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Abstract. A programmable secure coprocessor platform can help solve many
security problems in distributed computing. However, these solutions usually re-
quire that coprocessor applications be able to participate as full-fledged parties
in distributed cryptographic protocols. Thus, to fully enable these solutions, a
generic platform must not only provide programmability, maintenance, and con-
figuration in the hostile field—it must also provide outbound authentication for
the entities that result. A particular application on a particular untampered device
must be able to prove who it is to a party on the other side of the Internet.
This paper offers our experiences in solving this problem for a high-end secure
coprocessor product. This work required synthesis of a number of techniques, so
that parties with different and dynamic views of trust can draw consistent and
complete conclusions about coprocessor applications. These issues may be rele-
vant to the industry’s growing interest in rights management for general desktop
machines.

1 Introduction

How does one secure computation that takes place remotely—particularly when some-
one with direct access to that remote machine may benefit from compromising that
computation? This issue lies at the heart of many current e-commerce, rights manage-
ment, and PKI issues.

To address this problem, research (e.g., [15, 22, 23]) has long explored the potential
of secure coprocessors: high-assurance hardware devices that can be trusted to carry
out computation unmolested by an adversary with direct physical access. For example,
such an adversary could subvert rights management on a complex dataset by receiv-
ing the dataset and then not following the policy; secure coprocessors enable solutions
by receiving the dataset encapsulated with the policy, and only revealing data items in
accordance with the policy. [11] For another example, an adversary could subvert de-
centralized e-cash simply by increasing a register. However, secure coprocessors enable
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solutions: the register lives inside a trusted box, which modifies the value only as part of
a transaction with another trusted box. [22] Many other applications—including private
information retrieval [3, 17], e-commerce co-servers [12], and mobile agents [24]—can
also benefit from the high-assurance neutral environment that secure coprocessors could
provide.

As the literature (e.g.,[5, 8]) discusses, achieving this potential requires several fac-
tors, including establishing and maintaining physical security, enabling the device to
authenticate code-loads and other commands that come from the outside world, and
building applications whose design does not negate the security advantages of the un-
derlying platform.

However, using secure coprocessors to secure distributed computation also requires
outbound authentication (OA): the ability of coprocessor applications be able to authen-
ticate themselves to remote parties. (Code-downloading loses much of its effect if one
cannot easily authenticate the entity that results!) Merely configuring the coprocessor
platform as the appropriate entity—a rights box, a wallet, an auction marketplace—
does not suffice in general. A signed statement about the configuration also does not
suffice. For maximal effectiveness, the platform should enable the entity itself to have
authenticated key pairs and engage in protocols with any party on the Internet: so that
only that particular trusted auction marketplace, following the trusted rules, is able to
receive the encrypted strategy from a remote client; so that only that particular trusted
rights box, following the trusted rules, is able to receive the object and the rights policy
it should enforce.

The Research Project. The software architecture for a programmable secure copro-
cessor platform must address the complexities of shipping, upgrades, maintenance, and
hostile code, for a generic platform that can be configured and maintained in the hostile
field. [16] Our team spent several years working on developing a such a device; other
reports [7, 8, 18] present our experiences in bringing such a device into existence as a
COTS product, the IBM 4758.

Although our initial security architecture [18] sketched a design for outbound au-
thentication, we did not fully implement it—nor fully grasp the nature of the problem—
until the Model 2 device. As is common in product development, we had to concurrently
undertake tasks one might prefer to tackle sequentially: identify fundamental problems;
reason about solutions; design, code and test; and ensure that it satisfied legacy appli-
cation concerns.

The Basic Problem. A relying party needs to conclude that a particular key pair re-
ally belongs to a particular software entity within a particular untampered coprocessor.
Design and production constraints led to a non-trivial set of software entities in a copro-
cessor at any one time, and in any one coprocessor over time. Relying parties trust some
of these entities and not others; furthermore, we needed to accommodate a multiplicity
of trust sets (different parties have different views), as well as the dynamic nature of any
one party’s trust set over time.
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This background sets the stage for the basic problem: how do we generate, certify,
change, store, and delete private keys, so that relying parties can draw those conclusions
consistent with their trust set, and only those conclusions?

This Paper. This paper is a post-facto report expanding on this research and develop-
ment experience, which may have relevance both to other secure coprocessor technol-
ogy (e.g., [21]) as well as to the growing industry interest in remotely authenticating
what’s executing on a desktop (e.g., [9, 19]).

Section 2 discusses the evolution of the problem in the context of the underlying
technology. Section 3 presents the theoretical foundations. Section 4 presents the de-
sign. Section 5 suggests some directions for future study.

2 Evolution of Problem

2.1 Underlying Technology

We start with a brief overview of the software structure of the 4758. The device is
tamper-responding: with high assurance, on-board circuits detect tamper attempts and
destroy the contents of volatile RAM and non-volatile battery-backed RAM (BBRAM)
before an adversary can see them. The device also is a general purpose computing
device; internal software is divided into layers, with layer boundaries corresponding to
divisions in function, storage region, and external control. The current family of devices
has four layers: Layer 0 in ROM, and Layer 1 through Layer 3 in rewritable FLASH.

The layer sequence also corresponds to the sequence of execution phases after de-
vice boot: initially Layer 0 runs, then invokes Layer 1, and so on. (Because our device
is an enclosed controlled system, we can avoid the difficulties of secure boot that arise
in exposed desktop systems; we know execution starts in Layer 0 ROM in a known
state, and higher-level firmware is changed only when the device itself permits it.) In
the current family, Layer 2 is intended to be an internal operating system, leading to the
constraint that it must execute at maximum CPU privilege; it invokes the single appli-
cation (Layer 3) but continues to run, depending on its use of the CPU privilege levels
to protect itself.

We intended the device to be a generic platform for secure coprocessor applications.
The research team insisted on the goal that third parties (different from IBM, and from
each other) be able to develop and install code for the OS layer and the application
layer. Business forces pressured us to have only one shippable version of the device,
and to ensure that an untampered device with no hardware damage can always be re-
vived. We converged on a design where Layer 1 contains the security configuration
software which establishes owners and public keys for the higher layers, and validates
code installation and update commands for those layers from those owners. This design
decision stemmed from our vision that application code and OS code may come from
different entities who may not necessarily trust each other’s updates; centralization of
loading made it easier to enforce the appropriate security policies.

Layer 1 is updatable, in case we want to upgrade algorithms, fix bugs, or change
the public key of the party authorized to update the layer. However, we mirror this
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layer—updates are made to the inactive copy, which is then atomically made active for
the next boot—so that failures during update will not leave us with a non-functioning
code-loading layer.

Authentication Approach. Another business constraint we had was that the only guar-
anteed contact we would have with a card was at manufacture time. In particular, we
could assume no audits, nor database of card-specific data (secret or otherwise), nor
provide any on-line services to cards once they left. This constraint naturally suggested
the use of public-key cryptography for authentication, both inbound and outbound.

Because of the last-touch-at-manufacturing constraint, we (the manufacturer) can
last do something cryptographic at the factory.

2.2 User and Developer Scenarios

Discussions about potential relying parties led to additional requirements.
Developers were not necessarily going to trust each other. For example, although an

application developer must trust the contents of the lower layers when his application
is actually installed, he should be free to require that his secrets be destroyed should a
lower layer be updated in a way he did not trust. As a consequence, we allowed each
code-load to include a policy specifying the conditions under which that layer’s secrets
should be preserved across changes to lower layers. Any other scenario destroys secrets.

However, even full-preservation developers reserved the right to, post-facto, decide
that certain versions of code—even their own—were untrusted, and be able to verify
whether an untrusted version had been installed during their current epoch.

In theory, the OS layer should resist penetration by a malicious application; in prac-
tice, operating systems have a bad history here, so we only allow one application above
it (and intend the OS layer solely to assist the application developer). Furthermore, we
need to allow that some relying parties will believe that the OS in general (or specific
version) may indeed be penetrable by malicious applications.

Small developers may be unable to assure the public of the integrity and correct-
ness of their applications (e.g., through code inspection, formal modeling, etc). Where
possible, we should maximize the credibility our architecture can endow on such appli-
cations.

2.3 On-Card Entities

One of the first things we need to deal with is the notion of what an on-card entity is.
Let’s start with a simple case: suppose the coprocessor had exactly one place to hold
software and that it zeroized all state with each code-load. In this scenario, the notion of
entity is pretty clear: a particular code-load C1 executing inside an untampered device
D1. The same code C1 inside another device D2 would constitute a different entity; as
would a re-installation of C1 inside D1.

However, this simple case raises a challenges. If a reload replaces C1 with C2, and
reloads clear all tamper-protected memory, how does the resulting entity—C2 on D1—
authenticate itself to a party on the other side of the net? The card itself would have
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PSfrag replacements

Epoch 1 Epoch 2

Config 1, in Epoch 1 Config 2, in Epoch 1 Config 1, in Epoch 2

Secret-destroying code-load Secret-destroying code-loadSecret-preserving code-load

Fig. 1. An epoch starts with code-load action that clears a layer’s secrets; with an epoch, each
secret-preserving code-load starts a new configuration.

no secrets left, since the only data storage hidden from physical attack was cleared.
Consequently, any authentication secrets would have to come with C2, and we would
start down a path of shared secrets and personalized code-loads. Should an application
entity “include” the OS underneath it? Should it include the configuration control layers
that ran earlier in this boot sequence, but are no longer around?

Since we built the 4758 to support real applications, we gravitated toward a practical
definition: an entity is an installation of the application software in a trusted place,
identified by all underlying software and hardware.

Secret Retention. As noted, developers demanded that we sometimes permit secret
retention across reload. With a secret-preserving load; the entity may stay the same, but
the code may change. The conflicting concepts that developers had about what exactly
happens to their on-card entity when code update occurs lead us to think more closely
about entity lifetimes. We introduce some language to formalize that. (Figure 1 sketches
these concepts.)

Definition 1 (Configuration, Epoch). A Layer N configuration is the maximal period
in which that Layer is runnable, with an unchanging software environment. A Layer N

epoch is the maximal period in which the Layer can run and accumulate state. If E is
an on-card entity in Layer N ,

– E is an epoch-entity if its lifetime extends for a Layer n epoch.
– E is a configuration-entity if its lifetime extends for a Layer n configuration.

An Layer n epoch-entity consists of a sequence of Layer n configuration-entities.
This sequence may be unbounded—since any particular epoch might persist indefi-
nitely, across arbitrarily many configuration changes.

2.4 Authentication Scenarios

This design left us with on-card software entities made up of several components with
differing owners, lifetimes, and state. A natural way to do outbound authentication to
give the card a certified key pair, whose private key lives in tamper-protected memory.
However, the complexity of the entity structure creates numerous problems.
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Application Code. Suppose entity C is the code C1 residing in the application Layer 3
in a particular device. C may change: two possible changes include a simple code up-
date taking the current code C1 to C2, or a complete re-install of a different application
from a different owner, taking C1 to C3.

If a relying party P trusts C1, C2, and C3 to be free of flaws, vulnerabilities, and
malice, then the natural approach might work. However, if P distrusts some of this
code, then problems arise.

– If P does not trust C1, then how can P distinguish between an entity with the C2

patch, and an entity with a corrupt C1 pretending to have the C2 patch?
– If P does does not trust C2, then then how can P distinguish between the an entity

with the honest C1, and an entity with the corrupt C2 pretending to be the honest
C1? (The mere existence of a signed update command compromises all the cards.)

– If P does not trust C3, then how can P distinguish between the honest C1 and a
malicious C3 that pretends to be C1?

Code-Loading Code. Even more serious problems arise if a corrupted version of the
configuration software in Layer 1 exists. If an evil version existed that allowed arbitrary
behavior, then (without further countermeasures) a party P cannot distinguish between
any on-card entity E1, and an E2 consisting of a rogue Layer 1 carrying out some
elaborate impersonation.

OS Code. Problems can also arise because the OS code changes. Debugging an appli-
cation requires an operating system with debug hooks; in final development stages, a
reasonable scenario is to be able to “update” back-and-forth between a version of the
OS with debug hooks and a version without.

With no additional countermeasures, a party P cannot distinguish between the ap-
plication running securely with the real OS, the application with debug hooks under-
neath it, and the application with the real OS but with a policy that permits hot-update
to the debug version. The private key would be the same in all cases.

Internal Certification. The above scenarios suggest that perhaps a single key pair (for
all entities in a card for the lifetime of the card) may not suffice. However, extending
to schemes where one on-card entity generates and certifies key pairs for other on-card
entities also creates challenges.

For example, suppose Layer 1 generates and certifies key pairs for the Layer 2 entity.
If a reload replaces corrupt OS B1 with an honest B2, then party P should be able to
distinguish between the certified key pair for B2 and that for B1. However, without
further countermeasures, if supervisor-level code can see all data on the card, then B1

can forge messages from B2—since it could have seen the Layer 1 private key.
A similar penetrated-barrier issue arises if we expect an OS in Layer 2 to main-

tain a private key separate from an application Layer 3, or if we entertained alternative
schemes where mutually suspicious applications executed concurrently. If a hostile ap-
plication might in theory penetrate the OS protections, then an external party cannot
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distinguish between messages from the OS, messages from the honest application, and
messages from rogue applications.

This line of thinking led us to the more general observation that, if the certifier
outlives the certified, then the integrity of what the certified does with their key pair
depends on the future behavior of the certifier. In the of the coprocessor, this observation
has some more subtle and dangerous implications—for example, one of the reasons we
centralized configuration control in Layer 1 was to enable the application developer to
distrust the OS developer and request that the application (and its secrets) be destroyed,
if the underlying OS undergoes an update the application developer does not trust. What
if the untrusted OS has access to a private key used in certifying the original application?

We revisit these issues in Section 4.3.

3 Theory

The construction of the card suggests that we use certified key pairs for outbound au-
thentication. However, as we just sketched, the straightforward approach of just sending
the card out with a certified key pair permits trouble.

In this section, we try to formalize the principles that emerged while considering
this problem.

A card leaves the factory and undergoes some sequence of code loads and other
configuration changes. A relying party interacts with an entity allegedly running inside
this card. The card’s OA scheme enables this application to wield a private key and to
offer a collection of certificates purporting to authenticate its keyholder.

It would be simplest if the party could use a straightforward validation algorithm
on this collection. As Maurer [13, 14] formalized, a relying party’s validation algorithm
needs to consider which entities that party trusts. Our experience showed that parties
have a wide variety of trust views. Furthermore, we saw the existence of two spaces:
the conclusions that a party will draw, given an entity’s collection of certificates and the
party’s trust view; and the conclusions that a party should draw, given the history of
those keyholders and the party’s trust view.

We needed to design a scheme that permits these sets of conclusions to match, for
parties with a wide variety of trust views.

3.1 What the Entity Says

Relying party P wants to authenticate interaction with a particular entity E. Many
scenarios could exist here; for simplicity, our analysis reduces these to the scenario
of E needing to prove to P that own(E,K): that E has exclusive use of the private
element of key pair K.

We need to be able to talk about what happens to a particular coprocessor.

Definition 2 (History, Run, ≺). Let a history be a finite sequence of computation for
a particular device. Let a run be some unbounded sequence of computation for a par-
ticular device. We write H ≺ R when history H is a prefix of run R.
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In the context of OA for coprocessors that cannot be opened or otherwise exam-
ined, and that disappear once they leave the factory, it seemed reasonable to impose the
restriction that on-card entities carry their certificates. For simplicity, we also imposed
the restriction that they present the same fixed set no matter who asks.

Definition 3. When entity E wishes to prove it owns K after history H , let
Chain(E,K,H) denote the set of certificates that it presents.

3.2 Validation

Will a relying party P believe that E owns K?
First, we need some notion of trust. A party P usually has some ideas of which on-

card applications it might trust to behave “correctly” regarding keys and signed state-
ments, and which ones it is unsure of.

Definition 4. For a party P , let TrustSet(P ) denote the set of entities whose statements
about certificates P trusts. Let root be the factory CA: the trust root for the card. A
legitimate trust set is one that contains root.

Our scheme needs to accommodate any legitimate trust setm since discussion with
developers (and experiences doing security consulting) suggested that relying parties
would have a wide divergence of trust sets, which may change over time.

In the context of OA for coprocessors, it was reasonable to impose the restriction
that the external party decides validity based on an entity’s chain and the party’s own
list of trusted entities. (The commercial restriction that we can never count on accessing
cards after they leave made revocation infeasible.) We formalize that:

Definition 5 (Trust-set scheme). A trust-set certification scheme is one where the re-
lying party’s Validate algorithm is deterministic on the variables Chain(E,K,H) and
TrustSet(P ).

3.3 Dependency

The problem scenarios in Section 2.4 arose because one entity E1 had an unexpected
avenue to use the private key that belonged to another entity E2. We need language to
express these situations, where the integrity of E2’s key actions depends on the correct
behavior of E1.

Definition 6 (Dependency Function). Let E be the set of entities. A dependency func-
tion is a function D : E −→ 2E such that, for all E1, E2:

– E1 ∈ D(E1)
– if E2 ∈ D(E1) then D(E2) ⊂ D(E1)

When a dependency function depends on the run R, we write DR.

What dependency function shall we use for analysis? In our specialized hardware,
code runs in a single-sandbox controlled environment which (if the physical security
works as intended) is free from outside observation or interference. Hence, in our anal-
ysis, dependence follows read and write:
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Definition 7. For entities E1 and E2 in run R, we write E2

data
−→R E1 when E1 has

read/write access to the secrets of E2 (E2

data
−→R E2 trivially) and E2

code
−→R E1 when E1

has write access to the code of E2. Let −→R be the transitive closure of the union of
these two relations. For an entity E in a run R, define Dep

R
(E) to be {F : E −→R F}.

In terms of the coprocessor, if C1 follows B1 in the post-boot sequence, then we

have C1

data
−→R B1 (since B1 could have manipulated data before passing control). If C2

is a secret-preserving replacement of C1, then C1

data
−→R C2 (because C2 still can touch

the secrets C1 left). If A can reburn the FLASH segment where B lives, then B
code
−→R A

(because A can insert malicious code into B, that would have access to B’s private
keys).

3.4 Consistency and Completeness

Should the relying party draw the conclusions it actually will? In our analysis, security
dependence depends on the run; entity and trust do not. This leads to a potential conun-
drum. Suppose, in run R, C −→R B and C ∈ TrustSet(P ), but B 6∈ TrustSet(P ).
Then a relying party P cannot reasonably accept any signed statement from C, because
B may have forged it.

To capture this notion, we define consistency for OA. The intention of consistency is
that if the party concludes that an message came from an entity, then it really did come
from that entity—modulo the relying party’s trust view. That is, in any H ≺ R where
P concludes own(E,K) from Chain(E,K,H), if the entities in TrustSet(P ) behave
themselves, then E really does own K. We formalize this notion:

Definition 8. An OA scheme is consistent for a dependency function D when, for any
entity E, a relying party P with any legitimate trust set, and history and run H ≺ R:

Validate(P, Chain(E,K,H)) =⇒ DR(E) ⊆ TrustSet(P )

One might also ask if the relying party will draw the conclusions it actually should.
We consider this question with the term completeness. If in any run where E produces
Chain(E,K,H) and DR(E) is trusted by P—so in P ’s view, no one who had a chance
to subvert E would have—then P should conclude that E owns K.

Definition 9. An OA scheme is complete for a dependency function D when, for any
entity E, relying party P with any legitimate trust set, and history and run H ≺ R:

DR(E) ⊆ TrustSet(P ) =⇒ Validate(P, Chain(E,K,H))

These definitions equip us to formalize a fundamental observation:

Theorem 1. Suppose a trust-set OA scheme is both consistent and complete for a given
dependency function D. Suppose entity E claims K in histories H1 ≺ R1 and H2 ≺
R2. Then:

DR1
(E) 6= DR2

(E) =⇒ Chain(E,K,H1) 6= Chain(E,K,H2)
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Proof. Suppose DR1
(E) 6= DR2

(E) but Chain(E,K,H1) = Chain(E,K,H2). We
cannot have both DR1

(E) ⊆ DR2
(E) and DR2

(E) ⊆ DR1
(E), so, without loss of

generality, let us assume DR2
(E) 6⊆ DR1

(E). There thus exists a set S with DR1
(E) ⊆

S but DR2
(E) 6⊆ S.

Since the scheme is consistent and complete, it must work for any legitimate trust
set, including S. Let party P have S = TrustSet(P ). Since this is a trust-set certification
scheme and E produces the same chains in both histories, party P must either validate
these chains in both scenarios, or reject them in both scenarios. If party P accepts in
run R2, then the scheme cannot be consistent for D, since E depends on an entity that
P did not trust. But if party P rejects in run R1, then the scheme cannot be complete
for D, since party P trusts all entities on which E depends.

3.5 Design Implications

We consider the implications of Theorem 1 for specific ways of constructing chains and
drawing conclusions, for specific notions of dependency. For example, we can express
the standard approach—P makes its conclusion by recursively verifying signatures and
applying a basic inference rule—in a Maurer-style calculus [13]. Suppose C is a set of
certificates: statements of the form K1 says own(E2,K2). Suppose S be a set of entities
trusted to speak the truth about certificate ownership: {E1 : trust(E1, own(E2,K2))}.
A relying party may start by believing C ∪ {own(root,Kroot)}.

We can define Viewwill(C,S) to be the set of statements derivable from this set by
applying the rule

own(E1,K1), E1 ∈ S, K1 says own(E2,K2) ` own(E2,K2)

The Validate algorithm for party P then reduces to the decision of whether own(E,K)
is in this set.

We can also express what a party should conclude about an entity, in terms of the
chain the entity presents, and the views that the party has regarding trust and depen-
dency. If D is a dependency function, we can define Viewshould(C,S,D) to be the set of
statements derivable by applying the alternate rule:

own(E1,K1), D(E1) ⊆ S, K1 says own(E2,K2) ` own(E2,K2)

In terms of this calculus, we obtain consistency be ensuring that for any chain and
legitimate trust set, and H ≺ R, the set Viewwill(Chain(E,K,H), S) is contained in the
set Viewshould(Chain(E,K,H), S,DR). The relying party should only use a certificate
to reach a conclusion when the entire dependency set of the signer is in TrustSet(P ).

4 Design

For simplicity of verification, we would like Chain(E,K,H) to be a literal chain: a lin-
ear sequence of certificates going back to root. To ensure consistency and completeness,
we need to make sure that, at each step in the chain, the partial set of certifiers equals
the dependency set of that node (for the dependency function we see relying parties
using). To achieve this goal, the elements we can manipulate include generation of this
chain, as well as how dependency is established in the device.
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4.1 Layer Separation

Because of the post-boot execution sequence, code that executes earlier can subvert
code that executes later.1 If B,C are Layer i, Layer i+1 respectively, then C −→R B

unavoidably.
However, the other direction should be avoidable, and we used hardware to avoid

it. To provide high-assurance separation, we developed ratchet locks: an independent
microcontroller tracks a counter, reset to zero at boot time. The microcontroller will
advance the ratchet at the main coprocessor CPU’s request, but never roll it back. Before
B invokes the next layer, it requests an advance.

To ensure B
data
6−→R C, we reserved a portion of BBRAM for B, and used the ratchet

hardware to enforce access control. To ensure B
code
6−→R C, we write-protect the FLASH

region where B is stored. The ratchet hardware restricts write privileges only to the
designated prefix of this sequence.

To keep configuration entities from needlessly depending on the epoch entities, in
our Model 2 device, we subdivided the higher BBRAM to get four regions, one each
for epoch and configuration lifetimes, for Layer 2 and Layer 3. The initial clean-up
code in Layer 1 (already in the dependency set) zeroizes the appropriate regions on the
appropriate transition. (For transitions to a new Layer 1, the clean-up is enforced by the
old Layer 1 and the permanent Layer 0—to avoid incurring unnecessary dependency
on the new code.)

4.2 The Code-Loading Code

As discussed elsewhere, we felt that centralizing code-loading and policy decisions in
one place enabled cleaner solutions to the trust issues arising when different parties
control different layers of code. But this centralization creates some issues for OA.
Suppose the code-loading Layer 1 entity A1 is reloaded with A2. Business constraints
dictated that A1 do the reloading, because the ROM code had no public-key support.

It’s unavoidable that A2

code
−→R A1 (because A1 could have cheated, and not installed the

correct code). However, to avoid A1

data
−→R A2, we take these steps as an atomic part of

the reload: A1 generates a key pair for its successor A2; A1 uses its current key pair to
sign a transition certificate attesting to this change of versions and key pairs; and A1

destroys its current private key.
This technique—which we implemented and shipped with the Model 1 devices in

1997—differs from the standard concept of forward security [1] in that we change keys
with each new version of software, and ensure that the name of the new version is
spoken by the old version. As a consequence, a single malicious version cannot hide
its presence in the trust chain; for a coalition of malicious versions, the trust chain will
name at least one. (Section 5 considers this further.)

1 With only one chance to get the hardware right, we did not feel comfortable with attempting
to restore the system to a more trusted state, short of reboot.
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Fig. 2. Having the OS certify key pairs for the application creates interesting lifetime issues. In (a),
if the OS is updated while preserving its key pair, then the application depends on both versions;
in (b), if the OS outlives the application but is potentially penetrable, then the application may
depend on future applications.

4.3 The OA Manager

Since we do not know a priori what device applications will be doing, we felt that appli-
cation key pairs needed to be created and used at the application’s discretion. Within our
software architecture, Layer 2 should do this work—since it’s easier to provide these
services at run-time instead of reboot, and the Layer 1 protected memory is locked away
before Layer 2 and Layer 3 run.

This OA Manager component in Layer 2 will wield a key pair generated and certi-
fied by Layer 1, and will then generate and certify key pairs at the request of Layer 3.
These certificates indicate that said key pair belongs to an application, and also include
a field chosen by the application. (A fuller treatment of our trust calculus would thus
distinguish between owning and trusting a key pair for certification purposes, and own-
ing and trusting a key pair for the application-specified purpose—the last link.)

To keep the chain linear, we decided to have Layer 1 generate and destroy the OA
Manager key pair (e.g., instead of adding a second horizontal path between succes-
sive versions of the OA Manager key pairs). The question then arises of when the OA
Manager key pair should be created and destroyed.

We discuss some false starts. If the OA Manager outlived the Layer 2 configuration,
then our certification scheme cannot be both consistent and complete. For a counterex-
ample (see Figure 2, (a)) suppose that application C1 is a configuration-entity on top of
OS B1; that OS B1 changes code to OS B2 but both are part of the same entity BCA;
and that party P trusts C1, B1 but not B2. For the scheme to be complete, P should
accept certificate chains from C1—but that means accepting a chain from BCA, and
BCA −→R B2 6∈ TrustSet(P ).

This counterexample fails because the application entity has a CA whose depen-
dency set is larger than the application’s. Limiting the CA to the current Layer 2 config-
uration eliminates this issue, but still fails to address penetration risk. Parties who come
to believe that a particular OS can be penetrated by an application can end up with the
current BCA depending on future application loads. (See Figure 2, (b).)

Our final design avoided these problems by having the Layer 2 OA Manager live
exactly as long as the Layer 3 configuration. Using the protected BBRAM regions, we
ensure that upon any change to the Layer 3 configuration, Layer 1 destroys the old OA
Manager private key, generates a new key pair, and certifies it to belong to the new OA
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Manager for the new Layer 3 configuration. This approach ensures that the trust chain
names the dependency set for Layer 3 configurations—even if dependency is extended
to include penetration of the OS/application barrier.

Since we need to accommodate the notion of both epoch and configuration lifetimes
(as well as to allow parties who choose the former to change their minds), we identify
entities both by their current epoch, as well as the current configuration within that
epoch. When it requests a key pair, the Layer 3 application can specify which lifetime it
desires; the certificate includes this information. Private keys for a configuration lifetime
are kept in the Layer 3 configuration region in BBRAM; private keys for an epoch
lifetime are kept in the epoch region.

Note that a Layer 3 epoch certificate (say, for epoch E) still names the configura-
tion (say, C1) in which it began existence. If, in some later configuration Ck within that
same epoch, the relying party decides that it wants to examine the individual config-
urations to determine the whether an untrusted version was present, it can do that by
examining the trust chain for Ck and the sequence of OA Manager certificates from C1

to Ck. An untrusted Layer 1 will be revealed in the Layer 1 part of the chain; otherwise,
the sequence of OA Manager certificates will have correct information, revealing the
presence of any untrusted Layer 2 or Layer 3 version.

4.4 Summary

As noted earlier, the trust chain for the current Layer 1 version starts with the certificate
the factory root signed for the first version of Layer 1 in the card, followed by the
sequence of transition certificates for each subsequent version of Layer 1 installed. The
trust chain for the OA Manager appends the OA Manager certificate, signed by the
version of Layer 1 active when that Layer 3 configuration began, and providing full
identification for the current Layer 2 and Layer 3 configurations and epochs. The trust
chain for a Layer 3 key pair appends the certificate from the OA Manager who created
it.

Our design thus constitutes a trust-set scheme that is consistent and complete for
the dependency function we felt was appropriate.

4.5 Implementation

Full support for OA shipped with all Model 2 family devices and the CP/Q++ embedded
operating system. (The announced Linux port [10] still has the Layer 1 OA hooks;
extending Linux to handle that is an area of future work.)

Implementation required some additional design decisions. To accommodate small
developers (Section 2.2), we decided to have the OA Manager retain all Layer 3 private
keys and wield them on the application’s behalf; consequently, a party who trusts the
penetration-resistance of a particular Layer 2 can thus trust that the key was at least used
within that application on an untampered device. Another design decision resulted from
the insistence of an experienced application architect that users and developers will not
pay attention to details of certificate paths; to mitigate this risk, we do not provide a
“verify this chain” service—applications must explicitly walk the chain—and we gave
different families of cards different factory roots.
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A few aspects of the implementation also proved surprising. One aspect was the
fact that the design required two APIs: one between Layer 1 and Layer 2, and another
between Layer 2 and the application. Another aspect was finding places to store keys.
We extended the limited area in BBRAM by storing a MAC key and a TDES encryption
key in each protected region, and storing the ciphertext for new material wherever we
could: during a code-change, that region’s FLASH segment; during application run-
time, in the Layer 2-provided PPD data storage service. Another interesting aspect was
the multiplicity of keys and identities added when extending the Layer 1 transition
engine to perform the appropriate generations and certifications. For example, if Layer 1
decides to accept a new Layer 1 load, we now also need to generate a new OA Manager
key pair, and certify it with the new Layer 1 key pair as additional elements of this
atomic change. Our code thus needed two passes before commitment: one to determine
everyone’s names should the change succeed, and another to then use these names in
the construction of new certificates.

As has been noted elsewhere [8], we regret the design decisions to use our own cer-
tificate format, and the fact that the device has no form of secure time (e.g., Layer 3 can
always change the clock). Naming the configuration and epoch entities was challenging—
particularly since the initial architecture was designed in terms of parameters such as
code version and owner, and a precise notion of “entity” only emerged later.

5 Conclusions

One might characterize the entire OA architecture process “tracing each dependency,
and securing it.” Our experience here, like other aspects of this work, balanced the
goals of enabling secure coprocessing applications while also living within product
deadlines. OA enables Alice to design and release an application; Bob to download it
into his coprocessor; and Charlie to then authenticate remotely that he’s working with
this application in an untampered device.

Outbound authentication allows third-party developers to finally deploy coprocessor
applications, such as Web servers [12] and rights management boxes [11], that can by
authenticated by anyone in the Internet, and participate in PKI-based protocols.

We quickly enumerate some avenues for future research and reflection.

Alternative Software Structure Our OA design follows the 4758 architecture’s se-
quence of increasingly less-trusted entities after boot. Some current research explores
architectures that dispense with this limiting assumption, and also dispensing with the
4758 assumptions of one central loader/policy engine, and of a Layer 2 that exists only
to serve a one-application Layer 3. It would be interesting to explore OA in these realms.

Similarly, the analysis and design presented in this paper assumes that an authority
makes a statement about an entity at the time a key pair is created. Long-lived enti-
ties with the potential for run-time corruption suggest ongoing integrity-checking tech-
niques. It would be interesting to examine OA in light of such techniques.

Alternate Platforms Since our work, the Trusted Computing Platform Alliance [19]
has published ideas on how remote parties might gain assurance about the software
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configuration of remote desktop machines; Microsoft has considered similar ideas [9],
and others are entering this space.

It would be interesting to explore the interaction of our OA work with this increas-
ingly timely topic, as well as the longer history of work in securely booting desktops [2,
6, 20].

Alternate Cryptography We developed our transition certificate scheme for Layer 1
to ensure that not all corrupt entities could hide their presence in a chain. Entities aside,
this scheme is essentially a basic forward-secure signature scheme (e.g., [4], Sec. 3.3). It
would be interesting how the broader space of forward-secure signature schemes might
be used in these settings.

Alternate Dependency Our dependency function—entity E1 can subvert E2 when
it can read or write secrets, or write code, at any time—emerged for the special case
of our device. A more careful incorporation of time would be interesting, as would
an examination of the other avenues of manipulation in more complex settings (e.g.,
the opportunities for covert channels in common desktop operating systems, or if the
coprocessor cryptopages to the host file system).

Formalizing Trust Sets One linchpin of our design was the divergence and dynamic
nature of what relying parties tend to trust. (Consequently, our analysis assumed that
parties may have “any legitimate trust set.”) It would be interesting to measure and
formally characterize the trust behavior that occurs (or should occur) with real-world
relying parties and software entities.

Formalizing Penetration Recovery Much complicated reasoning arose from scenar-
ios such as “what if, in six months, trusted software component X turns out be flawed?”
Further exploration of the design and implementation of authentication schemes that
explicitly handle such scenarios would be interesting.
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