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Abstract

We implemented a detailed model of the HP ����� disk drive� to replicate a model devised
by Ruemmler and Wilkes �both of Hewlett�Packard� HP�	 Our model simulates one or more disk
drives attached to one or more SCSI buses	 The design is broken into three components
 a test
driver� the disk model itself� and the discrete�event simulation support	 Thus� the disk model
can be easily extracted and used in other simulation environments	 We validated our model
using traces obtained from HP� using the same �demerit� measure as Ruemmler and Wilkes	
We obtained a demerit percentage of 
	��� indicating that our model was extremely accurate	
This paper describes our implementation� and is meant for those wishing to use our model� see
our validation� or understand our code	

� Introduction

A recent paper by Ruemmler and Wilkes �RW��� describes the HP ����� disk drive in detail�

their model of the disk� and general techniques for modeling disks	 We implemented our own

version of the model	 Our model simulates one or more disk drives attached to one or more SCSI

buses	 The design is broken into three components
 a test driver� the disk model itself� and the

discrete�event simulation support	 Thus� the disk model can be easily extracted and used in other

simulation environments	 We have used it in a stand�alone mode �which uses a small discrete�event

support module that we built
 and incorporated it into a larger simulation embedded in the Proteus

parallel�architecture simulator �BDCW���	

This paper does not describe any new results� it is meant as documentation of our model� its

implementation� and its validation	 There are three sections in the paper� oriented to readers with

This document corresponds to version ��� of the disk�model software� This project was supported by research

funds from Dartmouth College�

�



di�erent interests


Usage� Section � describes the interface seen by a �user� of the disk model� i	e	� the driver program	

Implementation� Section � describes the HP ������ our implementation of the disk model� and

the support code needed to run it	

Validation� Section � describes our validation process and the results	

The sections should be readable independently	

� Usage

This section describes the user interface for the disk device� i	e	� the interface used by a driver

program that generates requests for the disk �e	g	� from a trace �le� or from a simulated �le system
	

More details are found in the code� in particular� in diskdevice�h	 Essentially� the diskdevice

module exports a set of access functions	

DiskDeviceInit�disk� busId� busOwner� busWaitq� fileName�

This routine is called once for each disk	 Any number of disks may be de�ned� with any disk ID

numbers �non�negative integers
	 busId is the number of the bus to which this disk is attached

and is used for debugging	 busOwner is a pointer to an integer �one per bus
 that holds either the

number of the disk currently using that bus� or BUS�FREE	 Finally� busWaitq is a queue where disks

can wait for service by that bus	 Our model manages the bus� but this interface allows the caller

to decide which disks share the same bus	 If a fileName is speci�ed� the data read and written

through DiskDeviceTransfer will be stored in a �le by that name	 The �le acts as a surrogate disk�

and will thus appear to be very large� however� it will be full of �holes� and thus occupy little

more real disk space than the data you write to it	 If the fileName is NULL� then all data written

is simply thrown away� and garbage will be returned when reading �which is �ne when you are

running data�independent tests
	

DiskDeviceDone�int disk� This routine is called once for each disk� when the disk is no longer

needed	 It will wait for any pending writes to complete� and then free up its internal data structures	

DiskDeviceTransfer�disk� sector� nsectors� write� buffer�

Do a disk operation� given the disk number� logical sector number on that disk �mapped to a

physical sector number by the disk� taking into account sparing regions
� the number of sectors
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to transfer� a read�write �ag� and the bu�er for the data	 This blocks until the time when the

transfer would be complete� that is� on return from this function logical time will have advanced

appropriately	

DiskDeviceStart�disk� sector� nsectors� write�

DiskDeviceFinish�disk� buffer�

Like DiskDeviceTransfer� but split into two parts
 the �rst part starts the disk moving to the

appropriate location� and the second supplies the bu�er needed to complete the transaction	 The

second call blocks until the transfer is complete	 There should not be any other requests between

a Start and a corresponding Finish	

DiskDeviceSync�disk�

This function blocks until any pending disk writes are complete �necessary when the disk has chosen

to do an �immediate�reported� write
	

DiskDeviceShape�disk� �nSectors� �sectorSize� �nTracks� �sectorsPerTrack�

Return the physical size of the disk	

� Implementation

In this section� we describe our understanding of how the HP ����� works� then some details about

our code� and then some support mechanisms needed by the code	

��� Our understanding of the HP �����

Our model was based on the paper by Ruemmler and Wilkes �RW��� and on the manual for the

disk drive �HP���	 Although these documents do a wonderful job at describing the HP ������ we

needed to make a few assumptions beyond the information in those sources


� When reading� the cache keeps all sectors from the beginning of the current request up through

the current read�ahead point	 �The alternative� throwing out sectors as they are transferred

to the host� is equally plausible but from the looks of the trace data is not how the disk

actually worked
	 The actual policy is not known� presumably for requests larger than the

cache size there is some way to discard data from the cache to allow the transfer to continue	

� Read and write fences are �� KB	
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� When transferring across a sector boundary that is also a track and cylinder boundary� we

assume that the track�switch cost subsumes the head�switch cost	 That is� we take the

maximum� rather than the sum	 Apparently this is what Ruemmler and Wilkes did	

� When crossing a cylinder boundary� cylinder skew subsumes the track skew �thus� the cylinder

skew is the total skew
	 Same reasoning as in the previous note	

� When transferring across a track or cylinder boundary� the switch time is determined to be

identical to the corresponding �skew time� �skew distance divided by the rotational speed
	

� Bus speed is �� MB�s	

� It takes �� �sec to grab the bus	 We guessed this parameter	

� Disk requests on the bus are �� bytes� derived from �HP���	 John Wilkes thinks they used ��

bytes	

� �Done messages� on the bus are � bytes	

� Controller overhead �for both read and write
 is �	� msec� after �RW���� though longer than

that in �HP���	

� We assume that read�ahead can be aborted in the middle of a sector transfer� which is

documented in �HP���	

� The ����� does not have segmented cache� command queueing� or multiple zones	

� We ignore thermal recalibrations	

��� Structure of the code

The main part of the code is in the DiskDevice module� spread over four �les


diskdevice�h� the interface to the module

diskdevices�h� included only by the diskdevice�	c �les� this de�nes parameters of the disk drives

diskdevice�model�c� the bulk of the code for the module

diskdevice�trivial�c� a trivial disk model� with the same interface as the real model� and assumes

a constant disk�access time	 This is useful when debugging users of the disk device code�

because of its speed and simplicity	
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Our model is event driven	 A logical clock is maintained by our support software �see the next

section
	 When a disk request arrives �through the interface described in Section �
� an event is

scheduled at the current logical time	 When the event is scheduled� it grabs the bus and sends

the request to the disk controller	 Then the interface function sleeps �in a thread�based system�

this sleep would suspend the current thread� in our one�disk stand�alone version� sleeping just calls

the scheduler to process events until a �wakeup� �ag is set
� while each event is scheduled� events

schedule more events� and the logical clock advances	 Eventually� one of the events is responsible

for waking up the sleeping thread� which then returns from the interface function to the user	 See

Figure � for a pictorial representation of the events and their interrelationship	

A normal disk transfer request works as follows	 The user calls DiskDeviceTransfer �abbreviated

DD Transfer on the chart
	 After the parameters are recorded in the per�disk data structure�

SendCommand is called	 SendCommand attempts to grab the bus� by checking the integer that

indicates the owner �disk ID
 of this bus	 If the grab succeeds �the bus was already ours or was

free
� SendCommand schedules an EndCommand event at a future time based on the current time�

the time needed to grab the bus� and the time needed for the command to traverse the bus	 If

it could not grab the bus� it enqueues a SendCommand request on the bus�wait queue �there is

one for each bus
	 When other disks �nish using the bus� they will hand the bus to this disk and

reschedule the SendCommand event	 The SendCommand event will of course succeed to grab the

bus� and continue	 This model for using the bus is repeated in other situations	

When EndCommand is eventually scheduled� it passes the bus to waiting disks� if necessary�

and then calls the Controller	

The Controller� in its simplest form� works as follows �immediate�reported writes add some

complexity� which we describe further below
	 If the new request is a read� it looks at the cache to

determine whether there is a hit	 If not� it �ushes the cache� cancels any active prefetch operation�

and schedules a DiskMove event to move the disk head to the appropriate location	 If there was

a cache hit� it �ushes the cache up to the �rst requested sector� and schedules a ConsiderBusXfer

event to get the bus transfer started	 If the new request is a write� it cancels any active prefetch

�from a preceding read operation
� schedules a DiskMove event to move the head to the appropriate

location� and schedules a ConsiderBusXfer event to get the bus transfer started	

There are then essentially two event loops� one for disk transfers �from cache to disk� or from

disk to cache
� and one for bus transfers �from cache to bus� or from bus to cache
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Figure �
 Event graph of our simulation model	 Bold names at the top denote the entry points
that may be called by the driver program	 Other names represent event types� each of which is im�
plemented as a function	 Solid arrows indicate which functions can schedule which events	 Dashed
arrows represent waking up the thread sleeping in the entry function �in our simple environment�
there are no threads� and this just returns to the caller
	 Dotted arrows are a relatively rare form of
event scheduling	 q annotates events that may enqueue a request on the bus queue� dq annotates
events which may hand o� the bus to an event waiting on the bus queue	
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In the disk�transfer loop� DiskMove computes the time needed to move the head to the beginning

of the �rst requested sector	 It schedules a StartDiskXfer event at that time	 StartDiskXfer updates

the state of the cache� and schedules an EndDiskXfer at the time when that sector�s transfer will

be �nished	 EndDiskXfer again updates the state of the cache� and� if the transfer should continue�

schedules a StartDiskXfer	 If the transfer is complete� and is a write� it schedules a SendDoneMesg

to tell the host that the transfer completed	 Finally EndDiskXfer calls ConsiderBusXfer to see

what can be done �either to start transferring a newly read sector� or to re�ll the cache after having

written a sector to disk
	

The bus�transfer loop is similar� in that it transfers one sector at a time in a loop between

StartBusXfer and EndBusXfer	 ConsiderBusXfer �sometimes� sometimes called directly
 decides

whether a bus�transfer loop should be started� if so� it grabs the bus and schedules StartBusXfer	

Starting a bus transfer depends on a complicated set of circumstances
 we are not already using the

bus� the controller has indicated it wants to use the bus �not true� for example� when prefetching
�

the host has a bu�er to hold the data �not always true in the split�phase interface we provide
� and�

if reading� either the last sector is ready or the cache has �lled with plenty of sectors �the �read

fence�
� or if writing� the last sector has not been transferred and the cache is su�ciently empty

�the �write fence�
	

EndBusXfer either schedules another StartBusXfer� continuing the loop� or �if a read request


schedules SendDoneMesg to indicate that the transfer is complete	 EndBusXfer may schedule

DiskMove� this happens when the disk�transfer loop had to stop because it was reading and �lled

the cache �which is drained by the bus�transfer loop
 or was writing and emptied the cache �which

is �lled by the bus�transfer loop
	 DiskMove restarts the loop after the disk has rotated into the

correct position	

SendDoneMesg grabs the bus and sends a short ��nished� signal to the host� by scheduling

EndDoneMesg	 EndDoneMesg wakes up the sleeping caller	

There are a few rare transitions	 When a prefetch request is canceled� sometimes the request

can be located and pulled from the event queue� but sometimes the event cannot be located and is

eventually scheduled	 A �ag causes the event �usually StartDiskXfer
 to abort and call DiskMove�

which moves the disk to the new location	

Immediate�reported writes are more complex	 Immediate reporting means that done message

is sent to the host as soon as the last sector has been transferred �by the bus
 into the cache� rather

than on to disk	 Furthermore� when a sequentially contiguous write request arrives soon after an
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immediate�reported write� the new data is appended to the cache� and will be transferred without

any rotational delay between the two requests	 If a read or non�contiguous write arrives after an

immediate�reported write� it must wait for the preceding write to complete before beginning any

bus or disk transfer of its own	 Our interface assumes that all writes may be immediate�reported�

and provides a separate DiskDeviceSync command that simply waits for any outstanding I�O	 This

interface is consistent with the SCSI interface �HP���	 If a synchronous write is desired� the pair

DiskDeviceTransfer and DiskDeviceSync accomplish the same thing with no additional overhead	

The Controller becomes more complex when immediate�reported writes are considered	 First�

if there is a outstanding disk�transfer loop in progress� and the new request is a read or non�

contiguous write� the new request must wait	 To accomplish this wait� the Controller sets a �ag

�restartController
 and quits	 In the case of a contiguous write� where it simply adjusts the

parameters and considers starting a bus transfer to fetch the new data	 Otherwise it works as

before	

The Controller will be restarted �i	e	� the Controller event rescheduled
 by EndDiskXfer when

it detects that the disk�transfer loop is complete and the restartController �ag is true	 The

Controller starts the new request as before	

Split�phase requests �DiskDeviceStart�DiskDeviceFinish
 are also a little bit more complicated	

EndCommand wakes up the sleeping DiskDeviceStart� so that the caller can continue as soon as

the command arrives at the controller	 Later� the caller is expected to provide a bu�er by calling

DiskDeviceFinish	 This sends a �bu�er message�� essentially a signal to the controller that the bus

transfer can begin	 StartBu�erMesg simply schedules EndBu�erMesg at the appropriate time� and

EndBu�erMesg sets a �ag in the controller to indicate that the bus transfer can begin and then

calls ConsiderBusXfer	 EndDoneMesg wakes up the DiskDeviceFinish as usual	

Invariants� Each disk has �ve key variables in its state	 These keep track of the bus� and disk�

transfer loops� and the contents of the cache	 They are

FCS� �rst cached sector

CBX� current bus transfer

NBX� next bus transfer

CDX� current disk transfer
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NDX� next disk transfer

Essentially� NBX is the next sector to transfer on the bus and NDX is the next sector to transfer

on the disk	 If NDX � CDX� then there is a sector �CDX
 actively being transferred on the disk�

same for the bus	 The disk�transfer leads the bus�transfer when reading� and the bus�transfer leads

the disk�transfer when writing	 Because the cache is a FIFO bu�er between the disk and the bus�

they can never get too far apart	 Indeed� the cache begins with sector FCS� which may �in large

requests
 be quite far behind the bus and disk activity	 See Figure � for a pictorial representation

of some of these invariants� which are described in detail below


� When reading�

� FCS � CBX � NBX � CDX � NDX

� FCS is not actually in the cache unless FCS � NBX

� �CDX�FCS��
 � cache size

� When writing�

� FCS � CDX � NDX � CBX � NBX

� FCS is not actually in the cache unless FCS � NDX

� �CBX�FCS��
 � cache size

� NBX�CBX � � or �

� if �� no bus transfer is active

� if �� sector CBX is going across the bus

� NDX�CDX � � or �

� if �� no disk transfer is active

� if �� sector CDX is transferring to�from the disk

��� Discrete	event support

In addition to the code for the disk model itself� we have a few modules to support the discrete�

event simulation	 By default� these are very simple mechanisms to support �stand�alone� use of

the disk model	 They can be replaced� however� by interface modules that can integrate the disk

model into another simulation environment	 These support modules include
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FCS = First Cached Sector
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Figure �
 Invariants maintained by our disk model	 Five key variables keep track of the state of
this disk� in particular� the state of the disk transfer �current and next sector� CDX and NDX
�
the state of the bus transfer �current and next sector� CBX and NBX
� and the state of the cache
��rst cached sector �FCS
� and the others
	 Details of invariants are given in the text	

diskevent�c� Functions to schedule a given disk event at a given time� to cancel an event that was

previously scheduled� and to sleep and wake up the caller�s thread	

queue�c� a simple queue used for tracking those disks that wish to use the bus	

heap�c� a priority queue �heap
 used to schedule events chronologically	

modularize�c� a few miscellaneous functions

We have also integrated the disk model into the Proteus parallel�architecture simula�

tor �BDCW���� where we simulate a parallel �le system involving many disks and buses �Kot���	

� Validation

To validate our model� we used a trace�driven simulation� choosing trace data from the same set

of disk traces used by Ruemmler and Wilkes in their study	� In particular� we chose the �snake�

traces from ������� through �������� disk numbers � and �	 After �ltering the trace �les for events

from those disk drives� and sorting them by the time the �real
 disk started the request� we ran

�Kindly provided to us by John Wilkes and HP� Contact John Wilkes at wilkes�hplabs�hp�com for information

about obtaining the traces�
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them through our disk model	 In the process we assumed that all writes that were marked both

�synchronous� and �metadata� should call DiskDeviceSync after DiskDeviceTransfer� to force the

caller to wait until the write was completely on disk before issuing the next request	� Otherwise�

the writes were �immediate�� i	e	� the caller could continue while the disk write executed in the

background	 Between requests� we waited the same amount of time as was recorded in the trace

from the end of the previous request until the start of the current request	�

We discovered that the real disk produced some extremely long access times �some nearly

��� msec
� which our model never approached	 Our access�time distribution curve was visibly close�

but the demerit �gure was poor	 The curves in �RW��� end at �� msec	 After consulting with Chris

Ruemmler� we discovered that he had �ltered the traces to exclude these �long� requests� assuming

that they were due to thermal recalibration� something they �and we
 did not model	 Indeed� these

events are rare �� �� of all events
	 After �ltering the traces to discard all requests in which the

real disk took � ��� msec� then re�running our simulation� we obtained a very close match	

We simulated each disk on each day independently� combining the sets of modeled access times

into one big set of nearly ������� accesses	 From the trace we also had the set of real access times

on the same requests	 Our mean access time was ��	��� msec� with a demerit �gure of �	���� and

a demerit percentage of �	��� �see �RW��� for a de�nition of these measures
	 Figure � shows the

distributions� Figure � shows the same distributions on a � to �� msec scale� for comparison with

�RW���	

We also used a set of microbenchmarks� based on regular access patterns �reading and writing

sequentially� reading increasingly large blocks but always starting from sector �� etc�
	 Plots of

these access times �not shown
 allowed us to �check� our model against the intuition	

Availability

The software is available for ftp at cs	dartmouth	edu in pub�diskmodel� or on the WWW at

http���www�cs�dartmouth�edu�cs�archive�diskmodel�html	

The software is written in ANSI C	 It does not use threads� but a threads package �and some

minor porting
 would be needed to use more than one disk in parallel �there is no asynchronous

interface� so you would need a thread for each disk so that blocking on one disk access does not

�The trace format was not completely clear on the semantics here� but this made sense and� from looking at the

request times� seemed to agree with how the real disk behaved�
�There are other plausible alternatives� For example� we could have waited until the clock reached the same time

as the start of the current request in the trace�
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prevent you from using other disks
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