
Disk-directed I/O
for

MIMD Multiprocessors

David Kotz

Dartmouth College

Dartmouth CollegeDavid Kotz 2

Typical MIMD Multiprocessor

• Compute processors (CP)
• mostly application processing

• I/O processors (IOP) with disks
• mostly file-system processing

Compute
Processor

(CP)

Compute
Processor

(CP)

Interconnection
network

I/O
Processor

(IOP)

Compute
Processor

(CP)

I/O
Processor

(IOP)

I/O
Processor

(IOP)

David Kotz
© Copyright 1994 by the author�

Dartmouth CollegeDavid Kotz 3

Typical Parallel File System

• file blocks are striped across disks

• Unix-like semantics
• open, read, write, seek, close
• “file pointer” tracks current position

• some extensions
• file-pointer “modes”: independent, shared, synchronized

Dartmouth CollegeDavid Kotz 4

Typical Workload

• The Dartmouth CHARISMA project
• traced iPSC/860 at NASA Ames
• traced CM-5 at NCSA

• Parallel scientific applications
• large files
• small request size: often < 200 bytes
• sequential but not consecutive
• complex, but regular, patterns

Dartmouth CollegeDavid Kotz 5

A Typical Program
• The situation:

• programmer thinks: read a huge matrix
• 2-dimensional, stored in row-major order
• distribute the columns cyclically among CP memories

• programmer (or compiler) writes loop for each CP:
• seek to next element of my column

• read one element

• The problem:
• file system sees: many many tiny requests!

• overhead
• cache thrashing
• failed prefetching
• disk-head seeks

Dartmouth CollegeDavid Kotz 6

What’s Wrong?

• the interface is limited
• no way to express non-contiguous file access
• no way to express a collective I/O activity

• semantic information is lost
• lost opportunities for optimization

Dartmouth CollegeDavid Kotz 7

Outline

• (Introduction)

• Disk-directed I/O

• Experiments

• Results

• Conclusions

• Future Work

Dartmouth CollegeDavid Kotz 8

Disk-directed I/O
• Key observation:

• disks are a slow, block device
• disks have a preferred access order
• memories are a byte device
• memories are random-access
• Let disks determine order and pace

• Collective, high-level request to IOPs
• IOPs now have the semantic information they need

• IOPS in control
• arrange for all I/O
• read and write CP memory

Dartmouth CollegeDavid Kotz 9

Experiments

• we implemented both
• traditional caching
• disk-directed I/O

• simulated parallel architecture:
MIMD, distributed-memory 32 processors
Compute processors (CPs) 1 6
I/O processors (IOPs) 1 6
Disks 1 6
Disk peak transfer rate 2.34 MB/s
File-system block size 8 KB
I/O buses (one per IOP) 1 6
Interconnect topology 6 x 6 torus
Interconnect bandwidth 200 x 10^6 Bps, bidirectional

Dartmouth CollegeDavid Kotz 10

Traditional Caching
• CP, for each contiguous request:

• break up big requests into single-block requests
• requests sent concurrently to IOPs

• at most one outstanding per disk

• DMA between user buffer and network

• IOP, for each request:
• check cache

• 2 buffers per CP per disk

• LRU, write-behind, one-block prefetch

• send reply to CP with requested data

Dartmouth CollegeDavid Kotz 11

Disk-directed I/O
• CPs

1. barrier
2. one CP does:

a. send request to all IOPs,
b. wait for all IOPs to reply.

3. barrier

• Special messages
• Memput deposits data into user buffer
• Memget replies with data from user buffer

• IOPs
1. make list of blocks to move

• it can sort list of blocks by location

2. start two new threads:
• allocate one-block buffer
• repeat until done:

• choose block from list
• fill buffer with that block’s data
• empty buffer

3. reply “done” to originating CP

Dartmouth CollegeDavid Kotz 12

Access patterns

• Read and write matrices:
• one- or two-dimensional
• stored row-major order in file
• distributed among CP memories in HPF patterns
• element size 8 bytes or 8 Kbytes

• Files:
• all 10 MB
• striped across all 16 disks, by 8KB block
• within each disk,

• Random blocks
• Contiguous
• (real systems in between)

Dartmouth CollegeDavid Kotz 13

Results: random-blocks
T

h
ro

u
g

h
p

u
t

(M
B

/s
)

0.0

1 .0

2 .0

3 .0

4 .0

5 .0

6 .0

7 .0

8 .0
ra r
n

r
b rc

rn
b

rb
b

rc
b

rb
c

rc
c

rc
n

w
n

w
b

w
c

w
n

b

w
b

b

w
cb

w
b

c

w
cc

w
cn

DDIO (sort) DDIO TC8192-byte records

Dartmouth CollegeDavid Kotz 14

Results: random-blocks

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

0.0

1 .0

2 .0

3 .0

4 .0

5 .0

6 .0

7 .0

8 .0

ra r
n

r
b rc

rn
b

rb
b

rc
b

rb
c

rc
c

rc
n

w
n

w
b

w
c

w
n

b

w
b

b

w
cb

w
b

c

w
cc

w
cn

DDIO (sort) DDIO TC8-byte records

Dartmouth CollegeDavid Kotz 15

Results: contiguous
T

h
ro

u
g

h
p

u
t

(M
B

/s
)

0.0

5 .0

10.0

15.0

20.0

25.0

30.0

35.0
ra r
n

r
b rc

rn
b

rb
b

rc
b

rb
c

rc
c

rc
n

w
n

w
b

w
c

w
n

b

w
b

b

w
cb

w
b

c

w
cc

w
cn

DDIO TC8192-byte records

Dartmouth CollegeDavid Kotz 16

Results: contiguous

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

0.0

5 .0

10.0

15.0

20.0

25.0

30.0

35.0

ra r
n

r
b rc

rn
b

rb
b

rc
b

rb
c

rc
c

rc
n

w
n

w
b

w
c

w
n

b

w
b

b

w
cb

w
b

c

w
cc

w
cn

DDIO TC8-byte records

Dartmouth CollegeDavid Kotz 17

Sensitivity

• Disk-directed I/O performance
• unaffected by the number of CPs
• scaled as it should

• limited only by disk or bus bandwidth

• Traditional caching:
• When fewer CPs than disks

• some cyclic patterns could not keep all disks busy

• Overhead a problem with more CPs

• Other record sizes: no surprises

• Bigger file sizes: no surprises

Dartmouth CollegeDavid Kotz 18

Conclusions

• Disk-directed I/O works:
• consistent performance, independent of distribution.
• near hardware limits, 93% of peak.
• in one case, 18 times faster than traditional caching.

• How?
• by reducing overhead
• by sorting disk requests
• by managing contiguous layouts

Dartmouth CollegeDavid Kotz 19

Conclusions

• Valuable for large, collective data transfers.

• but the concept is extensible:
• irregular patterns
• non-collective I/O
• out-of-core algorithms
• asynchronous I/O
• filtering
• uniprocessors
• shared-memory architectures

Dartmouth CollegeDavid Kotz 20

Future Work

• “Real” application

• Gather/scatter messages

• Strided requests

• Collective-I/O interface

• Concurrent disk-directed activities

Dartmouth CollegeDavid Kotz 21

Parallel I/O on the WWW

http://www.cs.dartmouth.edu/pario.html

dfk@cs.dartmouth.edu

