
Copyright 1996 by ACM.  Appeared in International Conference on Supercomputing, May 1996, doi:10.1145/237578.237639.
THIS COPY IS THE AUTHORS’ PRE-PUBLICATION VERSION; it may differ slightly from the official published version.

The Galley Parallel File System

Nils Nieuwejaar David Kotz

Department of Computer Science

Dartmouth College� Hanover� NH ����������

fnils�dfkg�cs�dartmouth�edu

Abstract

As the I�O needs of parallel scienti�c applications increase�
�le systems for multiprocessors are being designed to provide
applications with parallel access to multiple disks� Many
parallel �le systems present applications with a conventional
Unix�like interface that allows the application to access mul�
tiple disks transparently� This interface conceals the paral�
lelism within the �le system� which increases the ease of
programmability� but makes it di�cult or impossible for
sophisticated programmers and libraries to use knowledge
about their I�O needs to exploit that parallelism� Further�
more� most current parallel �le systems are optimized for
a di�erent workload than they are being asked to support�
We introduce Galley� a new parallel �le system that is in�
tended to e�ciently support realistic parallel workloads� We
discuss Galley�s �le structure and application interface� as
well as an application that has been implemented using that
interface�

� Introduction

While massively parallel computers have been steadily in�
creasing in computational power for years� the power of their
I�O subsystems has not been keeping pace� Hardware limi�
tations are one reason for the di�erence in the rates of per�
formance increase� but the slow development of new parallel
�le systems is also to blame� One of the primary reasons
that parallel �le systems have not improved at the same
rate as other aspects of multiprocessors is that� until re�
cently� there has been limited information available about
how applications were using existing parallel �le systems
and how programmers would like to use future �le systems�

Several recent analyses of production �le�system work�
loads on multiprocessors running primarily scienti�c appli�
cations show that many of the assumptions that guided
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the development of most parallel �le systems were incor�
rect �KN	
� NK	�� PEK�	��� It was commonly believed
that parallel scienti�c applications would behave like sequen�
tial and vector scienti�c applications
 accessing large �les in
large� consecutive chunks �Pie�	� PFDJ�	� LIN�	�� MK	���
Studies of two parallel �le�system workloads� running a va�
riety of applications in a variety of scienti�c domains� at
two sites on two architectures� under both data�parallel and
control�parallel programming models� show that many ap�
plications make many small� regular� but non�consecutive
requests to the �le system �NKP�	��� These studies sug�
gest that most parallel �le systems have been optimized for
a workload that is very di�erent than that which actually
exists�

Using the results from these workload characterizations
and from performance evaluations of existing parallel �le
systems� we have developed a new parallel �le system that
is intended to deliver high performance to a variety of appli�
cations running under realistic workloads� Rather than at�
tempting to design a �le system that is intended to directly
meet the speci�c needs of every user� we have designed a
simpler� more general system that lends itself to supporting
a wide variety of libraries� each of which should be designed
to meet the speci�c needs of a speci�c community of users�

In this paper we describe the features and design of the
system� The performance and scalability of the system are
examined in greater detail in �NK	���

The remainder of this paper is organized as follows� In
Section � we describe the speci�c goals Galley was designed
to satisfy� In Section � we discuss a new� three�dimensional
way to structure �les in a parallel �le system� Section 

describes the design and current implementation of Galley�
Section � discusses the interface available to applications
that intend to use Galley� and Section � discusses one such
application in detail� In Section � we discuss several other
parallel �le systems� and �nally in Section � we summarize
and describe our future plans�

� Design Goals

Most current parallel �le systems were designed based pri�
marily on hypotheses about how scienti�c applications would
perform I�O� Galley�s design is the result of examining how
parallel scienti�c applications actually do I�O� Accordingly�
Galley is designed to satisfy several goals


� E�ciently handle a variety of access sizes and patterns�

� Allow applications to explicitly control parallelism in
�le access�
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Figure �
 An example of a ��dimensional� cyclically�shifted
block layout� In this example there are � disks� logically
arranged into a ��by�� grid� and a ��by��� block matrix�
The number in each square indicates the disk on which that
block is stored�

� Be �exible enough to support a wide variety of inter�
faces and policies� implemented in libraries�

� Allow easy and e�cient implementations of libraries�

� Scale to many compute and I�O processors�

� Minimize memory and performance overhead�

� File Structure

Most existing multiprocessor �le systems are based on the
conventional Unix�like �le�system interface in which a �le is
seen as an addressable� linear sequence of bytes �BGST	��
Pie�	� LIN�	��� The �le system typically declusters �les
�i�e�� scatters the blocks of each �le across multiple disks�� al�
lowing parallel access to the �le� This parallel access reduces
the e�ect of the bottleneck imposed by the relatively slow
disk speed� Although the �le is actually scattered across
many disks� the underlying parallel structure of the �le is
hidden from the application�

Galley uses a more complex �le model that should lead
to greater �exibility and performance�

��� Sub�les

The linear model can give good performance when the re�
quest size generated by the application is larger than the
declustering unit size� as multiple disks are being used in
parallel� However� the declustering unit size is frequently
measured in kilobytes �e�g�� 
KB in Intel�s CFS �Pie�	���
while our workload characterization studies show that the
typical request size in a parallel application is much smaller

frequently under ��� bytes �NKP�	��� This disparity means
that most of the individual requests generated by parallel
applications are not being executed in parallel� In the worst
case� the compute processors in a parallel application may
issue their requests in such a way that all of an application�s
processes may �rst attempt to access disk � simultaneously�
then all attempt to access disk � simultaneously� and so on�

Another problem with the linear �le model is that a
dataset may have an e�cient� parallel mapping onto multi�
ple disks that is not easily captured by the standard declus�
tering scheme� One such example is the two�dimensional�
cyclically�shifted block layout scheme for matrices� shown
in Figure �� which was designed for SOLAR� a portable�
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Figure �
 Three dimensional structure of �les in the Galley
File System� The portion of the �le residing on disk � is
shown in greater detail than the portions on the other two
disks�

out�of�core linear�algebra library �TG	��� This data layout
is intended to e�ciently support a wide variety of out�of�
core algorithms� In particular� it allows blocks of rows and
columns to be transferred e�ciently� as well as square or
nearly�square submatrices�

To address these problems� Galley does not automati�
cally decluster an application�s data� Instead� Galley pro�
vides applications with the ability to fully control this declus�
tering according to their own needs� This control is par�
ticularly important when implementing I�O�optimal algo�
rithms �CK	��� Applications are also able to explicitly in�
dicate which disk they wish to access in each request� To
allow this behavior� �les are composed of one or more sub�
�les� each of which resides entirely on a single disk� and
which may be directly addressed by the application� This
structure gives applications the ability both to control how
the data is distributed across the disks� and to control the
degree of parallelism exercised on every subsequent access�

��� Forks

Each sub�le in Galley is structured as a collection of one
or more independent forks� Each fork is a named� linear�
addressable sequence of bytes� similar to a traditional Unix
�le� While the number of sub�les in a �le is �xed at �le�
creation time� the number of forks in a sub�le is not �xed�
libraries and applications may add forks to� or remove forks
from� a sub�le at any time� The �nal� three�dimensional �le
structure is illustrated in Figure �� Note that there is no
requirement that all sub�les have the same number of forks�
or that all forks have the same size�

The use of forks allows further application�de�ned struc�
turing� For example� if an application represents a physical
space with two matrices� one containing temperatures and
other pressures� the matrices could be stored in the same �le
�perhaps declustered across multiple sub�les� but in di�er�
ent forks� In this way� related information is stored logically
together but is available independently�

Forks are most likely to be useful when implementing li�
braries� In addition to data in the traditional sense� many
libraries also need to store persistent� library�speci�c �meta�
data� independently of the data proper� One example of
such a library would be a compression library similar to
that described in �SW	��� which compresses a data �le in



multiple independent chunks� The library could store the
compressed data chunks in one fork and index information
in another�

Another example of the use of this type of �le structure
may be found in the problem of genome�sequence compar�
ison� which requires searching a large database to �nd ap�
proximate matches between strings �Are	��� The raw data�
base used in �Are	�� contained thousands of genetic sequences�
each of which was composed of hundreds or thousands of
bases� To reduce the amount of time required to identify
potential matches� the authors constructed an index of the
database that was speci�c to their needs� Under Galley� this
index could be stored in one fork� while the database itself
could be stored in a second fork�

A �nal example of the use of forks is Stream�� a parallel
�le abstraction for the data�parallel language� C� �MHQ	���
Brie�y� Stream� divides a �le into three distinct segments�
each of which corresponds to a particular set of access se�
mantics� Although one could use a di�erent fork for each
segment� Stream� was actually designed to store them all
in a single �le� In addition to the raw data� Stream� main�
tains several kinds of metadata� which are currently stored
in three di�erent �les
 �meta� �first� �dir� In a Galley�
based implementation of Stream�� it would be natural to
store this metadata in separate forks rather than separate
�les�

� System Structure

The Galley parallel �le system follows the client�server model�
and is based on a multiprocessor architecture that dedicates
some processors to computation and dedicates the rest to
I�O� In this system� the Compute Processors �CPs� func�
tion as clients and the I�O Processors �IOPs� act as servers�

��� Compute Processors

A client in Galley is simply a user application that has been
linked with the Galley run�time library� and which runs on a
compute processor� The run�time library receives �le�system
requests from the application� translates them into lower�
level requests� and passes them �as messages� directly to
the appropriate servers� running on I�O processors� The
run�time library then handles the transfer of data between
the compute and I�O processors�

As far as Galley is concerned� every compute processor
in an application is completely independent of every other
compute processor� Indeed� Galley does not even assume
that one compute processor is even aware of the existence of
other compute processors� This independence means that
Galley does not impose any communication requirements
on a user�s application� which in turn means that applica�
tions may use whichever communication software �e�g�� MPI�
PVM� P
� is most suitable to the given problem�

We expect that most applications will use a higher�level
library or language layered above the Galley run�time li�
brary� One such library will be one that supports a linear�
Unix�like �le model� which will reduce the e�ort required to
port applications to Galley� Other libraries currently being
implemented provide Panda �SCJ�	�� and Vesta �CFP�	��
interfaces� We also plan to implement ViC�� a variant of
C� designed for out�of�core computations� on top of Gal�
ley �CC	
��
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Figure �
 Internal structure of a Galley I�O Processor� show�
ing two active data requests waiting for the CacheManager�
one active metadata request waiting for the NameServer�
and three idle CP threads�

��� I�O Processors

I�O servers in Galley are composed of several independent
units �as shown in Figure ��� Each unit is implemented as
a single thread� Furthermore� each IOP also has one thread
designated to handle incoming I�O requests for each com�
pute processor� When an IOP receives a request from a CP�
the appropriate CP Thread interprets the request� passes it
on to the appropriate worker thread� and then handles the
transfer of data between the IOP and the CP� This multi�
threading makes it easy for an IOP to service requests from
many clients simultaneously�

While one potential concern is that this thread�per�CP
design may limit the scalability of the system� we have not
observed such a limitation in our performance tests �NK	���
One may reasonably assume that a thread that is idle �i�e��
not actively handling a request� is not likely to noticeably
a�ect the performance of an IOP� By the time the number
of active threads on a single IOP becomes great enough to
hinder performance� the IOP will most likely be overloaded
at the disk� the network interface� or the bu�er cache� and
the e�ect of the number of threads will be minor relative to
these other factors� We intend to explore this issue further
as we port Galley to di�erent architectures� which may o�er
di�erent levels of thread support�

Galley�s metadata �not to be confused with application�
speci�c �metadata� discussed above� is distributed across all
IOPs� so there is no single point of contention that could
limit scalability� Thus� each IOP acts both as a data server
and as a metadata server� When a request arrives for a
metadata operation �e�g�� �le open� close� delete�� the CP�s
thread hands the request on to the NameServer� waits for
the NameServer to complete the operation� and then passes
the result back to the requesting CP� For most operations�
the NameServer will need to submit a request to the Cache�
Manager for data stored on disk�



����� CP Threads

When a request for a data transfer arrives� the CP thread
responsible for handling the request creates a list of all the
disk blocks that will be required to satisfy the request� It
then passes the whole block list on to the CacheManager�
The CP thread then waits on a queue of bu�ers returned by
the CacheManager� Although this model does not necessar�
ily restrict each CP to a single outstanding request to each
IOP� for performance reasons our current implementation
does impose such a restriction�

As bu�ers become ready� the CP thread handles the
transfer of data between the requesting CP and that bu�er�
When all the requested data has been transferred into or
out of that bu�er� the thread decreases that bu�er�s refer�
ence count� and handles the next bu�er in the queue� When
writing� this approach is somewhat unusual in that the IOP
is essentially �pulling� the data from the CP� rather than
the traditional model� where the CP �pushes� the data to
the IOP� When the whole request has been satis�ed� or if
it fails in the middle� the thread passes a success or fail�
ure message back to its CP� and idles until another request
comes in�

����� CacheManager

The CacheManager maintains a separate list of requested
disk blocks for each thread� When multiple threads sub�
mit requests to the CacheManager� it services requests from
each list in round�robin order� This round�robin approach
is an attempt to provide fair service to each requesting CP�
Identifying more sophisticated and e�ective techniques for
providing fair service is a subject of ongoing research�

The CacheManager maintains a global LRU list of all
the blocks resident in the cache� When a new block is to be
brought into the cache� this list is used to determine which
block is to be replaced� Providing applications with more
control over cache policies is another area of ongoing work�

For e�ciency� the CacheManager also maintains a hash
table� which contains a list of all the blocks in the cache�
For each disk block requested� the CacheManager searches
its hash table of resident blocks� If the block is found� its
reference count is increased� and a pointer to that bu�er is
added to the requesting thread�s ready queue� If the block is
not resident in the cache� the �rst bu�er in the LRU list with
a reference count of � is scheduled to be replaced with the
new block� The bu�er is marked �not ready�� and is added
to the requesting thread�s ready queue� Then a request is
issued to the DiskManager to write out the old block �if
necessary�� and to read the new block into the bu�er�

����� DiskManager

The DiskManager maintains a list of blocks that are sched�
uled to be read or written� Galley uses �� KB as its disk
block size� As new requests arrive from the CacheManager�
they are placed into the list according to the disk schedul�
ing algorithm� The DiskManager currently uses a Cycli�
cal Scan algorithm �SCO	��� When a block has been read
from disk� the DiskManager updates the cache status of that
block from �not ready� to �ready�� and noti�es any threads
that may have been waiting for that block�

For portability� Galley does not use a low�level driver to
directly access the disk� Instead� Galley relies on the under�
lying system �presumably Unix� to provide such services�

Galley�s DiskManager has been implemented to use raw de�
vices� Unix �les� or simulated devices as �disks�� Galley�s
disk�handling primitives are su�ciently simple that modify�
ing the DiskManager to access a device directly through a
low�level device driver is likely to be a trivial task�

� Application Interface

Given the new �le model provided by Galley� and the ob�
served frequency of strided access patterns in parallel �le
system workloads� it was not su�cient to simply provide
applications with a traditional Unix interface� Galley�s in�
terface is primarily intended to allow the easy implementa�
tion of libraries� These libraries will provide the higher�level
functionality needed by most users�

��� File Operations

Files in Galley are created using the gfs create file�� call�
In addition to specifying a �le name� the application may
specify on how many IOPs� and even on which IOPs� the �le
is to be created� File creation is a three�step process� The
�rst step is to verify that the name chosen is available� and
if so� to reserve it� This is done with a single message to the
IOP that will be responsible for maintaining the metadata
for the new �le� The responsible IOP is determined by ap�
plying a simple hash function to the �le name� The next step
is to create sub�les on each of the appropriate IOPs� Sub�le
creation involves allocating a sub�le�header block to the �le�
A sub�le�header block is analogous to an inode in a Unix
�le system� in that it will contain all the metadata informa�
tion for that sub�le� Unlike the Unix practice of statically
creating inodes� any block in the �le system may become a
sub�le�header block� If this step fails �e�g�� if one or more
disks have no more room�� then the reserved �le name is
released� and the appropriate error code is returned to the
application� If the operation succeeds� each IOP will return
the ID of the sub�le�header block to the calling CP� The
�nal step of the �le�creation process is to store the �le name�
along with all the sub�le�header block IDs� on disk at the
responsible IOP and to return a success code to the appli�
cation� After the �le is created� the sub�les are empty� that
is� no forks are created as part of the �le�creation process�

When an application opens a �le in Galley� using the
gfs open file�� call� that processor sends a request to the
appropriate metadata server �again� determined by hashing
the �le name�� If the �le exists� the IOP returns a success
code and the list of all the sub�le�header block IDs to the
requesting CP� The run�time library assigns the open �le a
�le ID� and caches the list of header block IDs in an open�
�le table to avoid repeated requests to the metadata server�
Since these IDs do not change during the course of the �le�s
lifetime� consistency is not an issue�

��� Fork Operations

Forks in Galley are created using the gfs create fork��
call� Each call takes the ID of an open �le� the number of
the sub�le in which the fork is to be created� and the name of
the fork� The run�time library looks up the header�block ID
for the appropriate sub�le� and sends the header ID and the
fork name to the appropriate IOP� By sending the header
ID to the IOP� there is no need for an extra indexing oper�
ation to take place at the IOP� the IOP is able to retrieve



the appropriate sub�le�header block immediately� The IOP
inserts the name of the fork into the sub�le�header block�
and returns a success or error code to the CP� For the con�
venience of application programmers� Galley also provides
a gfs all create�� call that will create a fork of the given
name in every sub�le of a �le�

Forks in Galley are opened using the gfs open fork��
call� which takes the same parameters as the fork�creation
call� If a fork is successfully opened� Galley returns a fork
ID� which is used in subsequent calls� much like a �le descrip�
tor is used in Unix� Forks are closed with gfs close fork���
and deleted with gfs delete fork��� If a CP attempts to
delete a fork that has been opened by it� or by any other
CP� that fork is marked for deletion� but is not actually
deleted until it is closed by every CP that has it opened� For
convenience� there are gfs all open� gfs all close� and
gfs all delete calls as well�

��� Data Operations

Most parallel �le systems present applications with an ap�
plication interface similar to that of Unix �Pie�	� RP	��
BGST	��� While this interface is simple and familiar to
programmers� it was not designed to allow parallel appli�
cations to access parallel disks� In particular� it does not
allow programmers to issue the highly structured requests
that we have observed to be common among parallel� sci�
enti�c applications �NKP�	��� Indeed� if an interface were
available that allowed an application to issue such highly
regular requests� the number of I�O requests issued in one
production �le�system workload could have been reduced by
over 	�� �NK	��� Such structured operations can also lead
to signi�cant performance improvements �Kot	
��

In addition to simple read���write�� operations� Galley
supports simple�strided� nested�strided� and nested�batched
operations� Descriptions of these operations and the inter�
faces required to support them may be found in �NK	���
The tremendous performance improvements achieved using
these interfaces in Galley are described in �NK	���

In addition to these structured operations� Galley pro�
vides a more general �le interface� which we call a list inter�
face� This interface accepts an array of ��le o�set� memory
o�set� size� triples from the application� While this interface
essentially functions as a series of simple reads and writes�
it provides the �le system with enough information to make
intelligent disk�scheduling decisions� as well as the ability
to coalesce many small pieces of data into larger messages
for transferring between CPs and IOPs� The more struc�
tured interfaces are actually implemented on top of the list
interface�

While all of these interfaces specify the order of data
in the bu�er� the order in which the individual pieces are
transferred between the IOP to the CP is not speci�ed� This
freedom allows Galley to transfer the data from the disk to
the IOP�s memory and from the IOP to the CP in the most
e�cient order rather than strictly sequentially� This ability
to reorder data transfers can lead to remarkable performance
gains �NK	��� and is a distinct advantage of these interfaces
over any interface where the user must request one small
piece of data at a time� forcing the �le system to service
requests in a particular order�

To avoid complicating these interfaces further� Galley
does not provide an explicit interface to request data from
multiple forks or sub�les� Users may achieve similar results

by submitting multiple requests asynchronously� one to each
desired fork�

� Example� FITS

We present an example of how the features described above
may be used in practice� The Flexible Image Transport Sys�
tem �FITS� data format is a standard format for astronomi�
cal data �NAS	
�� A FITS �le begins with an ASCII header
that describes the contents of the �le and structure of the
records in the �le� The remainder of the �le is a series of
records� stored in binary form� Each record is composed of a
key� with one or more �elds� and one or more data elements�
Each record within a single FITS �le has an identical size
and structure� Records may appear in any order within the
�le�

For this paper� we created a system that was able to
handle a speci�c type of FITS �le in use at the National
Radio Astronomy Observatory �NRAO�� and generic queries
on those �les� A library that was capable of handling many
kinds of queries and FITS �les is a perfect example of the
type of domain�speci�c library we expect to be implemented
on Galley�

��� FITS at NRAO

One speci�c example of how FITS �les are used in practice
is described in �KGF	�� KFG	
�� This type of FITS �le con�
tains records with � keys� describing the frequency domain
�U�V�W �� the baseline� and the time the data was collected�
The baseline is a single number that indicates which antenna
or combination of antennas generated that record� The data
portion of each record contains a pair of data elements� one
for each of two polarizations� Each data element contains
�oating�point triples for each of �� frequencies� The triples
represent a single complex number and a weighting factor�
Thus� a single data element contains ��� bytes of data and
each record contains �
 bytes of key information and �


bytes of data�

These �les are used in many di�erent ways by di�erent
users at NRAO� The most common types of use involve scan�
ning subvolumes of the full� multi�dimensional sparse data
set� where the subvolumes may be de�ned along one or more
of the axes� For example� a user may want to examine all
the records within a given time range� and sorted along the
U axis�

Previous work on these �les has focused on increasing lo�
cality along several dimensions simultaneously� In �KFG	
��
the authors examine studied the e�ectiveness of Piecewise
Linear Order�Preserving Hashing �PLOP� �les at reducing
the amount of time required to perform common queries� by
increasing certain kinds of locality within the �les� While lo�
cality can also improve performance in parallel �le systems�
too much locality can reduce the number of disks being ac�
cessed at any time� actually leading to lower performance�

��� FITS on Galley

Since most of the queries common at NRAO include sub�
ranges of time as at least one of the constraints� we sorted
the records by time before distributing them across the IOPs�
The data was distributed in CYCLIC fashion� in blocks of
���
 records� That is� in a system with 
 IOPs� IOP � would



hold records � to ����� 
�	� to ���	� and so on� while IOP �
would hold records ���
 to ��
�� ���� to ��
�� and so on�

For many queries� we were unable to determine a priori
which data records would satisfy the query� As a result� we
frequently examined many keys to identify the small num�
ber of data records that were relevant to the query� To
improve performance� we chose to store the keys in one fork
and the data in another� This setup allowed us to achieve
higher performance when reading the keys� since we were
not paying for the cost of retrieving uninteresting data from
disk� Although we stored all the data in a single fork on
each sub�le� another reasonable choice would have been to
store the data for each polarization in its own fork� Since
many of the queries involved data from only a single polar�
ization� this setup would also have reduced the amount of
uninteresting data that was read from disk�

To evaluate the e�cacy of their PLOP��le implemen�
tation� the authors performed several queries� which were
intended to be representative of those that were most com�
monly used in practice at NRAO �KGF	��� Their tests were
performed on a single�processor� single�disk system� We per�
formed the same set of queries� using the same data set� on
our implementation� Our tests were performed on a cluster
of IBM RS�����s connected by an FDDI network� Since the
original queries were performed on a single�node processor�
we used a single CP� We used four IOPs� each with a single
disk� Each IOP used a raw disk partition to store its data�
thus avoiding skewing the results by retrieving data stored
in AIX�s bu�er cache�

The speci�c queries performed in both cases are brie�y
described below� More detail about each query� and why it
is commonly used at NRAO� may be found in �KGF	���

�� Read the full data set�

�� Read the full data set� sorting records by time�

�� Read the full data set� sorting records by baseline�


� Read a subvolume of the data including ��� of the
time range�

�� Read a subvolume of the data including ��� of the
time range� sorting the records by U �

�� Read the subvolume for a single time and polarization�

�� Read a subvolume including ��� of the time range and
one polarization�

�� Read a subvolume including ��� of the time range� a
single baseline� and one polarization�

	� Read a subvolume including ��� of the time range�
antenna ��� and one polarization�

��� Read a subvolume including ��� of the time range�
antenna ��
� and one polarization�

��� Read a subvolume including ��� of the time range�
antenna ���� and one polarization�

��� Read a subvolume containing a single baseline and a
single polarization� sorting records by time�

Although many of these queries could have been most
e�ciently expressed using some form of strided request� our
system was designed to handle generic queries� As a result
these queries were all performed using Galley�s list interface�
The bu�er cache on each IOP was �ushed prior to each
query�

Table � shows the length of time required to complete
each query for both the PLOP��le and Galley implementa�
tions� Since the PLOP��le results were obtained on a dif�
ferent system with only a single disk� we cannot directly
compare the time required to complete the queries� Instead�
we compare the amount of time required to complete a query
relative to the time required to read all the data� This crude
normalization allows us to make some e�ort at comparison�

Data PLOP��le Galley
Query Elements Secs� Normal� Secs� Normal�
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Table �� Timing results for PLOP �les on a uniprocessor
system� and for Galley �les on a 
�IOP� ��CP system� Re�
sults are shown in �raw� form� as well as normalized to the
time required to read the full data set with no �ltering or
sorting� The full data set contained ����
� records� with
�����	� data elements�

While our implementation on top of Galley was far sim�
pler than the PLOP��le implementation �about ���� the
number of lines of code�� it performed signi�cantly better
in 
 out of �� cases �disregarding the �rst case� which is
used as a baseline�� and had competitive performance in �
of the remaining cases� Galley performed particularly well
on queries � and �� While the PLOP��le implementation
had to sort the whole dataset in memory� Galley�s interface
allowed us to read just the keys from their fork� sort them�
and then read the actual data into memory in sorted order�
Galley also performed relatively well on queries �� and ���
While the PLOP��le implementation had to read in � to �
times as many records as they were interested in� we were
able to �lter out the interesting records by looking only at
the data in the key�fork� Galley�s relative performance was
worst on queries 	 and ��� In these two cases� Galley had to
examine a large number of keys to identify a small number
of interesting records� while the PLOP �les were carefully
structured to reduce the number of records they had to ex�
amine for these queries� This same structure also caused
the PLOP��le implementation to be noticeably worse than
Galley�s on queries �� and ���



� Related Work

Many di�erent parallel �le systems have been developed over
the past decade� While many of these were similar to the
traditional Unix�style �le system� there have been also sev�
eral more ambitious attempts�

Intel�s Concurrent File System �CFS� �Pie�	� Nit	��� and
its successor� PFS� are examples of parallel �le systems that
provide a linear �le model with a Unix�like interface� Sup�
port for parallel applications is limited to �le pointers that
may be shared by all the processes in the application� CFS
and PFS provide several modes� each of which provides the
applications with a di�erent set of semantics governing how
the �le pointers are shared� Other parallel �le systems
with this style of interface are SUNMOS and its successor�
PUMA �WMR�	
�� sfs �LIN�	��� and CMMD �BGST	���

PPFS provides the end user with a linear �le that is
accessed with primitives that are similar to the traditional
read���write�� interface �HER�	��� In PPFS� however�
the basic transfer unit is an application�de�ned record rather
than a byte� PPFS maps the logical� linear stream of records
onto an underlying two�dimensional model� indexed with a
�disk� record� pair� PPFS provides several mapping func�
tions� which correspond to common data distributions� and
allows an application to provide its own mapping function
as well�

One of the most interesting parallel �le systems is the
Vesta �le system �and its commercial version� PIOFS� �CF	
�
CFP�	��� Files in Vesta are two�dimensional� and are com�
posed of multiple cells� each of which is a sequence of basic
striping units� BSUs are essentially records� or �xed�sized
sequences of bytes� Like Galley�s sub�les� each cell resides on
a single disk� Unlike Galley� a single disk may contain many
cells� Equivalent functionality could be achieved on Galley
by mapping cells to forks rather than sub�les� Vesta�s inter�
face includes logical views of the data� These views are essen�
tially rectangular partitionings of the two�dimensional �le�
and can provide the application with much of the function�
ality of Galley�s strided interfaces� Vesta provides users with
a di�erent and powerful way of thinking about data storage�
Its largest drawback is that it is ill�suited to datasets that
cannot be partitioned into rectangular sub�blocks of a single
size� Like Galley� Vesta uses a hashing scheme to distribute
metadata� In addition to the functionality of Vesta� PIOFS
provides applications with a Unix�like interface� Work is un�
derway on a library that will provide a Vesta interface for
Galley�

� Summary and Future Work

Based on several studies of parallel �le systems being used in
production environments� we have designed a new parallel
�le system that is intended to provide high performance to
a variety of libraries and applications� Galley is based on a
new three�dimensional structuring of �les� This structuring
provides tremendous �exibility to applications and libraries�
as well as opportunities to explicitly control the degree of
parallelism in an application�s �le accesses� Galley provides
several new forms of I�O request that reduce the aggregate
latency of multiple small requests and allows the �le system
to optimize the disk accesses required to satisfy the request�

The case studies contained in this paper� as well as per�
formance evaluations described elsewhere �NK	��� suggest
that Galley recti�es many of the shortcomings of existing

parallel �le systems� In particular� we demonstrated the
usefulness of Galley�s �fork� structure and higher�level in�
terfaces�

Galley has been completely implemented� While Galley
currently runs only on a cluster of IBM RS�����s and IBM�s
SP� multiprocessor� porting to other architectures should be
fairly straightforward and will be explored in the near future�
Work continues on improving the stability of the system in
general� Future work will focus on e�ciently supporting
multiple applications� which may place con�icting demands
on the system�
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