
Dynamic Programming: Subset Sum + Knapsack1

In the next few lectures we study the method of dynamic programming (DP). The idea is really recursion
as in divide and conquer (D&C), but there are significant differences. In D&C, the smaller instances are often
obtained in a “straightforward way” (cutting an array in the middle, splitting a polynomial, etc), and they are
often “disjoint” and don’t overlap with each other. The master theorem or the kitty method implies a decent
running time. The creativity in D&C often lies in combining the solutions to these smaller instances.

In Dynamic Programming, the smaller instances are not “disjoint”, and at first glance, the number of
them seem to explode. The key in dynamic programming, or rather dynamic programming can only work, if
we can somehow observe a “pattern” in these smaller instances to argue that in fact they don’t explode, but
rather, the same problem is being asked to solve repeatedly. Just like in Fibonacci number computations.
Observing this pattern is the real creativity in dynamic programming. In my opinion, students struggle with
dynamic programming because to observe this pattern one must look “under the hood” as to how the smaller
sub-instances that are being called look like. Once one gets used to this, dynamic programming becomes
easy.

Let me give some more abstract details before diving into concrete applications. Let I be an instance
of a problem we want to solve. We first abstractly imagine a solution S of I . Then, we need two things to
happen.

a. First, from S we can obtain “pieces”, let’s call them solutionettes, S1, S2, . . . such that (i) each solu-
tionette Sj itself is the correct solution to a smaller instance Ij of the same problem, and (ii) given any
solutionettes T1, T2, . . . to the smaller instances I1, I2, . . ., we can construct a solution T to the origi-
nal instance I . This describes the “division” into smaller subproblems I1, I2, . . . and how to combine
them. This is the recursive structure of the problem2.

b. The second key things is to somehow show that the total number of smaller subinstances ever encoun-
tered is “small”. This is often done by figuring out an arrangement of the possible smaller instances
Ij (either in a line, or in a grid) and arguing the arrangement size is small.

Of course, all this is very abstract, and perhaps hard to follow. I suggest keep looking at examples and
revisiting the above discussion often.

1 Subset Sum

SUBSET SUM

Input: Positive integers a1, . . . , an, Target positive integer B.
Output: Decide whether there is a subset S ⊆ {1, . . . , n} such that

∑
i∈S ai = B? If YES, return the

subset.

What is a naive algorithm for the Subset Sum problem? One can go over all the subsets of {1, 2, . . . , n}, and
then check for every subset whether it sums to B. This takes O(n2n) time. Not great for n > 50. Subset
Sum is a poster child problem for Dynamic Programming. Let’s see how dynamic programming solves this.

1Lecture notes by Deeparnab Chakrabarty. Last modified : 26th Jan, 2024
These have not gone through scrutiny and may contain errors. If you find any, or have any other comments, please email me at
deeparnab@dartmouth.edu. Highly appreciated!

2The book by Cormen, Leiserson, Rivest, and Stein call it the “optimal substructure”

1

Let us revisit the abstract idea discussed at the beginning of this lecture. Let’s fix an instance (input) I
for the subset sum problem. It looks like I := (a1, . . . , an;B) of Subset Sum. Now, suppose there is indeed
a set S of these numbers which sum to B. Fix this set S in your mind. Can we “break” this set S into subsets
which are solutions to “smaller instances of Subset Sum”?

How do we even start breaking a solution into smaller solutions? One thing perhaps to start with (for
any problem) is just taking one element and removing it from the solution. Which element should we start
with? Often starting with the “last” (in some order) or “first” is a good idea. We will often go with the last.
In this case, we start by trying to remove an, the last element, from S as follows.

• Suppose an was in S. Consider the set T = S \ an. Can we say whether T is a solution to some
other, hopefully smaller, Subset Sum instance? A moment’s thought tells YES: T is a solution to the
instance I1 = (a1, a2, . . . , an−1;B − an). If the elements in S sum to B, the elements of T sum to
B − an. Moreover, T is a subset of the first n− 1 elements.

• But what if an was not in S? We can’t “remove” an from S? How do we proceed? This is perhaps the
a ha! moment. In this case, then, S itself is a solution to a smaller subinstance of Subset Sum. Which
smaller instance? The instance I2 = (a1, a2, . . . , an−1;B). The instance with the “last” element
kicked out.

To summarize, we took our thought solution S of the instance I , and observed that in one case S \ an
is the solution for I1 = (a1, a2, . . . , an−1;B − an), and in the other case, S itself is the solution for
I2 = (a1, . . . , an−1;B). There is no other case. This gives us the way to obtain the two smaller instances
I1 and I2 from the instance I . Thus, we obtained the recursive structure of SUBSET SUM.

Now let us try to see if we can achieve the two things we need to make dynamic programming work. We
saw that a solution S to I implies solutions to I1 and I2 (indeed, that is how they were constructed). How
about vice-versa? That is, given solutions to I1 and I2, can we construct solutions to I? Indeed, we can, and
that is simple.

• if one gives us a subset T which is a solution to I1 = (a1, . . . , an−1;B−an), then T+an is a solution
to (a1, . . . , an;B) as well.

• if one gives us a subset T which is a solution to I2 = (a1, . . . , an−1;B), then the same T is a solution
to (a1, . . . , an;B) as well;

The argument for breaking the solution above was “reversible”. Therefore, we have obtained our recursive
substructure. Next, we need to see whether these various subinstances ever seen when solving recursively
are not too many in number. Why would that be? Well let us stare at the two instances obtained. Indeed, it
may help to actually “draw out” the tree of instances obtained a little more for the pattern to emerge. See
Figure 1 for the first two layers; I recommend drawing one more to make sure you understand the instances.

Unlike in the case of Fibonacci numbers, we do not immediately see any “repeating balls” (at least in
the first two-three layers). This could be disheartening. But don’t be disheartened. Rather ask “how does
a general ball (sub-instance) look like?” in this tree. Is it “succinctly” describable? In this case the answer
is it looks like I ′ = (a1, a2, . . . , am; b) for some integer 1 ≤ m ≤ n, and some integer b ≤ B. Therefore,
the number of such smaller instances is not that large. Indeed it is at most nB many. The fact that the
smaller instances could be arranged as a n×B grid is the second key observation that convinces us dynamic
programming would work for subset sum.

2

I = (𝑎1, 𝑎2, … , 𝑎𝑛, 𝐵)

I1 = (𝑎1, 𝑎2, … , 𝑎𝑛−1, 𝐵 − 𝑎𝑛) I2 = (𝑎1, 𝑎2, … , 𝑎𝑛−1, 𝐵)

I11 = (𝑎1, 𝑎2, … , 𝑎𝑛−2, 𝐵 − 𝑎𝑛 − 𝑎𝑛−1) I12 = (𝑎1, 𝑎2, … , 𝑎𝑛−2, 𝐵 − 𝑎𝑛) I21 = (𝑎1, 𝑎2, … , 𝑎𝑛−2, 𝐵 − 𝑎𝑛−1) I22 = (𝑎1, 𝑎2, … , 𝑎𝑛−2, 𝐵)

Figure 1: The smaller instances for subset sum

Concretely writing down a DP solution

The above discussion was trying to give an intuition how when faced with a problem one can come up
with a dynamic programming solution. You should not write the solution as above. Rather, the process of
getting from “thought” to “pseudocode” is pretty mechanical, and follows in six-seven steps. At least in this
class (and later on when needed), always write DP solutions in this way. After 8-9 such trials, you will see
yourself becoming a master of DP!

a. Definition. When you figure out that the subinstances can be arranged in a nice order, you actually
can concretely define a recursive function which will assist to write the final code. As we observed
that a general sub-instance (a1, . . . , am; b) is defined by two things: the m and the b. Next, we write
a definition to precisely say what we mean.

For any integer 0 ≤ m ≤ n; 0 ≤ b ≤ B, define F (m, b) = 1 if there exists a subset
S ⊆ {1, 2, . . . ,m} such that

∑
i∈S ai = b, and is 0 otherwise. We are interested in

figuring out whether F (n,B) = 0 or 1.

We are also interested in finding the subset if F (n,B) = 1, but for the time being let us focus on the
“decision question.”

In general your definition should be parametrized by the “arrangement” you have discovered in your
sub-instances. Coming up with this definition is the first key step in your dynamic programming
solution.

b. The Base Cases. Any recursive function must have base cases. These are the “small values” for which
the value of the function is known. For Subset Sum, what are they? Here are some.

F (m, 0) = 1 for all 0 ≤ m ≤ n. F (0, b) = 0 for all 1 ≤ b ≤ B.

What do they mean in English? F (m, 0) = 1 means there is a subset of the first m elements (even
when m = 0) which sums to 0. Which is it? The empty set ∅. F (0, b) = 0 for b > 0 because there is
no subset of the empty set which can sum to more than 0.

3

c. The Recurrence Relation: After the definition, this is the second key step in your dynamic program-
ming solution. How does the recursive function get defined using smaller values? Again, this one
obtains by noting how the solutions to the smaller instances give rise to a solution to the original
instance. For Subset Sum, this is

For any m ≥ 1, b > 0; we have

F (m, b) =

{
F (m− 1, b) if am > b

max (F (m− 1, b), F (m− 1, b− am)) otherwise
(SubsetSumRec)

Once again, the English reason is that given solutions to (a1, . . . , am−1; b) and (a1, . . . , am−1; b−
am), one can get the solution of (a1, . . . , am; b). The latter has a solution if one of the two
have a solution. Thus, we need to take an OR (which is the same as MAX). The “if” state-
ment arose because if am > b then we are guaranteed am can’t be in any subset summing
to b, and so we need just the solution of (a1, . . . , am−1; b).

d. Proof: At times, an “English reasoning” can be unsatisfactory, and worse, in some cases can be
misleading. Therefore, we must formally prove the recurrence. For Subset Sum we have really
already done so when we were trying to describe the idea behind the recurrence. We will repeat it
again for good measure. The proof of the recurrence is where you really can precisely talk about the
idea behind the algorithm3.

Proof of (SubsetSumRec). There are always two directions in proving an equality. One corresponds
to go from a solution to the original instance to solutions to smaller instances. The other is vice-versa.
The skeleton of this proof will form the structure of most dynamic programming arguments we will
see. Below LHS and RHS are acronyms for “left hand side” and “right hand side”, respectively, of an
equation/inequality.

(LHS ≤ RHS): In this case, we make precise the argument that a solution to the bigger instance leads to solution
to one of the smaller instances.
We begin by noting that F (m, b) ∈ {0, 1}, that is, the range of the function is Boolean. There-
fore, if the LHS F (m, b) = 0, then the inequality we wish to prove in this case immediately
follows since the RHS ≥ 0. So, let’s consider the case F (m, b) = 1. That is, the “bigger in-
stance” (a1, . . . , am; b) has a solution. That is, there is a subset S ⊆ {1, 2, . . . ,m} which sums
to b. We need to show the RHS evaluates to 1 as well.
If am > b, then since ai’s are positive, am /∈ S. Therefore, S is a subset of {a1, . . . , am−1}
which sums to b implying F (m − 1, b) = 1 as well establishing RHS= 1. Otherwise, if am ≤
b, it could be that am ∈ S, then S \ am ⊆ {1, 2, . . . ,m − 1} sums to b − am, implying
F (m − 1, b − am) = 1. Since one of the two cases am ∈ S (in which case F (m − 1, b −
am) = 1) or am /∈ S (in which case F (m − 1, b) = 1) must hold, we get the RHS which is
max(F (m− 1, b), F (m− 1, b− am)) must be 1.
This concludes the argument LHS ≤ RHS.

(LHS ≥ RHS): In this case, we make precise the argument that if any of the smaller instances has a solution,
then so does the bigger one.

3At this point, I hope everyone feels the urge to learn LaTeX and use it. Hands will hurt if all this is to be handwritten

4

Once again, we will use the fact that F is boolean ranged.
To establish F (m, b) ≥ F (m − 1, b) we only need to consider the case F (m − 1, b) = 1, that
is, there is a subset T of {1, 2, . . . ,m − 1} which sums to b. But the same T also a subset of
{1, 2 . . . ,m} that sums to b, which means F (m, b) = 1. So, F (m, b) ≥ F (m− 1, b).
Similarly, if am ≤ b, then to show F (m, b) ≥ F (m− 1, b− am), we only need to consider the
case when F (m−1, b−am) = 1. That is, there is a subset T of {1, 2, . . . ,m−1}which sums to
b−am. But then, the subset T∪{am} is a subset of {1, 2 . . . ,m} that sums to (b−am)+am = b.
So, if am ≥ b, F (m, b) ≥ F (m− 1, b− am).
This concludes the argument LHS ≥ RHS.

e. Implemetation Pseudocode. The hard part is done! Now, we have to just implement the above
recursive function using smart recursion. Just to belabor the point, let me first again give the the
disastrous implementation by just recursively calling. I provide it below in red: NEVER show this in
public.

1: procedure RECSUBSUM(m, b):
2: ▷ Returns 1 if there is a subset of a1, . . . , am that sums to exactly b.
3: if b = 0 then:
4: return 1

5: if m = 0 and b > 0 then:
6: return 0

7: if b < 0 then:
8: return 0

9: return max (RECSUBSUM(m− 1, b), RECSUBSUM(m− 1, b− am))

The above algorithm is correct (we are still solving the decision version). But it is disastrous for the
reason the recursive Fibonacci algorithm was terrible. However, we now know how to fix it. One
could use memoization. But we will use the bottom-up approach and use explicit tables, because the
table will also help me recover the subset4 if the answer is 1.

First we allocate space for a table. The dimensions correspond to the variables that are passed in the
recurrence. The range is from the base-case to the point we are interested in.

4I am not saying using memoization one can’t; one can. To me everything being explicit just helps.

5

1: procedure SUBSETSUM(B, a1, . . . , an):
2: ▷ Says YES if there is a subset summing to B, otherwise N0
3: Allocate space F [0 : n, 0 : B] ≡ 0
4: F [m, 0]← 1 for all m.
5: F [0, b]← 0 for all b > 0. ▷ Base Cases
6: for 1 ≤ m ≤ n do:
7: for 1 ≤ b ≤ B do:
8: if am > b then:
9: F [m, b]← F [m− 1, b].

10: else:
11: F [m, b]← max (F [m− 1, b], F [m− 1, b− am])

12: ▷ At this point F [n,B] has the answer; if it is 1 there is a solution, otherwise not.

f. Recovery Pseudocode. The above algorithm works because the “table” F [m, b] contains the function
value F (m, b). However, we need more: we need that when F [n,B] = 1, we need a subset S which
sums to B. How do we find this?

One inefficient way to do this is that instead of F [m, b] being 0 or 1, we actually also store a subset
of {1, 2, . . . ,m} summing to b in the case F [m, b] = 1. This blows up the space required by a factor
n since each table could contain Θ(n) elements. But we don’t need this; since we have the full table
F [0 : n, 0 : B], we can use it to read out the subset which sums to B as follows.

We start with an empty subset and “counters” m = n and b = B. We have F [m, b] = 1 (otherwise,
we have answered NO). But since F [m, b] = max(F [m − 1, b], F [m − 1, b − am]), at least one of
these two must be 1. If F [m − 1, b] = 1, then we decrease nothing from b and decrease m by 1. If
F [m − 1, b − am] = 1, then we add the index m to the subset and decrease b by am, and decrease
m by 1. We proceed iteratively, maintaining the invariant that the total sum of the subset plus the
“current target”, that is b, equals the original B and F [m, b] = 1. We stop when m = 0; since m
drops in each while-loop, the total time taken in O(n).

We assert that at termination,
∑

i∈S ai = B. Since our invariants hold and since m = 0 on termination
(since m decrements by 1 always and is not positive), we know F [0, b] = 1. But, the only such b is
b = 0. The second invariant tells

∑
i∈S ai + b = B and b = 0 implies that

∑
i∈S ai = B which is

what we wanted. The pseudocode for the recovery is given below giving below. There is no need to
write this part separately, and should be included with the previous.

6

1: procedure RECOVERSUBSETSUM(F [0 : n, 0 : B]):
2: ▷ This is taking input the filled up table F from previous routine. There is no need to

write this separately, and ideally should be part of the same code.
3: if F [n,B] = 0 then:
4: return NO
5: ▷ Recovery:
6: m← n; b← B; S ← ∅.
7: ▷ Invariant:

∑
i∈S ai + b = B and F [m, b] = F [n,B] = 1

8: while m > 0 do:
9: if F [m− 1, b] = 1 then:

10: m← m− 1
11: else: ▷ In this case, we must have F [m− 1, b− am] = 1

12: S ← S +m
13: b← b− am
14: m← m− 1

15: ▷ Note that the Invariant holds in both cases
16: ▷ m decreases in each loop, and so in n iterations it must become 0.
17: ▷ The only b for which F [0, b] = 1 is b = 0, and therefore, upon termination b = 0.
18: ▷ Since invariants hold, we have

∑
i∈S ai + 0 = B.

19: return S

g. Running Time and Space. The final part is to analyze the running time and space required by the
algorithm. For Subset Sum, we observe that the running time is dominated by the two for loops. Thus
the total time is O(nB).

Theorem 1. SUBSET SUM can be solved in time and space O(nB).

To recap, to design and analyze a dynamic program for the Subset Sum problem we had the following
ingredients. This is going to be the steps in all dynamic programming algorithms. Indeed, for your problem
set, I require you to write all of these.

a. Definition: A precise definition of the function which will be recursively represented. Clearly mention
the parameters which you are interested in.

b. The Base case: The “small” values at which the function’s value is known.
c. The Recurrence Relation: Clearly state the recurrence relation. Give an explanation of why it is

correct.
d. Proof: To be absolutely sure, give a proof of the recurrence relation.
e. Implemetation Pseudocode Write the correct implementation of the recurrence a la Fibonacci using

tables. Be sure that you are filling up the tables in the correct order. Often this is standard, but you
may see some tricky examples.

f. Recovery Pseudocode. Write the code for recovery (when needed) by back-tracking on the table that
you obtained. This may seem non-trivial, but it is actually straightforward after a little practice.

g. Running Time and Space. Write down the running time of and also space used by your algorithm.

7

Remark: Was the algorithm for SUBSETSUM a polynomial time algorithm? To answer this, we need
to define clearly what a polynomial time algorithm is. An algorithm is polynomial time, if its running
time T (n) is, for large enough n, at most some fixed polynomial p(n) where n is the size of the instance.
We cheekily left out the size of the Subset Sum problem; the size after all is Θ(logB +

∑n
i=1 log ai) =

O(n logB) since we can throw away any ai > B. Now we observe that our running time O(nB) is
exponentially larger than the size of the problem; the B is the nub. As stated, the above algorithm is
not a polynomial time algorithm.

Next, we see a cousin of the Subset Sum problem. It is the first example of an optimization problem. The
Subset Sum problem was a decision problem, in that, the output was YES or NO (ok, so if YES we also
wanted the subset). In optimization problems, the question is not whether a feasible solution exists, but more
of among all candidate feasible solutions can you choose one which is best in a certain metric.

2 Knapsack Problem.

KNAPSACK

Input: n items; item j has profit pj and weight wj . A knapsack of capacity B. All of these are positive
integers.
Output: Find the subset S ⊆ {1, 2, . . . , n} which maximizes

∑
j∈S pj and “fits” in the knapsack; that

is,
∑

j∈S wj ≤ B.

Note the question “does there exist a subset which fits in the knapsack?” is trivial to answer. Yes, there
is: the empty set. The interesting part is to figure out which among all candidate subsets, gives the largest
profit. As in Subset Sum, the brute-force approach of going over all possible subsets that fit in the knapsack
and choosing the best, is a time consuming affair. We want to do better via dynamic programming.

As in the Subset Sum case, let us fix an instance I of Knapsack ((p1, w1), . . . , (pn, wn);B). Let us
abstractly consider an optimal solution S ⊆ {1, . . . , n} for this problem (the subset marks the indices of
the items picked). Can we break this S up into solutionettes for smaller instances of Knapsack? We will
proceed exactly like in Subset Sum.

Let us focus on the “last” item n and ask whether it is in S or not.

• If it is in S, then I claim S1 = S \ n is an optimal (max profit) solution to a smaller instance of
Knapsack. Can you see which one? It is I1 = ((p1, w1), (p2, w2), . . . , (pn−1, wn−1);B − wn). Why
is S1 the best solution in I1? Well, if there was something better, then adding the nth item to that
solution would give a better solution than S to the original instance I .

• If the nth item is not in S, then again S itself is the optimal (max-profit) solution to the smaller
instance I2 = ((p1, w1), (p2, w2), . . . , (pn−1, wn−1);B) of Knapsack. Again, if not, then a better
solution for this smaller instance would be a better solution for the original instance.

One can also argue the vice-versa direction: given optimal solution to both I1 and I2, can we find the optimal
solution to I? Can you guess how to do it? We will take the solution to I1 and add the profit pn of the nth
item, and compare it to I2 (when we don’t add the nth item). And take the one that is better (gives more
profit). The best of these two will be the best solution for I .

All the above discussion, again, is the thoughts going in our head which lead us towards the rigorous
solution to the dynamic programming problem. At this point, we should perhaps draw the tree diagram for

8

the recursive structure of the problem (as in Figure 1 in the previous lecture notes), and we will see as in
Subset Sum, they arrange up in a grid. There are two parameters of interest: m, denoting the first m items,
and b, the available size in the knapsack. After we do all this, it is time to venture on to the 7-fold path we
laid down last time.

Before we do so, let me introduce another piece of notation which is going to be very useful for arguing
about optimization problems. It is the notion of Cand which captures the collection of candidate feasible
solutions to the smaller instance one is considering. For the Knapsack problem, since we know that m and
b are the parameters of interest, we define the following:

Cand(m, b) : all possible subsets of {1, 2, . . . ,m} of items with total weight is ≤ b.

In English, Cand(m, b) are the candidate feasible solutions to the instance ((p1, w1), . . . , (pm, wm); b). And
by definition, the best (maximum profit) solution is the one giving the maximum value. For writing our
recurrence, it will be this value that will be most important, and this is going to be the part of our definition.
We will write a recurrence for F (m, b) which is the maximum profit subset in Cand(m, b).

a. Definition: For any 0 ≤ m ≤ n and 0 ≤ b ≤ B, let Cand(m, b) be all subsets S ⊆ {1, . . . ,m} which
fit in a knapsack of capacity b, that is,

∑
j∈S wj ≤ b. Define

F (m, b) = max
S∈Cand(m,b)

∑
j∈S

pj

We use shorthands p(S) =
∑

j∈S pj and w(S) =
∑

j∈S wj for brevity. We are interested in F (n,B).
b. Base Cases:

• F (0, b) = 0 for all 0 ≤ b ≤ B; an empty set gives profit 0.

• F (m, 0) = 0 for all 0 ≤ m ≤ n; an empty set gives profit 0.

c. Recursive Formulation: As can be deduced from the discussion above, we assert for all 1 ≤ m ≤
n, 1 ≤ b ≤ B:

F (m, b) =

{
F (m− 1, b) if wm > b

max (F (m− 1, b), F (m− 1, b− wm) + pm) otherwise
(KnapsackRec)

d. Formal Proof: As in Subset Sum, we need to show an equality. We do so by proving the two
inequalities. In what follows, we first show that the left hand side (LHS) is ≤ the right hand side
(RHS). Subsequently, we show LHS ≥ RHS. This proves LHS = RHS. We will see that the set Cand
will be useful in proving this.

(≤): Let S be the subset in Cand(m, b) such that F (m, b) = p(S).
Case 1: S doesn’t contain item m. This must occur when wm > b. Then S ∈ Cand(m − 1, b)
and so, by definition, F (m − 1, b) ≥ p(S), since F (m − 1, b) is the maximum over all sets in
Cand(m− 1, b). This proves F (m, b) ≤ F (m− 1, b) in this case.
Case 2: S contains item m. Then wm ≤ b and S \m lies in Cand(m−1, b−wm). Furthermore,
p(S \m) = p(S) − pm = F (m, b) − pm. Thus, F (m − 1, b − wm) ≥ F (m, b) − pm, since
F (m − 1, b − wm) is the maximum over all sets in Cand(m − 1, b − wm). Thus in this case,
F (m, b) ≤ F (m− 1, b− wm) + pm.
Together, the above two cases imply F (m, b) is at most the maximum when wm ≤ b and at most
F (m− 1, b) when wm > b. This establishes LHS≤RHS.

9

(≥): Let S be the subset in Cand(m − 1, b) such that p(S) = F (m − 1, b). Observe S also lies in
Cand(m, b). Thus, F (m, b) ≥ p(S) = F (m− 1, b) since F (m, b) is the maximum over all sets
in Cand(m, b).
Similarly, let S be the subset in Cand(m − 1, b − wm) such that p(S) = F (m − 1, b − wm).
Form S′ = S+m. Note that S′ ∈ Cand(m, b) since w(S′) ≤ b. Therefore, F (m, b) ≥ p(S′) =
F (m− 1, b− wm) + pm.
Together, the above two establish LHS≥RHS.

e. Pseudocode for computing F [n,B] and recovery pseudocode: The pseudocode is one formed, as in
Subset Sum, by the smart recursion idea on the above recurrence equality. The recovery process is
also similar.

1: procedure KNAPSACK(B,(p1, w1), · · · , (pn, wn)):
2: ▷ Returns the subset of items of type 1, . . . , n which fits in knapsack of capacity B and

gives maximum profit.
3: Allocate space F [0 : n, 0 : B]
4: F [0, b]← 0 for all 0 ≤ b ≤ B ▷ Base Case
5: F [m, 0] = 0 for all 0 ≤ m ≤ n. ▷ Base Case
6: for 1 ≤ m ≤ n do:
7: for 1 ≤ b ≤ B do:
8: if b− wm ≥ 0 then :
9: F [m, b]← max(F [m− 1, b], F [m− 1, b− wm] + pm)

10: ▷ Note F [m− 1, b− wm] is set before F [m, b] in this ordering.
11: else: ▷ Implicitly, in this case F [m− 1, b− wm] = −∞
12: F [m, b]← F [m− 1, b]

13: ▷ F [n,B] now contains the value of the optimal subset
14: ▷ Below we show the recovery pseudocode
15: m← n; b← B; S ← ∅.
16: ▷ Invariant:

∑
j∈S wj + b ≤ B and F [m, b] +

∑
j∈S pj = F [n,B]

17: while m > 0 do:
18: if F [m, b] = F [m− 1, b] then:
19: m← m− 1
20: else: ▷ We know F [m, b] = F [m, b− wm] + pm.
21: S ← S +m
22: b← b− wm.
23: m← m− 1

24: return S

Note that in the recovery the invariant always holds and at the end since F [0, k] = 0, we have p(S) =
F [n,B].

f. Running time and space The above pseudocode take O(nB) time and space where n is the number
of items.

10

	Subset Sum
	Knapsack Problem.

