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Abstract— In this paper1 we investigatea problem arising in
decentralizedregistration of sensors.The application we consider
involves a heterogeneouscollection of sensors - some sensors
have on-board Global Positioning System (GPS) capabilities
while others do not. All sensorshave wir elesscommunications
capability but the wir elesscommunication has limited effective
range. Sensorscan communicateonly with other sensorsthat are
within a fixed distanceof eachother. Sensorswith GPScapability
are self-registering. Sensors without GPS capability are less
expensive and smaller but they must compute estimatesof their
location using estimatesof the distancesbetweenthemselvesand
other sensorswithin their radio range. GPS-lesssensorsmay be
several radio hopsaway fr om GPS-capablesensorssoregistration
must be inferr ed transiti vely. Our approach to solving this
registration problem involves minimizin g a global potential or
penalty function by using only local information, determined by
the radio range,available to eachsensor. The algorithm we derive
is a specialcaseof a moregeneralmethodologywehavedeveloped
called ”Emer genceEngineering”.

I . INTRODUCTION

Recentinterestin sensorandsurveillancesystemsbasedon
unattended ground-basedsensors(UGS) and unmannedau-
tonomousvehicles(UAV’s)hasledto aproliferationof devices
with differentcapabilities,sizesandcosts.A typical goal is to
deploy many smallandinexpensive“easy-to-sacrifice” sensing
devices with limited radio communication range that can
form ad-hoc networks for communicating information back
to processing stationsand users.The sensingdevices gather
informationabout thesurroundingenvironment (acoustic,seis-
mic, infrared,temperature, humidity andso on) andthenpass
data through neighbors and ultimately to central processing
or communications stations.Given the low envisioned cost
of such technology, somenumber of sensorfailures can be
toleratedaslong asthesensingrequirements(like coverageof
a certainarea)andcommunicationsconnectivity (for routing
databackto users)aremaintained.Thereareseveralexamples
of prototype andcommercial sensorsof this type [1].

In thiswork, weassumethatsensorunitsconsistof different
componentssuchas processors,memory, Global Positioning
System(GPS)receivers, radio transmitterandvarious sensing
modalities. Two specific types of sensorsare considered -
sensorswith GPS capabilitiesand sensorswithout GPS ca-
pabilities.Sensorswith GPScanof courseself-register using
theGPSsignalwhile sensorswithout GPSmustestimatetheir
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positions using information communicatedwith neighboring
sensorunits. The algorithm we presentfor the registrationof
all sensornodes is iterative and decentralized. Our ultimate
goal is to show that networks consistingof different typesof
sensors,expensive and cheap,can still be effectively usedif
thesensorscollaborateon their registration. Our investigations
have raisedmany interestingquestionsfor future work. What
arethe tradeoffs betweenprocessingpower and,for example,
radio bandwidth and range? What density of GPS enabled
devices is sufficient,with highprobability, to registerall sensor
nodes within a given region, assumingsomesort of random
distribution of both typesof sensorswithin that region.

Section II formulates the basic problem quantitatively.
SectionIII describesour decentralized algorithmic approach,
SectionIV providesconvergenceresultswhile SectionV de-
scribesourexperimentalanalysis.Finally SectionVI discusses
future work required in this area.We arecurrently conducting
experimentsandwe have implementedthis algorithmasa web
browseraccessibleapplet.2

I I . PROBLEM DEFINITION

Let
���

be an opendisk of radius � , denotingthe planar
region in which the sensorsare deployed. (Note that the
specific size and shapeof the region is largely irrelevant to
the algorithm and analysiswe develop below.) A collection
of � sensors���	��
����
������������
���� with equal radio range �
are deployed in the region

� �
. The following propertiesare

definedfor eachsensor:

1) A “type” property ���������� ��"!#� ; where �%$&
�'(�) 
meansthe sensor
 is GPS-enabled and �%$&
�'*�+! means
it is “Not GPS-enabled”;

2) A “position” function ,-�.�/� �0�
where ,1$2
�'43 �5� ;

3) A “cost”, 6$&
�'�798 , for eachsensor.

Assumingthat the : sensorslabelled 
 � �;
 � ���<�=�<��
�> are of
type  (that is, have GPScapability), a fundamentalproblem
is to position the :@?A� GPS-enabledsensorsfrom � and
place them on a given disk

�0�
of radius � so that the

following conditions hold:B The totality of sensorsprovide sensingcoverageof the
whole disk

�5�
;B The non-GPS sensorsare able to infer algorithmically

their absolutepositionby locally exchanginginformation

2Seehttp://actcomm.dartmouth.edu/task/Demos/SensorsApplet/sensors.html



with theneighbors; that is, with theothersensorsthatfall
within their radio communicationsrange.B The number of expensive, GPS-enabled sensors,: is
minimized.

Thequantificationof thetrade-offs shouldnow beclear. The
problem is to minimize the use of sophisticated, but costly,
devicesat the expensesof lessexpensive ones.This tradeoff
requires having enough computational and communications
power to compensatefor less capable, non-GPS devices. In
general, precisepositioning of devices, either GPS or non-
GPSenabled, is not possiblebecauseof how the sensorsare
deployed. They may be deployed to maximize coverage of
subregions of high value or they may be literally dropped,
as from an aircraft, and therefore end up with more or less
random positions within the region.

Below, we describea decentralized, iterative algorithmfor
non-GPS enabled sensorsto self-register. We also presenta
preliminary experimental analysis of the required densities
of GPS capablesensorsto ensure,with high probability,
self-registration of the whole sensorgrid. The minimal such
density, for a given probability of successfulself-registration,
would clearlyberelatedto theproblem of minimizing thecost
of the overall sensorgrid deployment.

I I I . COMPUTING ABSOLUTE POSITIONS

We approach the problem of inferring absolutepositions
of non-GPS equipped sensorsdeployed on a disk area

� �
following a top-down methodology for the designof desired
emergent behaviors in multiple agent-basedsystems(MAS)
[2], [3], [4].

Assume that we are given a placement, , , of sen-
sors from � . Without loss of generality, let C ���
 � ��
 � �������%��
�DE�;
�DGF � �������%��
�>H�JIK� , where �%$2
�LM'N�@ forO ?QPR?NS and �%$2
�L2'*�T! for S�U O ?9PV?Q: . This meansthat
the first S sensorsare GPS-enabledand the remaining ones
arenot. Let ,1$2
 L 'W��, L 3 � � the true positionof sensor
 L
on
� �

. By definition, the first S sensorsare fully aware of
their position , L 3 � � while the remaining :YXZS sensors
must determine their positions through a local computation
andcommunicationwith their neighbors.

The basic idea behind the algorithm is as follows: each
non-GPS sensornode starts with an initial random guess
of its true position within

�(�
and then proceeds iteratively

to successive refinements of that position estimateuntil the
differencebetweentwo successive iteratesbecomesnegligible.
The goal of this process is for the position estimatesto
converge to the true values, ,�DGF � �;,[DGF � ���������",[> .

Our technique is basedon a global potential function to
be minimized with a decentralized, possibly asynchronous,
gradient descentmethod [5]. The effectivenessof the ap-
proach relies upon the fact that the gradient vector is locally
computable.This is one of the key aspectsof our top-down
methodology in which thecomputationof a function requiring
global resourcescanbecomputedor estimatedusingonly local
resources.

A. Artificial Potentialsand Algorithms

Formally, let \Q$]�^'��_� x L;$]�^'`3 R
�.a O ?bPc?d:e� be the

hypothesizedpositions of the sensorsat time � . By definition,
x L $]�^'0�f, L for all �cgY8 if

O ?YP0?)S . That is, when 
 L
is a GPS-enabledsensorits position is known for all time.
The problemis to definea potential function h5$i\j' suchthatk h5$i\j' is locally computableandthe following sequencel

x L $]�mU O '*� x L $]�^'nXeoqpsr k x t h5$i\Q$]�^'"'
x L;$i8.'*�+,vuxw�yL 3 ���

converges to , L as �*�{z , for all PV7|S . That is,l
x L $]�^'R�+, L }]~.� O ?9P*?ZS
x L"$]�^'R�f,[L }]~.� S�U O ?|P*?9:

where o p is a suitable nonincreasingsequence of positive
numbers(the “stepsize”).

Let ��Li� �����%,[L�X`,m��� � be the actual,true distancebetween
sensor
�L andsensor
�� . By usingradiosignalstrength,we are
assumingthat sensorscan effectively estimatethe distances
betweenthemselves and other sensorswith which they can
communicate,regardlessof whetherthey areGPSenabledor
not.That is, �qLi� � is known to bothsensors
.L and 
�� providing� L]� ��� � , whererecall that � is the effective communications
range of the radio links. Note that while � L]� � �	�%, L XQ, � �%�
is known, the true positionsof non-GPSsensornodes,,1$&
 � '
for �57ZS , arenot known but the estimatesof ,1$&
 � ' , namely
x� , aremaintained on sensor
 � locally.

The potential function we considerish1$]\`'�� �� t]� �%��� $"� x L�X x ��� �� X#� �L]� � ' � �
This potential function is composed of terms that are es-
sentially the differences between the required inter-sensor
distances,namely �ELi� � andthe currently observed inter-sensor
distancesas determined by the positionsestimates,x L . Con-
sider the autonomous system describedby the differential
equation: �\ � X k h�$]\j'�� (1)

Thenwe canstatethe following facts:B h can be expanded into a quartic polynomial and is
continuously differentiable at least twice in R � > . This
implies, among the others, that its partial derivativesk

x t h5$]\`' :� h�
x L $]\j'*�+��r ���� � t�� � ��� $;� x L X x� � �� X#� �Li� � '�r$ x L X x � '

are continuously differentiableand so
k h is Lipschitz

continuouson any boundeddomain �JI R
� >

[6]:� �5¡ 7|84¢�\c�"£`3W�-� k h5$]\`'GX k h1$i£v'�� � ? �5¡ �G\¤X¥£5� � �



B Function h5$]\9$]�^'^' , where \Q$]�^' is any trajectoryof the
system(1), satisfiesin

� >� :

�h¦� k h§r�\Y�� >� L=¨ �1© � h��ª L]� � r[«�X � h��ª Li� �q¬ U � h�ª L]� � rs«�X � h��ª Li� � ¬¥®� X >� L<¨ �¥¯¯¯¯
� h�
x L ¯¯¯¯
�� ?N80�B h5$ x � � x � ��������� x >°'Zg±8 in the open set

� >� . Besides,h5$&, � �", � ���������",[>�'��²8 . Thus h has an absolutemin-
imum which is attainedat x Ls�T,[L�¢�P .B In general, the absolute minimum may be attained
at many points. For example, any rototranslation of$i,n�³�",[�³���������", > ' is a solutionto theequation h5$i\j'*�T8 .

The assumption of having S GPS-enableddevicesallows the
introduction of an additional function:´ DE$]\5D³'�� ´ DE$ x DGF � � x DGF � ��������� x >°'� h5$i, � �", � ���������",�Dq� x DGF � �������%� x >°'%�
The following lemma is instrumental to the study of the
stability of the dynamic systemdescribedby the equation�\ D ��X k1´ D $]\ D '
usingthe Lyapunov’s direct method [7].

Lemma1: Assumewearegiven a set C of :²7 O deployed
sensorsas specifiedabove. Let  µ�A$&�n�"¶H' be an undirected
graphdefinedas: ���·�¸
.�¸�;
��³���������;
 > � and �¸
 L ��
 � ��3N¶ if
andonly if � L]� � �-�%, L X5, � � � � . Moreover, assumethat  is
connected.Thenthe set ¹|�º��\ � 3 R

� u >�» � y a ´ � $]\ � '¥?Z6��
is boundedfor every 6°3 R F .

Proof: Assume for simplicity that the origin of the
coordinate system is centered at point , � . Let \ � �$ x � ��������� x >�'�3�¹ and, without loss of generality, let :��¼ �;½*¾ ¼¸¿ �q� x��� a �1gZÀq� , so that x > is the farthestpoint from, � . The condition

´ � $]\ � '�?|6 implies that� x L�X x���°?§Á � �L]� � U|Â 6¥�+ÃGLi� ���¢�P��M�
Let ��� ¾ ¼³¿ �¸ÃGLi� � a P��2�Ä� a value that depends only on  and6 . Thenby the connectivity of  theremustexist a path Å in labeledas Åc��Æ 
��^Ç��;
%�ÉÈ³�������%��
%�ÉÊiË , where ,1$&
��ÌÇ�'*�T, � �ÎÍ ,
that verifies the following inequalities� x > �%��?�Ï » �� L=¨ � � x� t X x � t<Ð Ç³� �NÑ r��A?Q:Òr��²�
But this implies that ¹ mustbe bounded.

This result can be easily generalized to S sensorpositions,��³�",[�³���������", D . Of particular interest is the situation where
equation ´ DE$]\5D³'*�T8 (2)

is uniquely solvable because, in that case,
´ D turns out

to be a Lyapunov function for the autonomous system(1)
and $i,nDGF � ���������",[>°' is a point of stability in

� >�»�D� [7].

Characterization of uniquenessdoesnot seemvery easyand
is actuallyoneof the challengesof this work.

It would be also very interestingto establishconditions
under which equation 2 hasonly a finite number of solutions
andconsequentlyidentify a subsetÓ¦I � >�»�D� on which

´ D
is a Lyapunov function. We canusethis property, wherever it
holds, in orderto prove the convergenceof the asynchronous
gradient descentalgorithm.

IV. CONVERGENCE

We now focus on proving the convergenceof our iterative
decentralized gradient descentalgorithm. We determine a
bound for o that ensuresconvergenceto a stationarypoint (a
zeroof thegradient)although,sometimes,thismightbea local
minimum or a point of inflectionaswe verifiedexperimentally
(seeIV-A). We proceedas follows.B We first identify a bounded region that encloses the

area on which our sensorswill be placed. Assuming
that eachsensoris placedin a squareof side ¹ : �f�Æ<X¥¹4ÔÀE�;¹4Ô³À¸ËEÕ0Æ<X¥¹4ÔÀE�;¹4Ô³À¸Ë centered in the origin of the
coordinatesystem,we considerthe disk

� � � $ 0 �"��' ,
centered in the origin andhaving radius �µ�KÖ �� ¹ (the
diagonal of the square).B Weestablishabound ontheLipschitzconstant

�
of
k1´ D

in
� >�»�D .B We prove the validity of the DescentLemma[8] relative

to
� >�»�D .B Finally we prove theconvergencetheoremof themethod.

Let us startwith the Lipschitz constant.
Theorem2: Assumewe aregivena set C of :Y7 O sensors

deployedon a square���¦Æ<X¥¹4ÔÀE�;¹4Ô³À¸ËÕ�ÆxX¥¹�Ô³ÀE�;¹4ÔÀ�Ë andbe� � � $ 0 �;��' the disk that circumscribesit. Let  A�J$2���"¶H'
be an undirectedgraphdefinedas: �Q�¦��
 � ��
 � ����������
�>�� and��
�L^�;
%�³�`3�¶ if and only if � Li� �e�×�%,[LnXZ,���� � � and let�qØ be the highestdegree in  . Set

� �W�+ÙÚ.��Ø Â À¸:0� � and� �Û�+ÙÚ�qØ Â À� � . Then ¢�\ D �"£ D 3 � >Û»�D� k�´ Dq$]\5D³'�X k1´ DE$&£�D'�� � ? � � r.�%\5DÛX#£�D � �� k x t ´ Dq$i\5D³'�X k x t ´ DE$&£�D'�� � ? � � r.�%\5DÛX#£�D � � �
Proof: We know from basiccalculusthatfor a function Ü

of Ý variablesthat is in Þ u � y on a boundedconvex set ßÎI R à
andfor which ¢�P�� x 3cß a k�á t Ü�$ x ' a �Zâ it holds thata Ü�$ x U y '�X#Ü�$ x ' a ?ZÝ â r�� y � �
Furthermore,if ãº�º$&ÜqL2' is a vectorfunction of � components
all Þ u � y on ß and whose partial derivatives are similarly
boundedby â then

�%ã1$ x U y '�X#ã1$ x '�� � � äååæ p� L<¨ � a Ü¸L"$ x U y '�X/Ü³L^$ x ' a �
? äååæ p� L<¨ � $&Ý â rq� y ����' �? Ý â Â ��r.� y � � �



So,to provethetheoremweneedto considerthesecondpartial
derivatives3 of h andfind anupperbound â for themon

� > :� � h5$i\j'�ª L]� � ��ª L=ç]� � �éèêêë êêì
X¥íÄ$ ª Li� �VX ª L ç � ��'%$ ª L]� � X ª L ç � � '���
 L �;
 L çÌ��3î¶XW�$;� x L X x L ç � � X`� �Li� L ç '8 ��
�L^�;
�L<çÌ�1ï�Z¶

It is not hardto seethat in the worst possiblecasewe haveðððð � � ´ DE$i\1D'��ª Li� � ��ª L=çi� � ðððð ? ðððð � � h5$i\j'��ª Li� � ��ª L=ç]� � ðððð ?Q�.í.� � �
This correspondsto the caseof estimatesof very closepoints
( � L]� L ç[ñ§8 ) that arevery far from eachother ( À³� ). The claim
now follows from the fact that in the first case ���AÀ³: andÝ��TÀ��Ø , whereas in the secondcase�*�TÀ and Ý��+À��Ø .

Let us now discussthe DescentLemma.Beforedoing this
we needto anticipatethe following result:

Lemma3: Let
� � and

� � be the Lipschitz constants es-
tablishedbefore and o � ��;ò È Ö >�»�D . Then\5DH3 � >�»�D �mó X�o k1´ Dq$]\5D³'43 � >�»�D �

Proof:
We show that ¢�P��VS�U O ?9PV?Q:{�sX5o k x t ´ Dq$i\5D³'�� � ?|� .

Let \`ô�3 � >�»�D be a point of global minimum for
´ D . Thenk�´ DE$]\#ô%'R� 0. So�4Xeo k x t ´ D $i\ D '����õ? o�rq� k x t ´ D $]\ ô '[X k x t ´ D $i\ D '����? o � ��%\ ô X`\ D ���? o � � r�À� Â :öX/S? �Ò�

Let usnow rephrasetheDescentLemmarelative to aconvex
boundedset:

Lemma4: Let ã�� R � � R beacontinuouslydifferentiable
function suchthat

k ã is Lipschitz continuous,on a convex
boundedset ß , with constant

�
. Then ¢ ª �"÷53eß :ã1$ ª U/÷ '4?Nã1$ ª 'øU/÷qù�r k ã1$ ª 'sU � À �%÷�� �� �

Proof: Since ß is convex then ¢���3TÆ 8Ä� O Ë ª U|�É÷#3Nß
and so the proof provided in [8] for the DescentLemmaon
R
�

immediatelygeneralizes.
Finally we can deliver the proof of convergence of the

methodthat providesalsoa bound for the stepvalue o .

Theorem5: Assumewe aregivena set C of :Y7 O sensors
deployedon a square�µ�ºÆ<X¥¹4Ô³À �"¹�Ô³À�Ë.ÕvÆ<X¥¹4ÔÀE�"¹�Ô³À¸Ë andbe� � � $ 0 �"��' the disk that circumscribes it. Let  A�A$&�n�"¶H'
be an undirectedgraphdefined as: �Q�¦��
Ä�¸�;
��³���������;
 > � and��
 L ��
 � �c3Z¶ if and only if � L]� � �)�%, L X9, � �%� � � and let��Ø be the maximum degree in  . Furthermore, let

� �¤�
3In our notation xúÄûeü<ý³ú�þ ÿ��2ý³ú�þ � � .

ÙÚ.� Ø Â À¸� � and
� � � Â : � � be the Lipschitz constants fork

x t ´ D and
k1´ D on

�
respectively.

Set 8 � o � ��;ò Ç . Thenthesequence ��\�Dq$]�^'G� generatedby
analgorithmof theform \eDE$]�³U O 'n�Z\5DE$i�^'�XHo¥r k1´ Dq$]\5DE$]�^'"'
satisfies ��� ¾p��
	 k1´ Dq$]\5DE$]�^'"'R� 0 �

Proof: By definition we have
´ DE$]\5DE$i�îU O '^' �´ Dq$i\5DE$]�^'*X#o(r k�´ Dq$]\5DE$i�^'^'^' andby hypothesiso � ��;òVÇ ��� Ö > ò*È � ��;ò*È Ö >�»�D . So, by Lemma3, X�o1r k�´ D $i\ D $]�^'"'^'W3� >�»�D . But this allows us to apply Lemma4 to obtain´ D $]\ D $i�mU O '"' ? ´ D $]\ D $i�^'^'øUX�o k1´ D $]\ D $i�^'^'��Är k1´ D $]\ D $i�^'^'U � �À � k1´ DE$i\5DE$]�^'"'�� ��? ´ DE$]\5DE$i�^'^'øUX�oj« O X � � oÀ×¬ � k1´ Dq$]\5DE$i�^'^'�� �� �

Our choiceof o ensuresthat the term j�Zo � O X ò4Ç����� 7N8
and so now the proof proceeds as in [8] (Proposition 2.1):
eachvalue of ��g-8 provides one such inequality. Summing
for �1�T8 � O ���������^� we obtain the inequality8�? ´ D $]\5DE$]�øU O '"'4? ´ D $]\5DE$i8�'^'�X� p�� ¨ w � k1´ Dq$]\5DE$��Ä'"'�� �� �
true for all � . Then, in the limitp�� ¨ w � k1´ D $]\ D $��Ä'"'�� �� ? O

 ´ D $i\ D $i8.'"' � zé�
andso, necessarily,

��� ¾ p��
	 k1´ D $]\5DE$]�^'"'R� 0.

Let us conclude this sectionwith a result that establishesa
sufficient condition for the uniquenessof the solution to the
equation

´ D $i\ D 'R�Z8 .
Let us first proof the following lemma.
Lemma6: Let ,R�¸�",[����������",����",�� F � beasequence of points

on the planewith 
1g�� and let �L]� ���ö��,sLsX¤,m��� � . Assume
that thereare at least � points amongthe first 
 that are not
aligned. Thenthe equation�� L<¨ � $"�%,[L�X x � �� X`� �L]� � F � ' � �+8
hasexactly onesolutiongiven by x �+, � F � .

Proof: Clearly ,�� F � satisfiestheequationsince � Li� � F �¥��%, L X�,�� F �.�%� . The problem is to show that the solution
is unique. We can observe that the equation is a sum of
squares andsoequivalent to thefollowing systemof quadratic
equations: �q�%, L X x � �� �Y� �Li� � F � a O ?ÒP5?·
� . Equation P :�%, L X x � �� ��� �Li� � F � in the systemis the equation of a circle
centered at , L and having radius � Li� � F � . Thus any solution
will be givenby the intersectionof all the circles.Sincethere
areat leastthreepoints not alignedthenthe intersectionmust



A

B

Fig. 1. Degeneracy due to alignmentof the centers.

be unique. In fact, two circlesintersectin at most two points,
say C and � . If we pick a third point the only way for it to
be at the samedistancefrom C and � is to lie on the axis
perpendicular to the line passingthrough C and � . But this
meansthat the threecenterswould be perfectly alignedalong
that axis againstthe hypothesis.This situationof degeneracy
is depictedin Fig. 1.

Let us now consider the following Coloring Algorithm.

1) Input: a set C of : 7 O deployed sensorsas specified
above. Let  ²�b$&���;¶H' be an undirectedgraphdefined
as: �º�·�¸
 � �;
 � ���������;
�>H� and �¸
�LÌ��
G�³��3|¶ if and only
if � L]� � �ö��, L X¤, � ��� � � . Let the first S nodesin � be
coloredwith blackpaintwhereaslet any othernode in �
be paintedwith a white paint.

2) If a white node is connected to at least � black nodes
whosepositions on the planeare not alignedthen let it
be blackened.

3) Repeatstep2 until no blackening is possible.

Theorem7: Assume we are given a set C of : 7 O
deployed sensorsas specifiedbefore. Let  � $&�n�"¶H' be
an undirected graph defined as: �b�K�¸
 �¸�;
��³���������;
 > � and��
 L ��
 � �d3 ¶ if and only if � L]� � � ��, L XJ, � �%� � � .
Furthermore, assumethat 
q�³�;
���������%�;
 D , with �T?bS � : ,
have beenblackened.If the coloring algorithm blackens all
the remaining nodesin � thanthe equation´ Dq$]\5D³'*�Îh5$&, � �", � ���������",�Dq� x DGF � ��������� x >°'*�T8
is uniquely solvable.

Proof: Observe that  is not necessarilyconnected. Let� be the number of iterations neededfor the algorithm to
completeandlet C�L bethesetof sensorsthatareblackenedat
the P��� iterationof the coloring algorithm. Thenthe following
sequenceof sets��Ls�"!ø�$#�LMCÛL verifiesthefollowing propertiesB � w ���¸
����;
��³���������;
 D � ;B � L&% � L<F � ;B �('��T� .

Let us now define  �LÛ�	$&��L"�"¶ÛL2' as the full subgraph of  
having nodes �HL . By full we mean that whenever an edge) � ��
�L^�;
%�³�T3ö¶ joins two nodesin ��L then it must be) 3j¶ L . Now, equation h�$i,V�¸�",[��������%�", D � x DGF �³�������%� x > '��¦8
is equivalentto thefollowing system* of quadraticequations:l �%,,+�X x - � �� �Z� �+� - ��
.+�;
.-.��3î¶"/ O ?10�?ZS , 2�7NS� x + X x - � �� �T� �+.� - ��
 + �;
 - ��3î¶"/30s�4257ZS

Furthermore,eachsubgraph  �L determinesa subsystem*�L %* of equationsl ��,5+HX x - � �� �Z� �+.� - �%�¸
6+Ä�;
.-���3�¶¥L7/0
.+13�� w /0
.-H30�°L�8³� w� x +�X x - � �� �Z� �+� - ����
.+�;
.-.��3î¶¥L9/î
.+�;
.-�3î�°L�8³� w �
We shallprove, by inductionon thenumber : of nodes of  ,
that, given any P¥7ÎS , the only possiblesolution for variable
x L in system* is ,[L .B Base: S1�N: . In thiscase,clearlythesystemof equations* w is a trivial identity.B Induction Step:Let uspick anode
.L in position ,nL , withPÛ7ÎS . Supposethat 
³L was blackenedduring iteration �

of thealgorithm. Thengraph p » � mustcontainat least �
neighborsof 
 L whosepositionsarenotaligned.Let those
positions be , � Ç¸�", � È�", ��: . Since

a ��p » � a � a ��p a ?|: , we
can apply the induction hypothesisto  �p » � . So all the
equations in the corresponding system *�p » � involving
variables x � Ç¸� x� È³� x ��: must be uniquely solvable and so,m�ÌÇ¸�",m�MÈ�",m� : aretheonly candidatesolutions to equations
in * p X�* p » � involving variablesx � t . But thoseinclude
the threeequations�%,m�ÌÇVX x L�� �� � � ��^ÇG� L�%,m�MÈ�X x L�� �� � � �� È � L�%, ��: X x L � �� � � �� : � L
thatareuniquely solvable by Lemma6. So , L is theonly
candidatesolutionto all the equations in the big system* involving x L .

A. TheSpecialCase: ���Z� and S1�;�
Herewe investigate thevery specialcaseof � GPS-enabled

sensorsplus a fourth device, within the range of all the
previous threeones,that needsto self-register.

Assumethat the GPS-enabled sensorshave position , � �� ª ���"÷������",[�e�d� ª ��"÷�����",,<e�f� ª <³�"÷=<¸� , whereasthe fourth
device be placedat position ,?>N�K� ª >.�^÷@>� . The potential
function to be minimized will be:h�$ ª �"÷ '�� <� L=¨ � $;�%,[L�X x � �� XZ�%,[L�X#, > � �� ' �� $"$ ª X ª ��' � UT$]÷vX`÷��%' � X`� � � � > ' � U$"$ ª X ª � ' � UT$]÷vX`÷ � ' � X`� �� � > ' � U$"$ ª X ª < ' � UT$]÷vX`÷ < ' � X`� �< � > ' � �
We verify numerically the existenceof local minima of the
scalar function h . First we run our Matlab simulation on
random deploymentsof the sensorsuntil the gradient descent
processterminatesonastationarypoint otherthan ,A> , say ,5>CB .
Thenwe analyzethebehavior of thesecondpartialderivatives
on ,,>CB to verify that it is a relative (local) minimum (andnot
a saddlepoint). This verification, of course,doesnot rule out
the existenceof saddlepoints. However, here we focus on
local minima becausethoseconstitutethe worst situationin a
gradient descentapproach.
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Fig. 2. A caseof local minimum ( D@EGF ) for H�ûJI , K�ûJL .
We apply standard techniques from Calculus based on

expanding h , by Taylor’s theorem, with a remainder of the
third order, around a stationary point x and studying the
sign of M1$2Ým��S 'n�Th á�á $ x '^Ý � UQÀ.h á.N $ x '^Ý�S�UQh NON $ x '^S � . Those
techniquesprovide us with the following sufficient condition
for a stationarypoint x to be a relative minimum for h [6]:

h á�á $ x '�r�h NON $ x '�X/h á6N $ x ' � 7 8h á�á $ x ' 7 8
where h á�á �QP È�RP á È , h N$N �SP ÈCRP N È and h á6N �TP ÈURP á P N .

Figure2 reports onesucha case.Theseresultsrevealthat in
general we shouldexpectour algorithm to reachlocal minima
andsowe needto identify methods to precomputeconvenient
initial valuesin order to avoid thosetrapsin advance.

V. GENERAL EXPERIMENTS

In this sectionwe presentthe resultsof our experimental
analysis.We searchcritical valuesof the percentageof GPS-
enableddevices above which the algorithm converges with
very high probability given a random deployment of sensors.
We disseminateuniformly at random � sensors,having fixed
communication range,on a squareof side

O
, then we run

the gradient descentalgorithm starting from randominitial
values.Figure3 reports theestimatedconvergenceprobability,1$]:�' as : , thenumberof GPS-enableddevices, rangesfrom� to � . Intuitively the convergenceprocessdepends on the
degree of connectivity of the graph  which is muchhigher
for high valuesof the range to sideratio. For example, if the
communicationrange is infinite andthereareat least � GPS-
enabledunitswe would expectthealgorithm to converge with
very high probability. So, as � tendsto infinity, our expected
curvewill beastepfunctionwith discontinuity atpoint :·�;� .
As � tendsto 8 insteadthe curve becomesmore smooth.The
conclusion is that thereareno nontrivial critical points.

VI . PLAN AND FUTURE WORK

The following issuesneedto be explored in future work:

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ = 0.5 

ρ = 0.75 

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ = 0.5 

ρ = 0.75 

ρ = 2.00

Fig. 3. Probability of converging to the right positions as the numberof
GPS units increases:(above) Heû;V�W , XJY[ZUW.\ V.��W.\ ]CVO^ (below) Heû;_�V ,XAY`ZUW.\ V.��W.\ ]CV.��_O^ .

1) Understandthe structure of local minima better:do they
occur in specificgeometric structures?

2) Establishconditions on  that rule out the existenceof
local minima and, in general, of undesirable stationary
points. In such cases,equation

´ D $i\ D '5�Y8 would be
uniquely solvableandin addition

�´ D�� 8 on R � u >Û»�D y .
3) Characterize unique solvability of equation

´ D $]\ D '*�T8 .
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