
QUERY ROUTING OPTIMIZATION IN
SENSOR COMMUNICATION NETWORKS

Guofei Jiang and George Cybenko

Institute for Security Technology Studies and
Thayer School of Engineering

Dartmouth College, Hanover NH 03755

Abstract

Interest in large-scale sensor networks for both civilian
and military applications is burgeoning. The deployment
of such networks will require new approaches in resource
discovery, query processing and data routing. This paper
presents a framework and some analytic results for query
satisfaction and data routing in networks consisting of
clients, sensors and data filtering/fusion servers. In this
model, multiple clients pose queries that are satisfied by
processing a set of sensor data streams through a set of
filters or fuselets. Fuselets are lightweight data fusion
algorithms that can be deployed in a network
environment. The queries can have common sub-
expressions (sub-queries) that should be reused by
multiple clients if possible and appropriate. Moreover,
effective routing of data streams from sensors to clients
requires routing the streams through network nodes that
can implement the required filtering/fusion operations.
We formulate these problems quantitatively and propose a
dynamic programming based solution using sensor-fuselet
location and performance tables. The framework is
preliminary in that many details and variations are
abstracted or ignored. However, at the end of the paper
we discuss several directions that can be explored to make
these preliminary results more relevant to real scenarios.

1. Introduction

Several efforts are currently underway to design, build
and/or deploy large-scale integrated sensor network, data
fusion and command-control systems. Those efforts
include:

• the Air Force's Joint Battlespace Infosphere (JBI) [1];
• DARPA's SensIT Program [2];
• DARPA's Information Exploitation Office (IXO) [3];
• NASA's JPL Sensor Webs Project [4].

Meanwhile several other research programs are organized
around developing the basic technologies to support such
systems. Among those research programs are:

• UC Berkeley's TINY Sensor project [5];
• DARPA Network Embedded Software Technology

Program [6];
• Dartmouth's Sensor Web Project [7].

At Dartmouth, we have been working with about 100 re-
configurable wireless sensor platforms that include:
Global Positioning System (GPS) capabilities, wireless
(RF) communications, iButton and serial sensor
capabilities, simple microprocessor control (Intel 8051
processor) and self-contained power. One of the sensors is
depicted in Figure 1 below. Details of these devices and
the ad hoc routing algorithms for establishing wireless
network connectivity can be found in [8].

Figure 1: Dartmouth Re-configurable Wireless
Sensor Platform

Deploying a complete, highly functional end-to-end
system of such sensor nodes is a complex, multi-faceted
problem. For example, sensors will likely be
heterogeneous so some sort of self-defining registration
protocol is required for maximal flexibility. Our early
work is focused on a Sensor Markup Language, based on
the DARPA Agent Markup Language (DAML) [9] for
defining sensor capabilities in a standardized way.
Another important technology, addressed in this paper,
required to realize such system is to effectively and
efficiently route sensor data streams to different clients
through the network fabric. Ideally, those data streams
would be processed, merged and multicast within the
network to optimize some combination of performance
metrics such as latency, bandwidth utilization or fuselet
server loads.

In this paper, we first formulate a simple version of the
sensor data stream routing problem, and then show how it

can be solved using dynamic programming ideas. Lastly
we extend the basic model and framework to some more
complicated situations.

2. Sensor Communication Networks

Our abstract model of a battlespace sensor communication
network consists of the following ingredients: Clients,
Fuselet Servers and Sensors. The abstract model of this
network is illustrated in Figure 2, where C, N and S
represent clients, fuselet server nodes and sensors,
respectively.

S1

S2

S3

S4

C1

C2

C3

N1

N2

N3

N4

N5

N6

Figure 2: The abstract model of the network

The sensors in the battlespace include various sensing
systems or devices such as radars, satellites, sonar,
acoustic and other environmental monitoring devices.
Such systems can generate a huge amount of radar, image,
video, audio and other kinds of data from forward
battlespace locations. Fuselets are programs that perform
lightweight signal processing and data fusion operations
on those streams. Network management operators are
responsible for developing fuselets and uploading them to
fuselet servers. When clients perform queries requiring
battlespace information from the sensors, the sensor data
streams are routed through the appropriate fuselet servers
for data processing and then the processed data are
returned to the clients.

In our framework, the fuselet server network is a peer-to-
peer overlay network, which consists of geographically
distributed fuselet server nodes. These server nodes are
powerful computers with stable and high-speed network
links between them. Subsets of these nodes may be
managed by different organizations such as different
services or agencies. The sensors describe themselves with
the Sensor Markup Language (SML) using DAML and
publish themselves to a local fuselet server. The SML-
tagged description includes all the details about the sensor
such as its capabilities, its functionality and its interfaces.
The local fuselet server broadcasts the sensor information
to all other fuselet servers. E.g. Sensor S1 and S2 publish
themselves to their local access point – the fuselet server
N5. Then N5 broadcasts their markup information to all
other fuselet nodes. In the same way, when a network
management operator develops a new fuselet, they use the
Fuselet Markup Language (FML) to describe its
capability, functionality and interface. While the fuselet

program is only uploaded to a subset of servers managed
by these operators, the fuselet description information is
broadcast to all other fuselet server nodes.

3. Sensor and Fuselet Tables

Every fuselet server in the network has a sensor
information table that lists all sensors in this network, their
SML tagged descriptions and their access points. That is,
the server N1 has an abstract sensor table illustrated in
Table 1.

S1: SML-Description, N5
S2: SML-Description, N5
S3: SML-Description, N6
S4: SML-Description, N6

……

Table 1: An abstract sensor table

Similarly, every fuselet server maintains a fuselet
information table that lists all fuselets available in the
network, their FML tagged descriptions and their host
server network ID. An abstract fuselet table is shown in
table 2.

F1: FML-Description

: N1, N4, N6
F2: FML-Description

: N2, N3, N4
……

Table 2: An abstract fuselet table

Since both the fuselet and sensor information are
broadcast across the network, every fuselet node maintains
the same sensor table and fuselet table at a generic
operating time. However, for routing purpose, these tables
may also include metrics to represent their routing
preferences from every node’s view, which differentiate
these tables from each other. These sensor and fuselet
tables are updated dynamically. Once a new sensor or
fuselet goes online, the related information is
automatically communicated and inserted into these tables.
By contrast if a sensor or fuselet is not available anymore,
the related information is automatically withdrawn from
these tables.

4. Query Routing

For specific missions, clients submit queries for
battlespace information to their local access points – local
fuselets servers. Usually these queries are described in
natural language or in high-level query languages. For
example, client C1 may submit a query to node N1 and
ask “Are there moving vehicles in battlespace region #1?”.
With all sensors and fuselets properly described in the
corresponding markup languages, "composer" software we
are developing will be able to discover specific sensor and

fuselet resources to satisfy the query. Based on semantic
brokering, matching and reasoning, the composer
assembles these sensors and fuselets into a sequence and
creates a processing model. The processing model is
interpreted and formatted into a Query Request Packet
(QRP), which can be described in the following abstract
format:

<Source, Fuselets-sequence>.

Source is the client’s network identification, and
Fuselets-sequence is the composed processing
sequence of sensors and fuselets. The QRP may be
decomposed into multiple sub-QRPs during the query
routing process. For example, suppose that sensor S1 is an
acoustic sensor and sensor S2 is a seismic sensor, which
are both deployed in battlespace region #1 to detect
moving targets. The server node N1 possibly decomposes
C1’s query into two sub-query request packets (sub-
QRPs):

<C1,F1(F2(F8(S1)))>
and

<C1,F2(F5(F9(S2)))>.

The first QRP packet requests sensor S1 to route its data
stream via fuselets F8, F2 and F1 for data processing
before the processed data is returned to C1. The second
QRP packet requests the sensor S2 to route its stream
through fuselets F9, F5 and F2. Here we analyze a simple
single-sensor filtering process first to illustrate the routing
mechanism. Later in this paper, we will analyze the
routing problem in the multi-sensor fusing process.

Since a fuselet is uploaded to several server nodes in the
network for reliability and load balancing, the network
must resolve the QRP’s fuselets-sequence to physical
server nodes that execute the fuselets. In this context,
every node is not only a fuselet server but also a router. As
in BGP routing (the Border Gateway Protocol (BGP) [10]
is the main routing mechanism in Internet backbone
routing), every server in the sensor network can choose
one node from the node list as the best node to run each
fuselet. In this case, the fuselet tables are not the same
anymore since each node has a different view of the
network. There are several routing mechanisms to
compute a route, which are illustrated in Figure 3.

- Forward Routing: The client sends the QRP to the end
sensor directly. The sensor sends its data stream to the
network nodes capable of computing the first required
fuselet processing. After one node invokes the first fuselet
and processes the data stream, that node searches its
fuselet table to find the best execution node for the next
fuselet task listed in the QRP, and sends the processed data
stream to that node. The new node continues this data
processing and routing process. Eventually the processed
data stream is forwarded to the requesting client.

- Reverse Routing: Just as in source routing mechanisms
used in IP routing, the reverse routing approach resolves
the route when the client forwards the QRP to the end
sensors. At each hop, a node searches its fuselet table to
find the best execution node for the next fuselet task, and
sends the QRP to that node. The new node continues this
QRP forwarding process and eventually the QRP is
forwarded to the end sensor. The nodes in the route are
sequentially added into the QRP. After the end sensor
returns a data stream to the network, the data stream is
routed through the nodes listed in the QRP in reverse order
for data processing, and eventually the processed data
stream is routed back to the client.

S S

C C

F o r w a r d r o u t in g R e v e r s e r o u t in g

Q R P

 S t r e a m

Figure 3: Different routing approaches

Compared to the IP routing, query routing in sensor
networks has some significant differences. The data
stream is not only routed but also processed sequentially
along the route; since the sensor data stream usually has
much larger amounts of data than the QRP, the data flow
from sensors to clients is much bigger than the flow from
clients to sensors. In sensor communication networks, we
use reverse routing to improve the network performance.
A client forwards the QRP via fuselet nodes to the end
sensor in reverse routing. Every node in the route
maintains a QRP waiting table to list its pending QRPs.
These fuselet nodes are aware of the required fuselet
computing tasks before the sensor data streams are fed to
them. That is, the client must “make a reservation” on
those nodes before the nodes can offer the specific fuselet
computing services. Those nodes can invoke resource
control to receive and process the large amounts of sensor
stream data passing through them.

The real advantage of reverse routing as described here is
to merge overlapped QRPs in the network, which is
illustrated in Figure 4. In Figure 4, the client C1 has a sub-
query QRP <C1,F1(F2(F8(S1)))> resolved by the
network as <C1,F1@N1(F2@N4(F8@N5(S1)))> and
the client C3 has a sub-query QRP
<C3,F9(F2(F8(S1)))> resolved by the network as
<C3,F9@N2(F2@N4(F8@N5(S1)))>,where Fx@Ny
means that the fuselet Fx is assigned to execute at the
fuselet node y. After client C1 and server N1 forward C1’s
sub-QRP <N1,F2(F8(S1))> to N4, at first N4 adds
F2<-F8<-S1 to its QRP waiting table and then forwards
the sub-QRP <N2,F8(S1)> to N5. N5 continues this
process. Meanwhile N2 forwards C3’s sub-QRP

<N2,F2(F8(S1))> to N4. When N4 tries to insert the
new sub-QRP F2<-F8<-S1 to its QRP waiting table, it
finds that it has already been routing and processing this
data stream from sensor S1. N4 will not forward C3’s sub-
QRP to F8 and S1 anymore. Instead it just adds N2 into its
source address and later multicasts the processed data
stream to both N1 and N2. The overlapped QRPs are
merged in the middle of the route and the data stream will
not be pulled and processed twice along that route.
Sensors devices can output large amount of data using
much slower links in the network. This QRP merging
process can dramatically reduce both network traffic and
computation loads on the fuselet nodes.

C1
F1(N1)

F2(N4) F8(N5)

C3
 F9(N2) QRP

S1

Figure 4: Merge the overlapped QRPs

5. Routing Optimization

Based on a local preference, every node can choose one
node as the best node or default node to run each fuselet
from its view of the network. If a node is not available,
another node takes its place. Although this approach is
very reliable in dynamic networks, this routing algorithm
is similar to a greedy search algorithm. The sensor query
routing optimization we describe is more complicated than
existing IP routing optimization such as distance vector
routing. The sensor data stream is not only routed but also
processed along the route. Query latency is due to both
data communication and fuselet computation along the
route. Since a query resolves to a specific fuselet
sequence, each query might have to form a specific
routing path even though they can have the same source
and destination nodes. In this section, we discuss how to
minimize query latency under some assumptions.

Here Nc and Ns are used to represent the network access
points of client C and sensor S respectively. Nc submits a
QRP:

<C,)...)...)((...(...1 SFxFxFx mi >

for client C, where iFx represents fuselet ix and
mi ≤≤1 . Now we use)(iFxS to represent the subnet of

all nodes that have the fuselet iFx , and use in to
represent the node number in this subset)(iFxS . For
every QRP, the routing process is to find the best path
from node Ns to Nc via these subsets, which is illustrated
in Figure 5. The total search space for the routing path is

i

m

i
n

1=
∏ .

In order to minimize query latency, we will make the
following assumptions:

Assumption 1: Every fuselet node maintains an up-to-date
table that lists the current communication latency between
every pair of fuselet nodes in the network.

)(1FxS)(2FxS)(mFxS

CN SN

Figure 5: the routing optimization process

Assumption 2: Every node’s fuselet table maintains the up-
to-date fuselet computation time on their hosted nodes.

Theorem 1: Under Assumptions 1 and 2, for any QRP
<C,)...)...)((...(...1 SFxFxFx mi >, the path with minimal
query latency can be found for reverse routing with

computational complexity o(∑
=

+

m

i
iinn

0
1).

Proof: For any query request packet – QRP
<C,)...)...)((...(...1 SFxFxFx mi >, the access point Nc of
client C can search its sensor table and find sensor S’s
access point Ns. With its fuselet table, Nc can form a
directed multipartite graph G(V, E) from node Ns to Nc as
illustrated in Figure 5. The graph includes m layers of
nodes between Nc and Ns, with in nodes in layer i . Here
we define Nc as layer 0 with node number 10 =n and
define Ns as layer m+1 with node number 11 =+mn . jiV ,
is used to represent node j at layer i , where 10 +≤≤ mi
and inj≤≤1 . Define the communication time between
nodes jiV , and kiV ,1− as),(,1, kiji VVC − , where inj≤≤1 ,

11 −≤≤ ink and 11 +≤≤ mi . The communication time
is the time used for two nodes to exchange the data stream
and QRP packet, which can be computed based on
Assumption 1 and the data stream size. If jiV , and kiV ,1−
are the same physical server, that is two fuselets running
on the same machine, we define their communication time
as zero. We define the processing time of fuselet iFx on
the node jiV , as)(,jiVP , which can be computed based on
Assumption 2. Since there is no computation on the Nc
node in the layer 0, we define 0)(,0 =jVP . Edge weights
for the graph G(V,E) can be defined as:

,10,,1 +≤≤≤≤∀ minkj i
+∞=),(,, kiji VVd ;

1,0,1,1 +≤≤≤≤≤≤∀ mpinqnj pi , if 1−≠ ip ,

+∞=),(,, qpji VVd ;

11,1,11 −≤≤≤≤+≤≤∀ ii nknjmi ,
)(),(),(,1,1,,1, kikijikiji VPVVCVVd −−− += ,

0)(,0 =jVP ;

We have thus formulated the query latency optimization
problem as a classic shortest path problem. The path with
the shortest distance from node 1,1+mV to node 1,0V in the
graph is the path with the minimal query latency in the
network. To solve this shortest path problem, we can use,
for example, the Bellman-Ford algorithm [11] and reduce

the computing complexity from o(i

m

i
n

1=
∏) to

o(∑
=

+

m

i
iinn

0
1). ■

In order to maintain network connectivity, each fuselet
server periodically sends “probing” or “keep-alive”
messages to its peers. The latency between two peers can
be measured with these existing “probing” messages. To
satisfy Assumption 1, each node has to broadcast its
communication latency to other peers in the network,
which causes extra-overhead in network communication.
However, if there are only dozens of fuselet nodes in the
network, the broadcast will add only a small amount of
network traffic due to this overhead. Assumption 2 can be
satisfied if each node broadcasts its fuselet execution time
periodically within the peer-to-peer network. This
broadcast process also adds communication overhead to
the network.

Although Theorem 1 theoretically solves the optimal
routing problem, this routing mechanism is not practical in
a real sensor network. It is difficult to measure and
broadcast fuselet computing times and peer-to-peer
communication times so dynamically. The challenge in
query latency optimization is that we have to use the same
metric - time, to measure the latency due to fuselet
computation and network communication. In the distance
vector routing approach, “hops” are used to count the
distance between two nodes. In the task scheduling, “CPU
Usage” and “Memory Usage” are used to represent the
task load on a machine. Since query latency arises from
both task computation and data communication, it is not
clear how to combine metrics, namely “hops” and “CPU
usage”, to represent the latency. However, if we are not
seeking the optimal path but a “good” path in query
routing, we can use some static metrics to represent those
dynamic parameters [12]. For example, the bandwidth
between two peers can be used to represent the
communication latency between them; a server node’s
CPU speed and memory size can be used to represent the
fuselet computing time on that node.

6. Dynamic Multi-Sensor Fusion

We have analyzed the simple query routing scenario in
sensor communication network: A single sensor’s data
stream goes through fuselets sequentially for data
processing and eventually the processed data is returned to
the client. In fact a fuselet is more like a filter in this
situation. The query routing process is more complicated
in a multi-sensor fusion process. However, our routing
scheme and optimization results can be readily extended to
such more complicated situations.

- A sensor has multiple access points. A sensor can have
multiple access points to the network. For a QRP routed to
this sensor, in the routing decision process, we just need to
add another layer of nodes between the sensor and the last
layer)Fx(S m . Theorem 1 applies to this situation if the
communication latencies from the sensor to these access
points are known.

- A fuselet integrates multi-sensor’s data stream. If a
fuselet only integrates and fuses data streams for several
specific fixed sensors, we can consider this fuselet to be an
integrated sensor instead of a dynamic fuselet program.
This fuselet publishes itself as a new sensor in the
network.

- Dynamic multi-sensor fusion. In a dynamic multi-sensor
fusion process, the client’s queries are represented as more
complicated QRPs such as QRP0:

<C,F2(F4(F5(F6(S1)),S2),S3)>

QRP0 requests sensor S1’s data to be processed via the
fuselets F6 and F5 sequentially. That processing result and
sensor S2’s data stream are fed to the fuselet F4. After
that, F4’s computing result and sensor S3’s data stream are
fed into fuselet F2 and the process continues. In the
reverse routing illustrated in Figure 6, at first the node Na
forwards the QRP0 to node Nb with fuselet F2. Then Nb
splits the QRP0 to two sub-QRPs: QRP1 <Nb,S3> to the
sensor S3 and QRP2 <Nb,F4(F5(F6(S1)),S3)> to
a node Nc with fuselet F4. Nc splits the QRP2 to another
two sub-QRPs: QRP3 <Nc,S2> to the sensor S2 and
QRP4 <Nc,F5(F6(S1))> to a node Nd with fuselet
F5. The routing process continues to forward the sub-QRP
until it gets to the end sensor S1. Based on this approach,
some QRPs are actually processed concurrently such as
QRP3 and QRP4.

If every node chooses a best node or default node to run
each fuselet based on a local preference, the routing
process in multi-sensor fusion is the same as that in single
sensor fusion. For the optimal routing process, Theorem 1
can still be applied in multi-sensor fusion although we
need to change the latency computation method for
parallel QRPs.

Na

QRP0

Nb (F 2)

S3

QRP1
QRP2

Nc (F 4)

S2

QRP3 QRP4

Nd (F 5)

Ne (F6)

S1

QRP5

QRP6

Figure 6: An example of QRP routing

in multi-sensor fusion

Here we use)QRP(L i to represent the minimal query
latency for the query request packet iQRP . At fuselet
node Na illustrated in Figure 6, the minimal query latency

)QRP(L 0 can be computed from with the following
relationship:

))Nx,Na(C)Nx@F(P

))QRP(L),QRP(L(max(min

)QRP(L

xN

++

=

2

21

0

where)Nx@F(P 2 is fuselet F2’s computing time at node
Nx and)Nx,Na(C is the data communication time
between two nodes Na and Nx. Furthermore, we can
compute)QRP(L 1 and)QRP(L 2 from similar equations.
With these recursive equations, it is clear that the
Bellman-Ford algorithm can be applied to solve this
optimal routing problem. However, we should expect that
multiple optimal paths may exist in this routing process
because of the “max” operation in the above equations.

7. Conclusions

In this paper, we have presented a framework and some
analytic results for query satisfaction and data routing in
sensor communication networks. In our model, sensor
data streams are routed through specific fuselet sequences
for data processing before the processed data are returned
to the clients. With our routing mechanism, multiple
clients’ overlapped sub-queries can be merged along the
route to increase network utilization and performance.
Furthermore, we have described a dynamic programming
based solution for the optimal routing problems in multi-
sensor fusion.

Acknowledgements

This research was partially supported by: Defense
Advanced Research Projects Agency projects F30602-00-
2-0585 and F30602-98-2-0107; the Office of Justice
Programs, National Institute of Justice, Department of
Justice award number 2000-DT-CX-K001 (S-1). Points of
view in this document are those of the authors and do not
necessarily represent the official position of the sponsoring
agencies or the U.S. Government.

References

[1] Air Force Joint Battlespace Infosphere (JBI)
homepage: http://www.rl.af.mil/programs/jbi/default.cfm

[2] DARPA SensIT Program homepage:
http://dtsn.darpa.mil/ixo/sensit%2Easp

[3] DARPA Information Exploitation Office (IXO):
http://dtsn.darpa.mil/ixo/

[4] NASA-JPL Sensor Webs Project homepage:
http://sensorwebs.jpl.nasa.gov/

[5] UC Berkeley Sensor Project:
http://today.cs.berkeley.edu/800demo/

[6] DARPA Network Embedded Software Technology
Program:
http://www.darpa.mil/ito/research/nest/index.html

[7] Dartmouth's Sensor Web Project:
http://www.ists.dartmouth.edu/IRIA/projects/sensor_web.
htm

[8] Michael Corr, Masters Thesis, Thayer School of
Engineering, Dartmouth College, Hanover, NH 2001
http://actcomm.dartmouth.edu/~mgcorr/papers/Corr_Thesi
s.pdf

[9] DARPA Agent Markup Language (DAML) Program:
http://www.daml.org

[10] S. Hablabi and D. McPherson, Internet Routing
Architectures, second edition, Cisco Press, 2000.

[11] D. Bertsekas and R. Gallager, Data Networks, second
edition, Prentice Hall Inc., 1992.

[12] David Kotz, George Cybenko, Robert Gray, Guofei
Jiang, Ronald Peterson, Martin Hofmann, Daria Chacon,
Kenneth Whitehead and Jim Hendler, Performance
Analysis of Mobile Agents for Filtering Data Streams on
Wireless Networks, ACM Mobile Networks and
Applications Journal, vol.7, no.2, March, 2002.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	header: Proceedings of the 41st IEEE Conference on Decision and Control Las Vegas, Nevada USA, December 2002
	session: WeP02-1
	footer: 0-7803-7516-5/02/$17.00 ©2002 IEEE
	01: 1999
	02: 2000
	03: 2001
	04: 2002
	05: 2003
	06: 2004

