
Copyright 1996 by ACM. Appeared in International Conference on Supercomputing, May 1996, doi:10.1145/237578.237639.
THIS COPY IS THE AUTHORS’ PRE-PUBLICATION VERSION; it may differ slightly from the official published version.

The Galley Parallel File System

Nils Nieuwejaar David Kotz

Department of Computer Science

Dartmouth College� Hanover� NH ����������

fnils�dfkg�cs�dartmouth�edu

Abstract

As the I�O needs of parallel scienti�c applications increase�
�le systems for multiprocessors are being designed to provide
applications with parallel access to multiple disks� Many
parallel �le systems present applications with a conventional
Unix�like interface that allows the application to access mul�
tiple disks transparently� This interface conceals the paral�
lelism within the �le system� which increases the ease of
programmability� but makes it di�cult or impossible for
sophisticated programmers and libraries to use knowledge
about their I�O needs to exploit that parallelism� Further�
more� most current parallel �le systems are optimized for
a di�erent workload than they are being asked to support�
We introduce Galley� a new parallel �le system that is in�
tended to e�ciently support realistic parallel workloads� We
discuss Galley�s �le structure and application interface� as
well as an application that has been implemented using that
interface�

� Introduction

While massively parallel computers have been steadily in�
creasing in computational power for years� the power of their
I�O subsystems has not been keeping pace� Hardware limi�
tations are one reason for the di�erence in the rates of per�
formance increase� but the slow development of new parallel
�le systems is also to blame� One of the primary reasons
that parallel �le systems have not improved at the same
rate as other aspects of multiprocessors is that� until re�
cently� there has been limited information available about
how applications were using existing parallel �le systems
and how programmers would like to use future �le systems�

Several recent analyses of production �le�system work�
loads on multiprocessors running primarily scienti�c appli�
cations show that many of the assumptions that guided

This research was supported in part by the NASAAmes Research
Center under Agreements numbered NCC ����� and NSG ������

Copyright c����� by the Association for Computing
Machinery� Inc� Permission to make digital
or hard copies of part or all of this work for
personal or classroom use is granted without fee
provided that copies are not made or distributed
for profit or commercial advantage and that new
copies bear this notice and the full citation on
the first page� Copyrights for components of this
work owned by others than ACM must be honored�
Abstracting with credit is permitted�

the development of most parallel �le systems were incor�
rect �KN	
� NK	�� PEK�	��� It was commonly believed
that parallel scienti�c applications would behave like sequen�
tial and vector scienti�c applications
 accessing large �les in
large� consecutive chunks �Pie�	� PFDJ�	� LIN�	�� MK	���
Studies of two parallel �le�system workloads� running a va�
riety of applications in a variety of scienti�c domains� at
two sites on two architectures� under both data�parallel and
control�parallel programming models� show that many ap�
plications make many small� regular� but non�consecutive
requests to the �le system �NKP�	��� These studies sug�
gest that most parallel �le systems have been optimized for
a workload that is very di�erent than that which actually
exists�

Using the results from these workload characterizations
and from performance evaluations of existing parallel �le
systems� we have developed a new parallel �le system that
is intended to deliver high performance to a variety of appli�
cations running under realistic workloads� Rather than at�
tempting to design a �le system that is intended to directly
meet the speci�c needs of every user� we have designed a
simpler� more general system that lends itself to supporting
a wide variety of libraries� each of which should be designed
to meet the speci�c needs of a speci�c community of users�

In this paper we describe the features and design of the
system� The performance and scalability of the system are
examined in greater detail in �NK	���

The remainder of this paper is organized as follows� In
Section � we describe the speci�c goals Galley was designed
to satisfy� In Section � we discuss a new� three�dimensional
way to structure �les in a parallel �le system� Section

describes the design and current implementation of Galley�
Section � discusses the interface available to applications
that intend to use Galley� and Section � discusses one such
application in detail� In Section � we discuss several other
parallel �le systems� and �nally in Section � we summarize
and describe our future plans�

� Design Goals

Most current parallel �le systems were designed based pri�
marily on hypotheses about how scienti�c applications would
perform I�O� Galley�s design is the result of examining how
parallel scienti�c applications actually do I�O� Accordingly�
Galley is designed to satisfy several goals

� E�ciently handle a variety of access sizes and patterns�

� Allow applications to explicitly control parallelism in
�le access�

1 2 3
4 5 6

4 5 6
1 2 3

1 2 3
4 5 6

4 5 6
1 2 3

1 23
546

546
1 23

1 23
546

546
1 23

2 13
5 6 4

5 6 4
2 13

2 13
5 6 4

5 6 4
2 13

Figure �
 An example of a ��dimensional� cyclically�shifted
block layout� In this example there are � disks� logically
arranged into a ��by�� grid� and a ��by��� block matrix�
The number in each square indicates the disk on which that
block is stored�

� Be �exible enough to support a wide variety of inter�
faces and policies� implemented in libraries�

� Allow easy and e�cient implementations of libraries�

� Scale to many compute and I�O processors�

� Minimize memory and performance overhead�

� File Structure

Most existing multiprocessor �le systems are based on the
conventional Unix�like �le�system interface in which a �le is
seen as an addressable� linear sequence of bytes �BGST	��
Pie�	� LIN�	��� The �le system typically declusters �les
�i�e�� scatters the blocks of each �le across multiple disks�� al�
lowing parallel access to the �le� This parallel access reduces
the e�ect of the bottleneck imposed by the relatively slow
disk speed� Although the �le is actually scattered across
many disks� the underlying parallel structure of the �le is
hidden from the application�

Galley uses a more complex �le model that should lead
to greater �exibility and performance�

��� Sub�les

The linear model can give good performance when the re�
quest size generated by the application is larger than the
declustering unit size� as multiple disks are being used in
parallel� However� the declustering unit size is frequently
measured in kilobytes �e�g��
KB in Intel�s CFS �Pie�	���
while our workload characterization studies show that the
typical request size in a parallel application is much smaller

frequently under ��� bytes �NKP�	��� This disparity means
that most of the individual requests generated by parallel
applications are not being executed in parallel� In the worst
case� the compute processors in a parallel application may
issue their requests in such a way that all of an application�s
processes may �rst attempt to access disk � simultaneously�
then all attempt to access disk � simultaneously� and so on�

Another problem with the linear �le model is that a
dataset may have an e�cient� parallel mapping onto multi�
ple disks that is not easily captured by the standard declus�
tering scheme� One such example is the two�dimensional�
cyclically�shifted block layout scheme for matrices� shown
in Figure �� which was designed for SOLAR� a portable�

File

Fork

Fork

Fork

Subfile

Fork

Fork

Fork

Fork

Subfile

Fork

Fork

Fork

IOP 2

Fork

Fork

Data

Data

Data

Data

Data

Subfile

IOP 0 IOP 1

Figure �
 Three dimensional structure of �les in the Galley
File System� The portion of the �le residing on disk � is
shown in greater detail than the portions on the other two
disks�

out�of�core linear�algebra library �TG	��� This data layout
is intended to e�ciently support a wide variety of out�of�
core algorithms� In particular� it allows blocks of rows and
columns to be transferred e�ciently� as well as square or
nearly�square submatrices�

To address these problems� Galley does not automati�
cally decluster an application�s data� Instead� Galley pro�
vides applications with the ability to fully control this declus�
tering according to their own needs� This control is par�
ticularly important when implementing I�O�optimal algo�
rithms �CK	��� Applications are also able to explicitly in�
dicate which disk they wish to access in each request� To
allow this behavior� �les are composed of one or more sub�
�les� each of which resides entirely on a single disk� and
which may be directly addressed by the application� This
structure gives applications the ability both to control how
the data is distributed across the disks� and to control the
degree of parallelism exercised on every subsequent access�

��� Forks

Each sub�le in Galley is structured as a collection of one
or more independent forks� Each fork is a named� linear�
addressable sequence of bytes� similar to a traditional Unix
�le� While the number of sub�les in a �le is �xed at �le�
creation time� the number of forks in a sub�le is not �xed�
libraries and applications may add forks to� or remove forks
from� a sub�le at any time� The �nal� three�dimensional �le
structure is illustrated in Figure �� Note that there is no
requirement that all sub�les have the same number of forks�
or that all forks have the same size�

The use of forks allows further application�de�ned struc�
turing� For example� if an application represents a physical
space with two matrices� one containing temperatures and
other pressures� the matrices could be stored in the same �le
�perhaps declustered across multiple sub�les� but in di�er�
ent forks� In this way� related information is stored logically
together but is available independently�

Forks are most likely to be useful when implementing li�
braries� In addition to data in the traditional sense� many
libraries also need to store persistent� library�speci�c �meta�
data� independently of the data proper� One example of
such a library would be a compression library similar to
that described in �SW	��� which compresses a data �le in

multiple independent chunks� The library could store the
compressed data chunks in one fork and index information
in another�

Another example of the use of this type of �le structure
may be found in the problem of genome�sequence compar�
ison� which requires searching a large database to �nd ap�
proximate matches between strings �Are	��� The raw data�
base used in �Are	�� contained thousands of genetic sequences�
each of which was composed of hundreds or thousands of
bases� To reduce the amount of time required to identify
potential matches� the authors constructed an index of the
database that was speci�c to their needs� Under Galley� this
index could be stored in one fork� while the database itself
could be stored in a second fork�

A �nal example of the use of forks is Stream�� a parallel
�le abstraction for the data�parallel language� C� �MHQ	���
Brie�y� Stream� divides a �le into three distinct segments�
each of which corresponds to a particular set of access se�
mantics� Although one could use a di�erent fork for each
segment� Stream� was actually designed to store them all
in a single �le� In addition to the raw data� Stream� main�
tains several kinds of metadata� which are currently stored
in three di�erent �les
 �meta� �first� �dir� In a Galley�
based implementation of Stream�� it would be natural to
store this metadata in separate forks rather than separate
�les�

� System Structure

The Galley parallel �le system follows the client�server model�
and is based on a multiprocessor architecture that dedicates
some processors to computation and dedicates the rest to
I�O� In this system� the Compute Processors �CPs� func�
tion as clients and the I�O Processors �IOPs� act as servers�

��� Compute Processors

A client in Galley is simply a user application that has been
linked with the Galley run�time library� and which runs on a
compute processor� The run�time library receives �le�system
requests from the application� translates them into lower�
level requests� and passes them �as messages� directly to
the appropriate servers� running on I�O processors� The
run�time library then handles the transfer of data between
the compute and I�O processors�

As far as Galley is concerned� every compute processor
in an application is completely independent of every other
compute processor� Indeed� Galley does not even assume
that one compute processor is even aware of the existence of
other compute processors� This independence means that
Galley does not impose any communication requirements
on a user�s application� which in turn means that applica�
tions may use whichever communication software �e�g�� MPI�
PVM� P
� is most suitable to the given problem�

We expect that most applications will use a higher�level
library or language layered above the Galley run�time li�
brary� One such library will be one that supports a linear�
Unix�like �le model� which will reduce the e�ort required to
port applications to Galley� Other libraries currently being
implemented provide Panda �SCJ�	�� and Vesta �CFP�	��
interfaces� We also plan to implement ViC�� a variant of
C� designed for out�of�core computations� on top of Gal�
ley �CC	
��

Network

C
P

T
hr

ea
d

C
P

T
hr

ea
d

NameServer

C
P

T
hr

ea
d

C
P

T
hr

ea
d

DiskManager

C
P

T
hr

ea
d

Idle CP Threads

C
P

T
hr

ea
d

CacheManager

Figure �
 Internal structure of a Galley I�O Processor� show�
ing two active data requests waiting for the CacheManager�
one active metadata request waiting for the NameServer�
and three idle CP threads�

��� I�O Processors

I�O servers in Galley are composed of several independent
units �as shown in Figure ��� Each unit is implemented as
a single thread� Furthermore� each IOP also has one thread
designated to handle incoming I�O requests for each com�
pute processor� When an IOP receives a request from a CP�
the appropriate CP Thread interprets the request� passes it
on to the appropriate worker thread� and then handles the
transfer of data between the IOP and the CP� This multi�
threading makes it easy for an IOP to service requests from
many clients simultaneously�

While one potential concern is that this thread�per�CP
design may limit the scalability of the system� we have not
observed such a limitation in our performance tests �NK	���
One may reasonably assume that a thread that is idle �i�e��
not actively handling a request� is not likely to noticeably
a�ect the performance of an IOP� By the time the number
of active threads on a single IOP becomes great enough to
hinder performance� the IOP will most likely be overloaded
at the disk� the network interface� or the bu�er cache� and
the e�ect of the number of threads will be minor relative to
these other factors� We intend to explore this issue further
as we port Galley to di�erent architectures� which may o�er
di�erent levels of thread support�

Galley�s metadata �not to be confused with application�
speci�c �metadata� discussed above� is distributed across all
IOPs� so there is no single point of contention that could
limit scalability� Thus� each IOP acts both as a data server
and as a metadata server� When a request arrives for a
metadata operation �e�g�� �le open� close� delete�� the CP�s
thread hands the request on to the NameServer� waits for
the NameServer to complete the operation� and then passes
the result back to the requesting CP� For most operations�
the NameServer will need to submit a request to the Cache�
Manager for data stored on disk�

����� CP Threads

When a request for a data transfer arrives� the CP thread
responsible for handling the request creates a list of all the
disk blocks that will be required to satisfy the request� It
then passes the whole block list on to the CacheManager�
The CP thread then waits on a queue of bu�ers returned by
the CacheManager� Although this model does not necessar�
ily restrict each CP to a single outstanding request to each
IOP� for performance reasons our current implementation
does impose such a restriction�

As bu�ers become ready� the CP thread handles the
transfer of data between the requesting CP and that bu�er�
When all the requested data has been transferred into or
out of that bu�er� the thread decreases that bu�er�s refer�
ence count� and handles the next bu�er in the queue� When
writing� this approach is somewhat unusual in that the IOP
is essentially �pulling� the data from the CP� rather than
the traditional model� where the CP �pushes� the data to
the IOP� When the whole request has been satis�ed� or if
it fails in the middle� the thread passes a success or fail�
ure message back to its CP� and idles until another request
comes in�

����� CacheManager

The CacheManager maintains a separate list of requested
disk blocks for each thread� When multiple threads sub�
mit requests to the CacheManager� it services requests from
each list in round�robin order� This round�robin approach
is an attempt to provide fair service to each requesting CP�
Identifying more sophisticated and e�ective techniques for
providing fair service is a subject of ongoing research�

The CacheManager maintains a global LRU list of all
the blocks resident in the cache� When a new block is to be
brought into the cache� this list is used to determine which
block is to be replaced� Providing applications with more
control over cache policies is another area of ongoing work�

For e�ciency� the CacheManager also maintains a hash
table� which contains a list of all the blocks in the cache�
For each disk block requested� the CacheManager searches
its hash table of resident blocks� If the block is found� its
reference count is increased� and a pointer to that bu�er is
added to the requesting thread�s ready queue� If the block is
not resident in the cache� the �rst bu�er in the LRU list with
a reference count of � is scheduled to be replaced with the
new block� The bu�er is marked �not ready�� and is added
to the requesting thread�s ready queue� Then a request is
issued to the DiskManager to write out the old block �if
necessary�� and to read the new block into the bu�er�

����� DiskManager

The DiskManager maintains a list of blocks that are sched�
uled to be read or written� Galley uses �� KB as its disk
block size� As new requests arrive from the CacheManager�
they are placed into the list according to the disk schedul�
ing algorithm� The DiskManager currently uses a Cycli�
cal Scan algorithm �SCO	��� When a block has been read
from disk� the DiskManager updates the cache status of that
block from �not ready� to �ready�� and noti�es any threads
that may have been waiting for that block�

For portability� Galley does not use a low�level driver to
directly access the disk� Instead� Galley relies on the under�
lying system �presumably Unix� to provide such services�

Galley�s DiskManager has been implemented to use raw de�
vices� Unix �les� or simulated devices as �disks�� Galley�s
disk�handling primitives are su�ciently simple that modify�
ing the DiskManager to access a device directly through a
low�level device driver is likely to be a trivial task�

� Application Interface

Given the new �le model provided by Galley� and the ob�
served frequency of strided access patterns in parallel �le
system workloads� it was not su�cient to simply provide
applications with a traditional Unix interface� Galley�s in�
terface is primarily intended to allow the easy implementa�
tion of libraries� These libraries will provide the higher�level
functionality needed by most users�

��� File Operations

Files in Galley are created using the gfs create file�� call�
In addition to specifying a �le name� the application may
specify on how many IOPs� and even on which IOPs� the �le
is to be created� File creation is a three�step process� The
�rst step is to verify that the name chosen is available� and
if so� to reserve it� This is done with a single message to the
IOP that will be responsible for maintaining the metadata
for the new �le� The responsible IOP is determined by ap�
plying a simple hash function to the �le name� The next step
is to create sub�les on each of the appropriate IOPs� Sub�le
creation involves allocating a sub�le�header block to the �le�
A sub�le�header block is analogous to an inode in a Unix
�le system� in that it will contain all the metadata informa�
tion for that sub�le� Unlike the Unix practice of statically
creating inodes� any block in the �le system may become a
sub�le�header block� If this step fails �e�g�� if one or more
disks have no more room�� then the reserved �le name is
released� and the appropriate error code is returned to the
application� If the operation succeeds� each IOP will return
the ID of the sub�le�header block to the calling CP� The
�nal step of the �le�creation process is to store the �le name�
along with all the sub�le�header block IDs� on disk at the
responsible IOP and to return a success code to the appli�
cation� After the �le is created� the sub�les are empty� that
is� no forks are created as part of the �le�creation process�

When an application opens a �le in Galley� using the
gfs open file�� call� that processor sends a request to the
appropriate metadata server �again� determined by hashing
the �le name�� If the �le exists� the IOP returns a success
code and the list of all the sub�le�header block IDs to the
requesting CP� The run�time library assigns the open �le a
�le ID� and caches the list of header block IDs in an open�
�le table to avoid repeated requests to the metadata server�
Since these IDs do not change during the course of the �le�s
lifetime� consistency is not an issue�

��� Fork Operations

Forks in Galley are created using the gfs create fork��
call� Each call takes the ID of an open �le� the number of
the sub�le in which the fork is to be created� and the name of
the fork� The run�time library looks up the header�block ID
for the appropriate sub�le� and sends the header ID and the
fork name to the appropriate IOP� By sending the header
ID to the IOP� there is no need for an extra indexing oper�
ation to take place at the IOP� the IOP is able to retrieve

the appropriate sub�le�header block immediately� The IOP
inserts the name of the fork into the sub�le�header block�
and returns a success or error code to the CP� For the con�
venience of application programmers� Galley also provides
a gfs all create�� call that will create a fork of the given
name in every sub�le of a �le�

Forks in Galley are opened using the gfs open fork��
call� which takes the same parameters as the fork�creation
call� If a fork is successfully opened� Galley returns a fork
ID� which is used in subsequent calls� much like a �le descrip�
tor is used in Unix� Forks are closed with gfs close fork���
and deleted with gfs delete fork��� If a CP attempts to
delete a fork that has been opened by it� or by any other
CP� that fork is marked for deletion� but is not actually
deleted until it is closed by every CP that has it opened� For
convenience� there are gfs all open� gfs all close� and
gfs all delete calls as well�

��� Data Operations

Most parallel �le systems present applications with an ap�
plication interface similar to that of Unix �Pie�	� RP	��
BGST	��� While this interface is simple and familiar to
programmers� it was not designed to allow parallel appli�
cations to access parallel disks� In particular� it does not
allow programmers to issue the highly structured requests
that we have observed to be common among parallel� sci�
enti�c applications �NKP�	��� Indeed� if an interface were
available that allowed an application to issue such highly
regular requests� the number of I�O requests issued in one
production �le�system workload could have been reduced by
over 	�� �NK	��� Such structured operations can also lead
to signi�cant performance improvements �Kot	
��

In addition to simple read���write�� operations� Galley
supports simple�strided� nested�strided� and nested�batched
operations� Descriptions of these operations and the inter�
faces required to support them may be found in �NK	���
The tremendous performance improvements achieved using
these interfaces in Galley are described in �NK	���

In addition to these structured operations� Galley pro�
vides a more general �le interface� which we call a list inter�
face� This interface accepts an array of ��le o�set� memory
o�set� size� triples from the application� While this interface
essentially functions as a series of simple reads and writes�
it provides the �le system with enough information to make
intelligent disk�scheduling decisions� as well as the ability
to coalesce many small pieces of data into larger messages
for transferring between CPs and IOPs� The more struc�
tured interfaces are actually implemented on top of the list
interface�

While all of these interfaces specify the order of data
in the bu�er� the order in which the individual pieces are
transferred between the IOP to the CP is not speci�ed� This
freedom allows Galley to transfer the data from the disk to
the IOP�s memory and from the IOP to the CP in the most
e�cient order rather than strictly sequentially� This ability
to reorder data transfers can lead to remarkable performance
gains �NK	��� and is a distinct advantage of these interfaces
over any interface where the user must request one small
piece of data at a time� forcing the �le system to service
requests in a particular order�

To avoid complicating these interfaces further� Galley
does not provide an explicit interface to request data from
multiple forks or sub�les� Users may achieve similar results

by submitting multiple requests asynchronously� one to each
desired fork�

� Example� FITS

We present an example of how the features described above
may be used in practice� The Flexible Image Transport Sys�
tem �FITS� data format is a standard format for astronomi�
cal data �NAS	
�� A FITS �le begins with an ASCII header
that describes the contents of the �le and structure of the
records in the �le� The remainder of the �le is a series of
records� stored in binary form� Each record is composed of a
key� with one or more �elds� and one or more data elements�
Each record within a single FITS �le has an identical size
and structure� Records may appear in any order within the
�le�

For this paper� we created a system that was able to
handle a speci�c type of FITS �le in use at the National
Radio Astronomy Observatory �NRAO�� and generic queries
on those �les� A library that was capable of handling many
kinds of queries and FITS �les is a perfect example of the
type of domain�speci�c library we expect to be implemented
on Galley�

��� FITS at NRAO

One speci�c example of how FITS �les are used in practice
is described in �KGF	�� KFG	
�� This type of FITS �le con�
tains records with � keys� describing the frequency domain
�U�V�W �� the baseline� and the time the data was collected�
The baseline is a single number that indicates which antenna
or combination of antennas generated that record� The data
portion of each record contains a pair of data elements� one
for each of two polarizations� Each data element contains
�oating�point triples for each of �� frequencies� The triples
represent a single complex number and a weighting factor�
Thus� a single data element contains ��� bytes of data and
each record contains �
 bytes of key information and �

bytes of data�

These �les are used in many di�erent ways by di�erent
users at NRAO� The most common types of use involve scan�
ning subvolumes of the full� multi�dimensional sparse data
set� where the subvolumes may be de�ned along one or more
of the axes� For example� a user may want to examine all
the records within a given time range� and sorted along the
U axis�

Previous work on these �les has focused on increasing lo�
cality along several dimensions simultaneously� In �KFG	
��
the authors examine studied the e�ectiveness of Piecewise
Linear Order�Preserving Hashing �PLOP� �les at reducing
the amount of time required to perform common queries� by
increasing certain kinds of locality within the �les� While lo�
cality can also improve performance in parallel �le systems�
too much locality can reduce the number of disks being ac�
cessed at any time� actually leading to lower performance�

��� FITS on Galley

Since most of the queries common at NRAO include sub�
ranges of time as at least one of the constraints� we sorted
the records by time before distributing them across the IOPs�
The data was distributed in CYCLIC fashion� in blocks of
���
 records� That is� in a system with
 IOPs� IOP � would

hold records � to �����
�	� to ���	� and so on� while IOP �
would hold records ���
 to ��
�� ���� to ��
�� and so on�

For many queries� we were unable to determine a priori
which data records would satisfy the query� As a result� we
frequently examined many keys to identify the small num�
ber of data records that were relevant to the query� To
improve performance� we chose to store the keys in one fork
and the data in another� This setup allowed us to achieve
higher performance when reading the keys� since we were
not paying for the cost of retrieving uninteresting data from
disk� Although we stored all the data in a single fork on
each sub�le� another reasonable choice would have been to
store the data for each polarization in its own fork� Since
many of the queries involved data from only a single polar�
ization� this setup would also have reduced the amount of
uninteresting data that was read from disk�

To evaluate the e�cacy of their PLOP��le implemen�
tation� the authors performed several queries� which were
intended to be representative of those that were most com�
monly used in practice at NRAO �KGF	��� Their tests were
performed on a single�processor� single�disk system� We per�
formed the same set of queries� using the same data set� on
our implementation� Our tests were performed on a cluster
of IBM RS�����s connected by an FDDI network� Since the
original queries were performed on a single�node processor�
we used a single CP� We used four IOPs� each with a single
disk� Each IOP used a raw disk partition to store its data�
thus avoiding skewing the results by retrieving data stored
in AIX�s bu�er cache�

The speci�c queries performed in both cases are brie�y
described below� More detail about each query� and why it
is commonly used at NRAO� may be found in �KGF	���

�� Read the full data set�

�� Read the full data set� sorting records by time�

�� Read the full data set� sorting records by baseline�

� Read a subvolume of the data including ��� of the
time range�

�� Read a subvolume of the data including ��� of the
time range� sorting the records by U �

�� Read the subvolume for a single time and polarization�

�� Read a subvolume including ��� of the time range and
one polarization�

�� Read a subvolume including ��� of the time range� a
single baseline� and one polarization�

	� Read a subvolume including ��� of the time range�
antenna ��� and one polarization�

��� Read a subvolume including ��� of the time range�
antenna ��
� and one polarization�

��� Read a subvolume including ��� of the time range�
antenna ���� and one polarization�

��� Read a subvolume containing a single baseline and a
single polarization� sorting records by time�

Although many of these queries could have been most
e�ciently expressed using some form of strided request� our
system was designed to handle generic queries� As a result
these queries were all performed using Galley�s list interface�
The bu�er cache on each IOP was �ushed prior to each
query�

Table � shows the length of time required to complete
each query for both the PLOP��le and Galley implementa�
tions� Since the PLOP��le results were obtained on a dif�
ferent system with only a single disk� we cannot directly
compare the time required to complete the queries� Instead�
we compare the amount of time required to complete a query
relative to the time required to read all the data� This crude
normalization allows us to make some e�ort at comparison�

Data PLOP��le Galley
Query Elements Secs� Normal� Secs� Normal�

� ����	� ���
	 ���� ����� ����
� ����	� ����� ���� ����� ����
� ����	� ������ ���� ���	� ����

 �����
��� ���� ���� ���	
� ����� ���� ���� ���� ���

� ��� ���� ���� ���� ����
� ���� ���� ���
 ���� ����
� ��� ��
� ���� ���� ����
	
���
��� ���� ��
� ����
��
��� �
��� ���� ���� ���	
��
��� ����� ���� ���� ����
�� ��� ��
	 ���� ���� ���

Table �� Timing results for PLOP �les on a uniprocessor
system� and for Galley �les on a
�IOP� ��CP system� Re�
sults are shown in �raw� form� as well as normalized to the
time required to read the full data set with no �ltering or
sorting� The full data set contained ����
� records� with
�����	� data elements�

While our implementation on top of Galley was far sim�
pler than the PLOP��le implementation �about ���� the
number of lines of code�� it performed signi�cantly better
in
 out of �� cases �disregarding the �rst case� which is
used as a baseline�� and had competitive performance in �
of the remaining cases� Galley performed particularly well
on queries � and �� While the PLOP��le implementation
had to sort the whole dataset in memory� Galley�s interface
allowed us to read just the keys from their fork� sort them�
and then read the actual data into memory in sorted order�
Galley also performed relatively well on queries �� and ���
While the PLOP��le implementation had to read in � to �
times as many records as they were interested in� we were
able to �lter out the interesting records by looking only at
the data in the key�fork� Galley�s relative performance was
worst on queries 	 and ��� In these two cases� Galley had to
examine a large number of keys to identify a small number
of interesting records� while the PLOP �les were carefully
structured to reduce the number of records they had to ex�
amine for these queries� This same structure also caused
the PLOP��le implementation to be noticeably worse than
Galley�s on queries �� and ���

� Related Work

Many di�erent parallel �le systems have been developed over
the past decade� While many of these were similar to the
traditional Unix�style �le system� there have been also sev�
eral more ambitious attempts�

Intel�s Concurrent File System �CFS� �Pie�	� Nit	��� and
its successor� PFS� are examples of parallel �le systems that
provide a linear �le model with a Unix�like interface� Sup�
port for parallel applications is limited to �le pointers that
may be shared by all the processes in the application� CFS
and PFS provide several modes� each of which provides the
applications with a di�erent set of semantics governing how
the �le pointers are shared� Other parallel �le systems
with this style of interface are SUNMOS and its successor�
PUMA �WMR�	
�� sfs �LIN�	��� and CMMD �BGST	���

PPFS provides the end user with a linear �le that is
accessed with primitives that are similar to the traditional
read���write�� interface �HER�	��� In PPFS� however�
the basic transfer unit is an application�de�ned record rather
than a byte� PPFS maps the logical� linear stream of records
onto an underlying two�dimensional model� indexed with a
�disk� record� pair� PPFS provides several mapping func�
tions� which correspond to common data distributions� and
allows an application to provide its own mapping function
as well�

One of the most interesting parallel �le systems is the
Vesta �le system �and its commercial version� PIOFS� �CF	
�
CFP�	��� Files in Vesta are two�dimensional� and are com�
posed of multiple cells� each of which is a sequence of basic
striping units� BSUs are essentially records� or �xed�sized
sequences of bytes� Like Galley�s sub�les� each cell resides on
a single disk� Unlike Galley� a single disk may contain many
cells� Equivalent functionality could be achieved on Galley
by mapping cells to forks rather than sub�les� Vesta�s inter�
face includes logical views of the data� These views are essen�
tially rectangular partitionings of the two�dimensional �le�
and can provide the application with much of the function�
ality of Galley�s strided interfaces� Vesta provides users with
a di�erent and powerful way of thinking about data storage�
Its largest drawback is that it is ill�suited to datasets that
cannot be partitioned into rectangular sub�blocks of a single
size� Like Galley� Vesta uses a hashing scheme to distribute
metadata� In addition to the functionality of Vesta� PIOFS
provides applications with a Unix�like interface� Work is un�
derway on a library that will provide a Vesta interface for
Galley�

� Summary and Future Work

Based on several studies of parallel �le systems being used in
production environments� we have designed a new parallel
�le system that is intended to provide high performance to
a variety of libraries and applications� Galley is based on a
new three�dimensional structuring of �les� This structuring
provides tremendous �exibility to applications and libraries�
as well as opportunities to explicitly control the degree of
parallelism in an application�s �le accesses� Galley provides
several new forms of I�O request that reduce the aggregate
latency of multiple small requests and allows the �le system
to optimize the disk accesses required to satisfy the request�

The case studies contained in this paper� as well as per�
formance evaluations described elsewhere �NK	��� suggest
that Galley recti�es many of the shortcomings of existing

parallel �le systems� In particular� we demonstrated the
usefulness of Galley�s �fork� structure and higher�level in�
terfaces�

Galley has been completely implemented� While Galley
currently runs only on a cluster of IBM RS�����s and IBM�s
SP� multiprocessor� porting to other architectures should be
fairly straightforward and will be explored in the near future�
Work continues on improving the stability of the system in
general� Future work will focus on e�ciently supporting
multiple applications� which may place con�icting demands
on the system�

Acknowledgments

Thanks to NASA Ames for the use of their SP�� Thanks also
to John Karpovich of the University of Virginia for his help
in understanding the use and interpretation of FITS �les�
Finally� thanks to the reviewers for their helpful comments�

References

�Are	�� James W� Arendt� Parallel genome sequence
comparison using a concurrent �le system�
Technical Report UIUCDCS�R�	�����
� Uni�
versity of Illinois at Urbana�Champaign� �		��

�BGST	�� Michael L� Best� Adam Greenberg� Craig Stan�
�ll� and Lewis W� Tucker� CMMD I�O
 A
parallel Unix I�O� In Proceedings of the Sev�
enth International Parallel Processing Sympo�
sium� pages
�	�
	�� �		��

�CC	
� Thomas H� Cormen and Alex Colvin� ViC�
 A
preprocessor for virtual�memory C�� Technical
Report PCS�TR	
��
�� Dept� of Computer Sci�
ence� Dartmouth College� November �		
�

�CF	
� Peter F� Corbett and Dror G� Feitelson� De�
sign and implementation of the Vesta parallel
�le system� In Proceedings of the Scalable High�
Performance Computing Conference� pages ���
��� �		
�

�CFP�	�� Peter F� Corbett� Dror G� Feitelson� Jean�Pierre
Prost� George S� Almasi� Sandra Johnson Bay�
lor� Anthony S� Bolmarcich� Yarsun Hsu� Julian
Satran� Marc Snir� Robert Colao� Brian Herr�
Joseph Kavaky� Thomas R� Morgan� and An�
thony Zlotek� Parallel �le systems for the IBM
SP computers� IBM Systems Journal� pages
�����
�� �		��

�CK	�� Thomas H� Cormen and David Kotz� Integrat�
ing theory and practice in parallel �le systems�
In Proceedings of the ���� DAGS�PC Sympo�
sium� pages �
��
� Hanover� NH� June �		��
Dartmouth Institute for Advanced Graduate
Studies� Revised as Dartmouth PCS�TR	�����
on 	����	
�

�HER�	�� Jay Huber� Christopher L� Elford� Daniel A�
Reed� Andrew A� Chien� and David S� Blu�
menthal� PPFS
 A high performance portable
parallel �le system� In Proceedings of the �th
ACM International Conference on Supercom�
puting� pages �����	
� Barcelona� July �		��

�KFG	
� John F� Karpovich� James C� French� and An�
drew S� Grimshaw� High performance access to
radio astronomy data
 A case study� In Pro�
ceedings of the �th International Working Con�
ference on Scienti�c and Statistical Database
Management� pages �
���
	� September �		
�
Also available as UVA TR CS�	
����

�KGF	�� John F� Karpovich� Andrew S� Grimshaw� and
James C� French� Breaking the I�O bottleneck
at the National Radio Astronomy Observatory
�NRAO�� Technical Report CS�	
���� Univer�
sity of Virginia� August �		��

�KN	
� David Kotz and Nils Nieuwejaar� Dynamic �le�
access characteristics of a production parallel
scienti�c workload� In Proceedings of Supercom�
puting ���� pages �
���
	� November �		
�

�Kot	
� David Kotz� Disk�directed I�O for MIMD mul�
tiprocessors� In Proceedings of the ���� Sympo�
sium on Operating Systems Design and Imple�
mentation� pages ����
� November �		
� Up�
dated as Dartmouth TR PCS�TR	
���� on
November �� �		
�

�LIN�	�� Susan J� LoVerso� Marshall Isman� Andy
Nanopoulos� William Nesheim� Ewan D� Milne�
and Richard Wheeler� sfs
 A parallel �le sys�
tem for the CM��� In Proceedings of the ����
Summer USENIX Conference� pages �	������
�		��

�MHQ	�� Jason A� Moore� Phil Hatcher� and Michael J�
Quinn� E�cient data�parallel �les via auto�
matic mode detection� In Fourth Workshop on
Input�Output in Parallel and Distributed Sys�
tems� pages ���
� Philadelphia� May �		��

�MK	�� Ethan L� Miller and Randy H� Katz� In�
put�output behavior of supercomputer appli�
cations� In Proceedings of Supercomputing ����
pages �������� November �		��

�NAS	
� NASA�Science O�ce of Standards and Tech�
nology� NASA Goddard Space Flight Center�
Greensbelt� MD ������� A User�s Guide for
the Flexible Image Transport System 	FITS
�
��� edition� May �		
�

�Nit	�� Bill Nitzberg� Performance of the iPSC����
Concurrent File System� Technical Report
RND�	������ NAS Systems Division� NASA
Ames� December �		��

�NK	�� Nils Nieuwejaar and David Kotz� Low�level in�
terfaces for high�level parallel I�O� In IPPS ���
Workshop on I�O in Parallel and Distributed
Systems� pages
����� April �		��

�NK	�� Nils Nieuwejaar and David Kotz� Performance
of the Galley parallel �le system� In Fourth
Workshop on Input�Output in Parallel and Dis�
tributed Systems� pages ���	
� May �		��

�NKP�	�� Nils Nieuwejaar� David Kotz� Apratim Pu�
rakayastha� Carla Schlatter Ellis� and Michael
Best� File�access characteristics of parallel sci�
enti�c workloads� Technical Report PCS�TR	��
���� Dept� of Computer Science� Dartmouth
College� August �		�� Submitted to IEEE
TPDS�

�PEK�	�� Apratim Purakayastha� Carla Schlatter Ellis�
David Kotz� Nils Nieuwejaar� and Michael Best�
Characterizing parallel �le�access patterns on a
large�scale multiprocessor� In Proceedings of the
Ninth International Parallel Processing Sympo�
sium� pages �������� April �		��

�PFDJ�	� Terrence W� Pratt� James C� French� Phillip M�
Dickens� and Stanley A� Janet� Jr� A compari�
son of the architecture and performance of two
parallel �le systems� In Fourth Conference on
Hypercube Concurrent Computers and Applica�
tions� pages �������� �	�	�

�Pie�	� Paul Pierce� A concurrent �le system for a
highly parallel mass storage system� In Fourth
Conference on Hypercube Concurrent Comput�
ers and Applications� pages �������� �	�	�

�RP	�� Brad Rullman and David Payne� An e��
cient �le I�O interface for parallel applications�
DRAFT presented at the Workshop on Scalable
I�O� Frontiers �	�� February �		��

�SCJ�	�� K� E� Seamons� Y� Chen� P� Jones� J� Jozwiak�
and M� Winslett� Server�directed collective I�O
in Panda� In Proceedings of Supercomputing ����
December �		��

�SCO	�� Margo Seltzer� Peter Chen� and John Ouster�
hout� Disk scheduling revisited� In Proceedings
of the ���� Winter USENIX Conference� pages
������
� �		��

�SW	�� K� E� Seamons and M� Winslett� A data
management approach for handling large com�
pressed arrays in high performance computing�
In Proceedings of the Seventh Symposium on
the Frontiers of Massively Parallel Computa�
tion� pages ��	����� February �		��

�TG	�� Sivan Toledo and Fred G� Gustavson� The de�
sign and implementation of SOLAR� a portable
library for scalable out�of�core linear algebra
computations� In Fourth Workshop on In�
put�Output in Parallel and Distributed Systems�
pages ���
�� Philadelphia� May �		��

�WMR�	
� Stephen R� Wheat� Arthur B� Maccabe� Rolf
Riesen� David W� van Dresser� and T� Mack
Stallcup� PUMA
 An operating system for mas�
sively parallel systems� In Proceedings of the
Twenty�Seventh Annual Hawaii International
Conference on System Sciences� pages ������
�		
�

