find the median
using brute force; this takes O(n) time. Let M be the set of the array of these medians; note that M
has n/5 elements. FINDPIVOT returns the median of M by calling SELECT on it (with k = n/10).

Why is this a good idea? Let m be the median of M . There are ≈ n/10 elements of M which are
smaller than m. Furthermore, for each of these elements of M , there are 2 more elements smaller
than it (coming from the corresponding quintet). So, all in all, there are at least 3n/10 elements of A
smaller than m. And so, the rank of m is at least 3n/10. An analogous argument also shows at least
3n/10 elements of A larger than m; and so the rank of m is at most 7n/10. And this means that if we
call PIVOT(A,m) to get (B,C), both pieces are at most 7n/10 in size.

Here is the algorithm in its full glory.

1: procedure LINEARSELECT(A[1 : n], k): ▷ assume 1 ≤ k ≤ n

2: if n = 1 then:▷ k = 1 also then
3: return A[1]

4: Break A into n/5 quintets A1, . . . , An/5

5: M ← [].
6: for 1 ≤ t ≤ n/5 do: ▷ O(n) time for-loop
7: Find median of At in O(1) time and put in M .
8: m← LINEARSELECT(M,n/10) ▷ Recursively find median of M
9: (B,C)←PIVOT(A,m)

10: if |B| = k − 1 then:
11: return m
12: else if |B| < k − 1 then:
13: LINEARSELECT(C, k − |B| − 1)
14: else:▷ ie, |B| ≥ k

15: LINEARSELECT(B, k)

• Recurrence Inequality and Solution. The recurrence inequality governing the running time is found
as follows. Fix any array A[1 : n] and k. Line 4 to Line 7 takes O(n) time. The recursive call in Line 8
takes ≤ T (n/5) time since |M | = n/5. Line Line 9 takes O(n) time. As explained above, by design,
|B| and |C| are both of size ≤ 7n/10. Therefore, either of the lines, Line 13 and Line 15, takes at
most T (7n/10) time. Together, we get

3

T (1) = O(1); ∀n ≥ 2, T (n) ≤ O(n) + T
(n
5

)
+ T

(
7n

10

)
(2)

The above can’t be solved by the master theorem, but the kitty method shows that it evaluates to
O(n). Indeed, it’s not hard to establish this inductively. Suppose T (1) ≤ C, and T (n) ≤ T (n/5) +
T (7n/10) + Cn. Then,

Claim 1. T (n) ≤ 10Cn.

Proof. Base case is obvious. Assume the above is true for all 1 ≤ k ≤ n − 1, and we need to prove
T (n) ≤ 10Cn. By the above recurrence, we get

T (n) ≤ T (n/5) + T (7n/10) + Cn ≤︸︷︷︸
Induction Hypothesis

10C · n/5 + 10C · 7n/10 + Cn = 10n

• Final Remarks. One may ask what the coefficient in front of n is if we are only interested in the num-
ber of comparisons? The above analysis would give a coefficient which is ≈ 20. In their paper, Blum
and others actually showed a more detailed procedure with this coefficient under 6. In 1976, a paper3

by Schönage, Paterson, and Pippenger described an algorithm making at most 3n comparisons. This
remained the state of affairs till a paper4 by Dor and Zwick which gave a ≤ 2.95n query algorithm to
find the median.

There are known lower bounds too. Bent and John, in 1985, showed5 that any correct algorithm for
finding the median needs to make at least 2n comparisons. Dor and Zwick, in a different paper6,
improved that to show there exists a constant ε0 such that any correct median finding algorithm must
make at least (2 + ε0)n comparisons. In their paper, Dor and Zwick establish this for ε0 ≈ 2−80,
although the main message is that 2 is not the correct coefficient. This is the current state of the art as
far as I know.

3A. Schönhage, M. Paterson, and N. Pippenger. Finding the median. Journal of Computer and System Sciences, 13:184–199,
1976

4D. Dor and U. Zwick. Selecting the Median, SIAM Journal on Computing, 28, 1722-1758, 1999
5S. W. Bent and J. W. John, Finding the median requires 2n comparisons, in Proceedings of the 17th Annual ACM Symposium

on Theory of Computing, Providence, RI, 1985, pp. 213–216.
6D. Dor and U. Zwick, Median Selection Requires (2 + ϵ)n Comparisons, SIAM Journal on Discrete Mathematics, 14(3):312–

325, 2001

4

