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Abstract— We consider the problem of detecting holes in a
sensor network. A hole occurs when several adjacent nodes in
a sensor network fail, and is defined as the convex hull of the
region containing the failed sensors. The presence of holes in
sensor networks has important consequences on the information
flow and capacity across the network and on the perceptual
coverage of the network. We present, analyze, and implement
two distributed algorithms for detecting holes. In the first
algorithm the neighbors of the failed nodes detect and compute
the hole locally. The second algorithm considers the case of
detecting a hole from a distance. We present implementation
results of the first algorithm using a 30 node Mica Mote sensor
network and simulation results of the second algorithm.

I. INTRODUCTION

Wireless ad-hoc sensor networks can achieve robust mon-
itoring of a region by exploiting the redundancy inherent
in a large network of inexpensive sensors with overlapping
communication zones. However, proposed methods for rapid
deployment (e.g. dropping sensors from flying vehicles [1])
will expose sensors to placement errors in addition to the
possibility of individual node failures. Sensors may not be
placed in exactly their desired locations because of control
error in the deployment system or exogenous disturbances
such as wind or topographic features. Sensors may fail from
impact at deployment, fire or extreme heat, animal or vehicle
accidents, malicious activity, or simply from extended use.
Such failures occur at any time from deployment to some
considerable time after deployment. The failure of regions
of nodes adversely effects the performance of the network
locally and globally at many levels. For communication, a
hole affects the routing paths. For perception, the physical
region that corresponds to the hole is a region of non-
coverage in which events of interest cannot be observed.
For information flow across the network, the hole affects
the overall capacity of the network.

Failed nodes affect their immediate neighbors who no
longer have those communication links, as well as remote
nodes who end up with fewer routing options. Given a
dynamic environment for the sensor field, it is desirable
to empower sensor networks with the ability of testing
for connectivity and coverage properties, and ideally for
physically changing the network to ensure long-lasting de-
sirable network properties. Testing for connectivity ranges
from determining whether the network is connected, k-
connected, or has holes within it. Changing the network
entails introducing additional nodes to the network, either

by physical augmentation of the network with new nodes, or
by waking up sleeping nodes in designated regions.

In this paper we discuss distributed algorithms that enable
sensor networks to discover the location, borders, and extent
of damage regions within a wireless sensor network. We first
introduce an algorithm that allows the immediate neighbors
of a damaged region to compute its extent. In this algorithm,
nodes detect when they have lost neighbors and then proceed
to compute the perimeter of the regions with missing nodes
using a distributed, iterative convex hull approach. The
algorithm converges to one or more convex hulls whose
perimeters are defined by alive nodes and whose interiors
contain all the missing nodes. The damage extent algorithm
computes the smallest connected region that enclose all the
missing nodes. We describe and analyze these algorithms
and then discuss our experience with implementing them in
simulation and on a Mica Mote testbed.

Our first damage extent algorithm allows the nodes in
close proximity to a hole to collectively compute the extent
of the hole. We envision that this computation will be run
occasionally as a diagnostic on the health of the sensor
network. The convex hull method requires an initialization
phase to record initial connectivity to support later decisions
about loss of neighbors. This convex hull based algorithm is
a good way to efficiently look for changes from the initial
state.

It is also useful to compute the location of holes in the
network fabric from remote locations. This leads to our
second algorithm which locates regions of damage based on
a density measure computed from network routing statistics
with no prior knowledge of the state of the network. It
requires that nodes are geographically localized. One or more
arbitrary nodes emit a ping message which travels across the
entire network recording as it goes the distance travelled.
When received by another arbitrary node we can compute
the route density, that is the ratio of actual distance travelled
to distance between source and destination. The intuition is
that a low-ratio implies that the packet has had to travel
around a hole, that is, that a hole lies along the line between
source and destination. We present the remote hole detection
algorithm and analyze its performance in simulation.

This paper is organized as follows. We continue with a
survey of related work in the area of detecting holes in sensor
networks. We then present the algorithm and experiments for
local discovery of hole location and extent in sensor networks
(Section IV). Next we present the algorithm and experiments



for remotely discovering the location and extent of holes in
sensor networks (Section V).

II. RELATED WORK

We are inspired by recent results on sensor networks
that address issues related to coverage for routing, sensing,
and information flow. In a recent survey on the holes
problem ([2]), sensor network anomalies that can occur
in wireless sensor networks and impair their desired func-
tionalities (sensing and communication) are described. This
work classifies the different kinds of holes that can form
in such networks creating geographically correlated problem
areas such as coverage holes, routing holes, jamming holes,
sink/black holes and worm holes.

The prior work on hole detection in sensor networks can
be characterized along several axes. (1) is the detection
local or global? (2) Are the nodes localized or not? (3)
What is the communication model? Most prior work relies
on localized nodes and employs geographic routing and
computational geometry techniques. A key differentiator is
whether the method does local or global hole detection.
Local methods look for lost neighbors, by pinging them
periodically, or globally reporting in periodically. Global
methods extract information about holes from the underlying
routing mechanism.

In [3] nodes in the network find all the iso-geodesic
distances (on a hop count measure). The end points of the
isolines define a hole boundary. This work presents an indi-
rect means of hole detection that does not require discovery
of missing local neighbors. In [4] some theoretical results
for detecting the presence of a hole in a sensor network
are given. Holes are created by nodes where packets may
become stuck in greedy multi-hop forwarding. A local rule,
(the TENT rule) is given so that each node in the network can
test whether a packet can become stuck at that node. Given
the location of a hole, a message is sent which tries to hop to
a node forward and to the right, so it tends to go around the
hole, sweeping out and defining its perimeter. In [5] a method
for detecting holes that looks at the areas that are well/poorly
covered is presented. An interesting theoretical result for hole
detection that uses homology theory is presented in [6]. Other
work on hole detection includes [7], [8], [9], [10], [11], [12],
[13].

Our work builds on this previous work but presents,
analyzes, and implements in simulation and on a Mica Mote
testbed two practical distributed algorithms for detecting and
computing the extent of a hole. The first algorithm is local
in that the nodes around a hole collectively compute the
extent of the hole. This algorithm is based on an iterative
convex hull method. The second algorithm allows holes to
be detected remotely and does not rely on any prior state
information about the network. Thus, this algorithm has a
global flavor.

Given a detected hole in a sensor field, algorithms for
repairing the hole by bringing in additional nodes and placing
them at specified computed locations are given in [1]. A
special case of the hole repairing problem is maintaining

k-connectivity in a sensor network. Attaining k-connectivity
has recently been studied in the context of power assignment,
where instead of adding sensors the goal is to assign the
sensor’s communication power to ensure k-connectivity and
minimize overall power consumption. This problem is also
NP-hard. Bredin et al [14] present a centralized approxi-
mation algorithm that guarantee k-connectivity capacity in
sensor networks and develop some distributed versions of
their algorithm. Recently, [15], [16], [17], [18]) used the
notion of k-connectivity and the results of [19], [20] to deal
with the fault-tolerance issues for static and dynamic settings.

III. ASSUMPTIONS, MODEL, AND PROBLEM
FORMULATION

The model we consider is a static, symmetric, multi-hop
ad-hoc wireless network with omni-directional fixed-power
transmitters that typically arise in the context of sensor
networks. We assume the the disk model for communication
(where messages are guaranteed to arrive as long as the two
nodes are within the communication radius) and we consider
two cases: perfect transmission and transmission with error
(where messages arrive with probability p). The disk model is
regularly used by the community (e.g., see Blough et al. [21],
Calinescu et al. [22], Kirousis et al. [23]). Some of the
restrictions imposed by this model can be relaxed at the cost
of additional communication. In our physical implementation
section we discuss the Mica mote implementation we use
which handles communication failures.

We model a wireless network as a graph, G = (V,E),
where each vertex represents a device and is assigned two-
dimensional coordinates. Two vertices are connected by
an edge in E if and only if their distance is at most
the guaranteed communication radius r. For simplicity of
exposition, we normalize the coordinate assignment so that
the guaranteed communication radius is r = 1. We further
assume that the nodes have been localized. A newly deployed
set of sensors can self-localize to meet our assumption using
existing distributes localization algorithms. For example, a
distributed algorithm such as [24] can be used by deployed
sensors capable of ranging to each other to self-localize, in
other words to compute a local system of coordinates. Other
methods for localization that use GPS [25] or beacons [26]
may also be employed. Finally we model a destructive event
as an explosion centered at a specified location that destroys
some fraction of sensor network nodes.

In this paper we consider the following problem. We are
given a sensor network with description G = (V,E). We
are given the node’s locations. At some point in time, a
destructive event causes the failure of nodes n1, n2, . . . nk ∈

V . We wish to identify the location and extent of the
damaged nodes. We define the extent of the damaged region
as the convex hull of the region affected by the nodes. The
extent may consist of multiple contiguous regions; it is the
smallest set of convex regions surrounded by alive nodes that
contain all the failed nodes.



IV. LOCAL DETECTION OF HOLES

In this section we describe a distributed algorithm for
computing the extent of the hole. We assume that a dam-
aging event has occurred in the network and this event has
destroyed some of the nodes. The alive nodes immediately
affected by this event are the nodes that have lost neighbors.
This algorithm shows a local procedure that enables the
nodes in the network to detect the presence of a hole and
then to compute its extent.

A. Algorithm
Algorithms 1- 3 summarize the damage detection and hole

extent computation algorithms.
The sensor network is initialized with location information

(see Algorithm 1). Upon deployment at time T = 0, each
node in the sensor network sends out a ping requesting
information about its neighbors. Nodes reply with their id.
The pinging node can thus create a list of its neighbors. The
sensor network then proceeds with normal operation. This
algorithm is summarized in Algorithm 1. This list of nodes
is then pinged regularly as part of a diagnostic protocol to
determine if the integrity of the system has been lost.

The protocol for integrity checking (see Algorithm 2)
employs the following computation to determine if nodes
have been damaged. Each node pings its neighbors and
keeps track of the responses. The node compares the list
of acknowledgements against its initial list of neighbors. If
the node’s number of missing neighbors exceeds a threshold,
it marks itself as belonging to the damage perimeter.

At the end of this operation each node knows whether its
local neighborhood is intact or not. The following algorithms
use this local node information to compute the extent of the
damage area in the form of a set of convex hulls for the
nodes marked as belonging to the damage perimeter.

Algorithm 1 The initialization algorithm.
T=0 [INITIAL NEIGHBOR DISCOVERY]
for i=0 to Npings do

Broadcast a ping to neighbors
Listen for replies
if reply received then

// Limit replies to close/strong neighbors.
if neighbor distance < MaxCommRange/Overlap
then

// Apply ping threshold
if Pings from neighbor > PingThreshold then

Add to List Of Neighbors
end if

end if
end if

end for

T=1 [NORMAL SENSOR OPERATION]
T=2 [SOME SENSORS ARE DESTROYED]

A distributed version of the classical Graham scan algo-
rithm for convex hulls [27] is used as a primitive by the

Algorithm 2 The hole diagnosis algorithm.
T=3 [DISCOVER MISSING SENSORS]
for i=0 to Npings do

Send a ping to neighbors in List Of Neighbors
Listen for replies
if reply received then

Mark neighbor as Alive
end if

end for
for each entry in List Of Neighbors do

if neighbor is not Alive then
DeadCount++

end if
end for
if DeadCount > DeadThreshold then

Mark this sensor as On Damage Perimeter
end if

damage extent computation in Algorithm 3. The intuition
behind the distributed computation of the damage extent is to
compute the overall convex hull incrementally by computing
convex hulls at each node and sharing the hulls until there
are no further changes to the hull set. Specifically, the nodes
(and only nodes) that have lost neighbors share hulls. Initially
each node marked as “on the damage perimeter” has a hull
consisting of itself. These nodes then broadcast their hulls in
order to share them. When a node receives someone else’s
hull, it merges the nodes on the message hull with its current
hull, recomputes the current hull based on this new set of
nodes, and broadcasts the result. The computation proceeds
until all the convex hulls have been merged. This state is
detected when no further changes to the hull list occur.

Algorithm 3 The damage extent algorithm.

T=4 [SHARE KNOWLEDGE OF MISSING SENSORS]
// Only sensors on damage perimeter share knowledge.
if this sensor is On Damage Perimeter then

Compute Damage Extent as convex hull of all miss-
ing neighbors locations
while Damage Extent is still changing do

// Convergence is faster using broadcast rather
// than using List Of Neighbors
Broadcast Damage Extent
Listen for Damage Extent lists from neighbors
if receive Damage Extent list then

Merge neighbors Damage Extent locations with
own
Recompute Damage Extent using convex hull

end if
end while

end if

B. Analysis
Theorem 1: Under perfect communication in the disk

model, Algorithm 3 requires O(log(k)) communication



rounds, where k is the number of nodes within 1-hop from
a damaged node. If messages arrive with probability p and
we wish to have confidence 1 − δ that all messages arrive,
Algorithm 3 requires 1

p
ln(k log k

δ
)O(log(k)) communication

rounds.
Proof:

For the disk model, the worst case occurs when each node
on the damage perimeter has exactly two other neighbors
on the damage perimeter. In other words the topology of
the damage perimeter nodes is a line or a circle. With each
convex hull sharing iteration the number of nodes considered
for the local hull computation doubles. Thus it will take
log(n)

2 = O (log(n)) communication rounds for the entire
set of damage nodes to be included in the convex hull
computation.

For the case when there is communication error and each
message arrives with probability p we wish to compute how
many times each message has to be transmitted in order to
arrive according to a desired confidence level 1− δ. In other
words, the probability of message failure after n transmission
rounds should be less than δ. That is, (1 − p)n < δ, or
n ln(1−p) < ln δ. Since both logs are negative, it follows that
n > ln δ

ln(1−p) and since 1
p
≥

1
ln 1

1−p

it follows that n ≥
1
p

ln 1
δ

.
Now we wish to have confidence 1−δ that all the messages

are received by all the nodes in the local system. Since the
number of nodes in the local system is k and the total number
of broadcasts is O(log(n)) as shown above, we have to pick
δ = δ

k log k
. This means that each message broadcast must

be sent 1
p

ln klogk
δ

Theorem 2: Algorithm 3 converges to the correct extent
of the damage perimeter.

Proof: Since the convex hull algorithm is a direct
implementation of the Graham scan where the global knowl-
edge of the nodes location is derived and distributed via
communication, Algorithm 3 will compute convex hulls
correctly. The only question is whether the computation will
converge to the convex hull that includes all the nodes. For
the disk model, each convex hull broadcast adds at least one
new node to the hull computation and possibly many more.
For the probabilistic failure model, each message has to be
transmitted as described above. Since there is a finite number
of damage perimeter nodes, it will take a finite amount of
time for all the nodes to be added to the hull computation.

C. Implementation on a Mote Testbed

The damage detection algorithm was implemented on 30
Mica1 motes to examine the algorithm behavior in a real
sensor network. The implementation is a TinyOS component
designed to operate in the background during normal sensor
operation. It utilizes a timer driven state machine with
the states corresponding to the timed phases of operation
described in Algorithms 1- 3. A message queue handles all
outgoing message traffic with slight offsets in message send
times determined by the network ID of the sensor to reduce
collisions. A command interface with a graphic control
panel is used to send flooding multihop radio messages to

set experiment parameters (radio transmit power, iterations
allowed to converge, etc.) and for software testing. Data
collected during test runs was stored in RAM and read out
via radio after each test so that the collection overhead was
minimized.

For the results shown here, 120 pings were allowed for
neighbor discovery at a rate of one per second. A threshold
of 3 ping replies was required for a neighbor to be counted as
initially alive. Only 1 ping reply was required for a neighbor
to be counted as alive after the network was damaged. Con-
vex hull sharing messages were sent at 5 second intervals,
and were fragmented into from one to three parts, depending
on the number of points in the hull. Each mote tested for
hull convergence by continuing to broadcast its own hull for
30 seconds after its own hull was no longer being altered
by received broadcasts. The mote radio power was set to
minimum and tests were run on a table top. Sensors were
placed at 1 meter intervals in the internal coordinate system,
although they were physically much closer (which increased
the message collision rate.) Ping replies were limited to
sensors within 1.5 meters range of the sender.

The received message handlers were designed so that new
messages could be added to the processing queue while
previous messages are being processed from the queue.
Hence the handlers may only be called once and remain
active until message sending stops, thus maximizing the
likelihood of messages being handled quickly and not being
lost and reducing the overhead in calling, initializing, and
cleaning up processing tasks.

The ping threshold and adjustable number of pings for
neighbor discovery allows reliable detection even when mes-
saging is highly unreliable, and can be adapted to the needs
of a particular sensor transceiver and deployment terrain.

The convex hulls that are shared span multiple messages.
However, to improve reliability, each message fragment is
complete enough to be used by itself, so that perimeter
sharing progresses even if parts of the entire message train
are lost. Message sharing happens in parallel around the
entire perimeter so information propagation is very quick.

Even if the algorithm does not achieve perfect conver-
gence1 by sending perimeter reports from all the convex hull
edge nodes, the basestation is still likely to obtain complete
information on the damage by combining the reports. The
chance of this occurring can also be made arbitrarily low by
increasing the ping counts and convex hull sharing iterations.
Since the repair algorithm rarely needs to be run, the energy
cost of these increases is negligible.

Thus, a variety of techniques were used to create an
algorithm that behaves reliably and reacts quickly on a
platform with very unreliable communication and limited
processing capabilities.

The graphs in Figure 2 show the converged convex hulls
that resulted when the network was damaged by turning off
from one to ten sensors. The close proximity of the sensors

1In practice we may choose the number of communication round to be
smaller than the theoretical bound in Theorem 1. For example, our physical
experiments described in the next section use a small-sized parameter.
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Fig. 1. These graphs show the results of tests exploring the algorithms
behavior near the edges of the sensor field. (Left) The converged convex
hull that resulted when sensors 8, 9, 15, 16, 22, and 23 were turned off to
damage the network. (Right) The converged hull that resulted when sensors
1, 2, 8, and 9 were turned off to damage the network.

caused a lot of message collisions thus creating very poor
connectivity in the network. However, by setting the number
of pings for neighbor discovery to a high value the algorithm
was able to successfully detect damaged sensors with no
false detections. Figure 3 shows how the convergence time
varies for the same range of hole sizes. The oscillations in the
graph are real and repeatable; they are due to variations in the
number of nodes in the convex hulls. Hulls with more nodes
require multiple radio messages to share them (each message
can carry up to five node locations.) Hence they take longer
to converge due to the increased communication required.
For example, the hull that results for seven missing sensors
has five nodes which fits in one message, while the hull
for eight missing sensors has six nodes which requires two
messages for sharing. This accounts for the large increase
in convergence time for eight missing sensors. Comparison
of the number of nodes for each hull similarly explains the
other variations in convergence time in the graph. The use
of the convex hull for compression of the list of nodes is
of great benefit in decreasing the message traffic. The graph
also shows an increase in the convergence time as the hole
size increases since more nodes on the hole perimeter are
involved in sharing hulls.

The graphs in Figure 1 show the converged convex hulls
that resulted when the hole was on the edge or in the corner
of the sensor network. The edge case is computed correctly
but the corner case has no sensors on the far side of the
damaged area and hence can only wrap a subset of the
damaged area. While this is a limitation of the algorithm,
if the edges of the region in which sensors are deployed is
known in advance, then including all corner sensors in the
area to be repaired could be accomplished with some simple
logic.

We also measured the number of pings as a way of
characterizing network traffic for the hole computation ex-
periments. Figure 4 shows the network connectivity changes
as the hole in the network grows from one to ten sensors
in size. The thickness of the lines is proportional to number
of ping replies received. Note there is a general trend for
motes with a higher id number to have better connectivity.
This is the result of using a slightly different message send
rate for each mote, with the rate based on the motes id
number. The rate varied from about 10 packets/second for
mote 1 to 5 packets/second for mote 30. The purpose of this

Fig. 3. The convergence time as a function of hole size. The variations are
attributable to the number of nodes in the convex hull (which affects message
size) and the number of sensors to which the messages must propagate.

variation was to reduce collisions and ensure that if one set
of messages collides, the next set is likely to not collide.
There appears to be a decided advantage here to the slower
sending rate.

V. REMOTE DETECTION OF HOLES

The convex hull based hole detection algorithm is local
and requires some state information about the network. In
this section we explore the use of routing information for
detecting holes. This method allows a hole to be detected by
a node that is far away and not directly (locally) affected by
the damage that created the hole. Also, unlike the previous
algorithm, it does not require an initialization phase to learn
the initial state of connectivity the network.

A. Algorithm

A multihop diagnostic message traversing the network can
gather important information about the density of nodes.
Consider a network in which all the nodes are localized. A
node randomly emits a diagnostic packet which is broadcast
using a flood forwarding algorithm. The packet body has
the following fields: (1) source coordinate (or node id); (2)
destination coordinate (or node id); (3) previous coordinate;
(4) distance traveled; and (5) message id. After each hop
the distance travelled field is incremented and the previous
coordinate updated, as shown in Algorithm 4.

On arrival at each node if the message id has been seen
previously then the message is ignored. If the message has
not reached its destination or reached the edge of the sensor
field, the message is updated with the distance traveled from
the previous node and the location of the current node. The
message is then rebroadcast to continue its travels.

If the message has reached its destination or the edge of
the sensor field, the path density is computed as the ratio of
straight line distance from source to destination “as the crow
flies” to the actual distance travelled. If the straight line path
passes through a hole the total path length will be extended
as the packet is routed around the hole. For flooding the
message will arrive via numerous routes; only the first one
to arrive is used to compute density.

This algorithm thus exploits the fundamental robustness
and adaptivity of the adhoc multihop network which will
always find a route for a message between two points.
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Fig. 2. The convex hulls resulting from variations in the size of the hole. From one to ten sensors were ”destroyed”.
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Fig. 4. Network connectivity changes as the hole in the network grows larger.

The underlying routing method may vary in sophistication
from flooding to routing table based. Note that some routing
methods intentionally perturb routes (e.g., to reduce chances
of interception) in which case a seperate routing protocol
would be required for density computations. On the other
hand, if the routing protocol is suitable, this algorithm could
potentially be implemented at near zero messaging cost by
utilizing routing of existing message traffic.
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Fig. 5. A random network with two holes.

1) Experiments: A Matlab simulation was developed to
explore the algorithm in more detail. Figure 5 shows a
random network in a 100 × 100 meter region. There are
1000 nodes and the communications model is an ideal disc
of radius 6 meters. The mean connectivity, before damage,
varies in the range 3 to 22 nodes with a median of 11. The

blasts which damaged the network have removed 193 nodes
from the network, which still has a median connectivity of
11.
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Fig. 6. The damaged network with two paths indicated.

In Figure 6 we see two manually selected paths. The
density for these are 0.867 for the one that passes through
the hole and 0.947 for the one that does not. Figure 7 shows
a histogram of all observed densities, from edge node to
edge node. There is no clear bimodal characteristic which
indicates paths that do and do not cross holes.

Now consider the case where one edge node broadcasts
a diagnostic packet and it is received by all the other edge
nodes. The fan of paths is shown in Figure 8. Each receiving
node can independently make a decision about whether there
is damage along the path to itself. Communications with



Algorithm 4 The path density algorithm.
A flooding, density enabled message is broadcast.
At each node in the network, the following occurs:

// Has this message already been seen and
// processed before?
if (MessageNotPreviouslySeen(message.MessageID) ==
TRUE) then

// Has the message reached an edge node or
// its destination?
if ((ThisSensorOnEdge != TRUE) &&
(message.DestinationID != ThisSensorsID)) then

// This message is not at it’s destination.
// Update the fields in the message.
message.Distance = ComputeDis-
tance(PreviousLocation, ThisSensorsLocation)
message.PreviousLocation = ThisSensorsLocation
// Rebroadcast the message with the updated info.
Broadcast(message)

else
// This sensor is the destination of the message
Distance = ComputeDis-
tance(message.StartLocation, ThisSensorsLo-
cation)
Density = Distance / message.Distance
if Density < Threshold then

// A hole has been detected. Collect and
// forward all hole data to the basestation.
ReportHole(message.StartLocation,
ThisSensorsLocation, Density)

end if
end if

end if
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Fig. 7. Histogram of densities across all paths.
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Fig. 8. The damaged network with a fan of paths indicated. The rays
shown in lighter grey (or red in color reproductions) have a density less
than 0.92.

neighbours could aggregate this information and determine
the angle subtended by the damaged region. Even with this
amount of information the location of the hole has been
constrained to lie within a small region of the network,
enough to direct a repair robot. A second fan, orthogonal
to the first one can provide information to triangulate a hole,
reducing the search space even further.

Analyzing the result of each broadcast is a local operation,
however nodes that detect evidence of a hole (supported by
neighbours) could broadcast that fact across the network.
Another node that detects a hole when it receives a diagnostic
broadcast could use the previous information from a different
node that detected a hole to improve localization of the hole.

We can take this one step further, if all nodes that receive a
diagnostic broadcast share information about the path and its
density. That information could be sent to a single collection
node or be broadcast, in which case all nodes could perform
the operation about to be described.
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Fig. 9. A reconstruction of network density. (a) the raw reconstruction
histogram, (b) a Gaussian smoothed histogram,(c) has the node positions
superimposed, and (d) is a contour plot representation.

The workspace is gridded (1 meter grid size) and treated
as a histogram or image. For every diagnostic path segment
we can draw a line (using Bresenham’s algorithm [28]) in
this grid, incrementing each cell that lies along the line by
an amount corresponding to the estimated density. To obtain
good discrimination of holes and non-holes we increment
by density to the eighth power which increases the numeric
range between high and low-density segments. Results are
shown in Figure 9. This voting scheme has some similarities
to tomographic reconstruction. A feature detection algorithm
can be used to obtain the coordinates of the damaged regions
for robot repair path planning.

VI. DISCUSSION

The experiments using the Mica motes running the local
hole detection algorithm showed the success of the tech-
niques used to optimize computation and communication



for operation in an environment subject to high rates of
message loss. Even with ping loss rates of 75% to 95%
the algorithm was able to reliably detect missing sensors
without false positives. Convergence times for the algorithm
were reasonable at well under a minute, especially given
that the hole detection will be executed only occasionally.
The use of the convex hull as a method of compressing the
hole perimeter description helps to reduce message traffic.
Mathematical analysis also shows that convergence times
will scale in a reasonable way. While the algorithm is
designed to detect sudden catastrophic damage over large
areas, it may be possible to use a variation of it to detect
natural attrition of sensors due to weather, batteries, and other
causes of random nonlocalized failures. Sensors detecting
missing neighbors could delay a request for repair until the
local convex hull grows large enough to merit sending out a
robot to perform the repair.

Although the remote hole detection algorithm has not yet
been tried on hardware, the simulation shows great promise.
The size of the holes detectable will depend to a large
extent on the variability of the routes chosen by the routing
algorithm. Greedy routing algorithms that tend to choose
the fastest, straightest routes will likely be better choices
than routing which follows paths derived from the need
to spread power utilization evenly. Being able to discover
holes in the network based on normal message traffic is an
attractive feature of this algorithm. A better understanding
of the natural variability of different kinds of routing is the
next step for future work.
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