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Chapter 1

Introduction

In the last decades VLSI technology has improved and, hence, the power of processors. What
is more, also storage technology has produced better main memories with faster access times
and bigger storage spaces. However, this is only true for main memory, but not for secondary
or tertiary storage devices. As a matter of fact, the secondary storage devices are becoming

slower in comparison with the other parts of a computer.

Another driving forces for the development of big main memories are scientific applications,
especially Grand Challenge Applications. Here a big amount of data is required for compu-
tation, but it does not fit entirely into main memory. Thus, parts of the information have
to be stored on disk and transferred to the main memory when needed. Since this transfer
- reading from and writing to disk, also known as input/output (I/O) operations - is very
time consuming, I/O devices are the bottleneck for compute immense scientific applications.
Recently much effort was devoted to I/O, in particular universities and research laboratories
in the USA, Austria, Australia, Canada and Spain. There are many different approaches to
remedy the I/O problem. Some research groups have established 1/O libraries or file systems,

others deal with new data layout, new storage techniques and tools for performance checking.

This dictionary gives an overview of all the available research groups in David Kotz’s home-
page (see below) and depicts the special features and characteristics. The abstracts give

short overviews, aims are stated as well as related work and key words. The implementa-



tion platform shall state which platforms the systems have been tested on or what they are
devoted to. Data access strategies illustrate special features of the treatment of data (e.g.:
synchronous, locking, ...). Portability includes whether a system is established on top of
another one (e.g.: PIOUS is designed for PVM) or if it supports interfaces to other systems.
Moreover, many systems are applied to real world applications (e.g.: fluid dynamics, aero-
nautics, ...) or software has been developed (e.g.: matrix multiplication). All this is stated at
application. Small examples or code fragments can illustrate the interface of special systems

and are inserted at example.

What is more, some special features are depicted and discussed explicitly. For instance, a
Two-Phase Method from PASSION is explained in detail under a specific key item. Fur-
thermore, also platforms like the Intel Paragon are discussed. To sum up, the dictionary
shall provide information concerning research groups, implementations, applications, aims,
functionalities, platforms and background information. The appendix gives a detailed sur-

vey of all the groups and systems mentioned in the Dictionary part and compares the features.

This dictionary is intended for people having background information regarding operating
systems in general, file systems, parallel programming and supercomputers. Moreover, much
work is based on C, C++ or Fortran, and many examples are written in these program-
ming languages. Hence, a basic knowledge of these languages and the general programming

paradigms is assumed.

Most of the facts presented in this dictionary are based on a web page of David Kotz, Dart-
mouth College, USA, on parallel I/O. The internet made it possible to obtain all necessary
information through ftp-downloading instead of using books or physical libraries (the web
could be referred to as a logical library). This is also the place to thank David Kotz for his
work, because without it, this dictionary would never have been written. The URL for the

homepage is:
http://www.cs.darmouth.edu/pario

Note that most of the names listed at people are only from people participating in writing the



papers, i.e. normally the names listed in the papers of the bibliography are listed in this work.

Layout and Text Style

Text in Helvitica 12 defines keywords that also contain a body of explanation. Text written
in bold italics refers to another keyword (similar to a link in a markup language). Simple
bold texts are important items or words which can be looked up in the dictionary, but which
have no explanation body devoted to. Headlines within the bodies are always indicated by
numbers followed by text in bold italics (e.g. 2.1 Architectural Design). There is no
difference in the font size between headlines and sub headlines (e.g. 1 Design, 1.1 Fea-

tures). Text in rectangular brackets refers to the text sources, e.g. [95].



Chapter 2

Dictionary

A

abort see concurrency algorithms, Strict Two-Phase Locking

ACU (Array Control Unit) see CVL

ADIO (Abstract-Device Interface for Portable Parallel-1/0O)

abstract:

aims:

Since there is no standard A PI for parallel I/O, ADIO is supposed to provide a strat-
egy for implementing APIs (not a standard) in a simple, portable and efficient way
[144] in order to take the burden of the programmer of choosing from several different
A PIs. Furthermore, it makes existing applications portable across a wide range of dif-
ferent platforms. An A PI can be implemented in a portable fashion on top of ADIO,
and becomes available on all file systems on which ADIO has been implemented (see

Figure 2.1).

The main goal is to facilitate a high-performance implementation of any existing or

new A PI on any existing or new file-system interface. The main objectives are:

o facilitate efficient and portable implementations of A PIs
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Figure 2.1: The ADIO Concept

e enable users to experiment with existing and new A PIs

e make applications portable across a wide range of platforms

implementation platform:
The performance of ADIO was tested with two test programs and one real production
parallel application on the IBM SP at Argonne National Laboratory and on the
Intel Paragon at Caltech (both USA).
data access strategies:
File open and close are implemented as collective operations. Moreover, it provides
routines for contiguous and strided access (see MPI-10), and makes use of MPTIs
derived datatypes. Read/write calls can be blocking, nonblocking or collective.
portability:
e ADIO was implemented on top of PFS and PIOFS

e subsets of PFS, PIOFS and MPI-10 were implemented on top of ADIO (logical
views of PIOF'S can be mapped to derived datatypes)

e Panda and PASSION can be implemented by using ADIO’s routines for col-

lective and strided access
e ADIO uses MPI wherever possible (e.g. derived datatypes)

e parameters like disp, etype and filetype from MPI-IO are employed
related work:

MPI-10, MPI



ADIO is a key component of ROMIO (a portable implementation of MPI-I10)
application:
Studying the nonlinear evolution of Jeans instability in self-gravitating gaseous clouds,
which is a basic mechanism for the formation of stars and galaxies.
people:
Rajeev Thakur, William Gropp, Ewing Lusk
{thakur, gropp, lusk}@mcs.anl.gov
institution:
Mathematics and Computer Science Divison, Argonne National Laboratories, S.
Cass Avenue, Argonne, IL. 60439, USA

http://www.mcs.anl.gov/scalable/scalable.html

key words:

device interface, A PI

example:
ADIO instructions are very similar to MPI-2 instructions (e.g.: ADIO Open is similar

to MPI_Open)

ADIO_File ADIO_Open (MPI_Comm comm, char *filename,
void *file_system, int access_mode, ADIO_Offset disp,
MPI_Datatype etype, MPI_Datatype filetype, int iomode,
ADI0O_Hints x*hints, int perm, int *error)

ADOPT (A Dynamic scheme for Optimal PrefeTching in parallel file systems)
abstract:

ADOPT is a dynamic prefetching scheme that is applicable to any distributed system,
but major performance benefits are obtained in distributed memory I/O systems
in a parallel processing environment [133]. Efficient accesses and prefetching are
supposed to be obtained by exploiting access patterns specified and generated from
users or compilers.

aims:
Development of disk access strategies in concurrent/parallel file systems when the

workload is expected to be generated by one or more parallel programs on a parallel

machine [133].



implementation platform:
Intel iPSC/860
related work:
disk-directed 1/0
people:
Travinder Pal Singh, Alok Choudhary
{tpsingh, choudhar}@cat.syr.edu
institution:
Department of Elect. and Comp. Engineering, Syracuse University, Syracuse, NY
13244, USA
keywords:

prefetching, cache

details:

I/0 nodes are assumed to maintain a portion of memory space for caching blocks. This
memory space is partitioned into a current and a prefetch cache by ADOPT. In particular,
the current cache serves as a buffer memory between I/O nodes and the disk driver whereas
a prefetch cache has to save prefetched blocks. Prefetch information is operated and managed

by ADOPT at the I/O node level.

[133] distinguishes between three levels in which access information from processes can be

extracted:

1. The user embeds prefetch calls while programming.
2. The compiler extracts static access information.

3. Access information in form of prefetch requests is passed on to ADOPT during the

execution of the processes.

The two major roles of the I/O subsystem in ADOPT are receiving all prefetch and disk
access requests and generating a schedule for disk I/O. Finally, ADOPT uses an Access Pat-
tern Graph (APGraph) for information about future I/O requests.



agent see Agent Tcl, PPFS , SHORE, TIAS

Agent Tcl

abstract:

A transportable agent is a named program that can migrate from machine to machine

in a heterogeneous network [61]. It can suspend its execution at an arbitrary point,

transport to another machine and resume execution on the new machine. What is

more, such agents are supposed to be an improvement of the conventional client-

server model.

aims:

Agent Tcl defines the following goals [62]:

Reduced migration to a single instruction like the Telescript go, and allow this

instruction to occur at arbitrary points.
Provide transparent communication among agents.

Support multiple languages and transport mechanisms, and allow the straightfor-

ward addition of a new language or transport mechanism.

Run on general UNIX platforms, and port as easily as possible to non-UNIX

platforms.
Provide effective security and fault tolerance.

Be available in the public domain.

implementation platform:

Agent Tcl will run on standard UNIX platforms and supports multiple languages (Tcl,

Java and Scheme) and transport mechanisms, but it is far away form being complete

[61].

data access strategies:

Four basic communication behaviors:

1.

2.

naive: Each call is a blind request for data (single request to the server).

remote procedure call: An agent invokes a remote service (sequence of requests

and responds).



3. remote evaluation: The agent sends a child to a remote machine. The child agent

executes and returns its results.

4. migration: The agent migrates from machine to machine.
portability:
UNIX platforms in general
related work:
o Al (Artificial Intelligence): In Al an agent is an entity that perceives its environ-

ment with sensors and acts on its environment with effectors.

e Personal assistants: The agent is a program that relieves the user of a routine

task.

e Distributed information retrieval: An agent searches multiple information re-
sources for the answer to a user query. Each agent is responsible for searching
the resources at its site and for communicating partial search to the other trans-

portable agents.

e software interoperation (An agent is a program that communicates correctly in
some universal communication language such as KQMLL.)
application:
Agent Tcl is used in a range of information-management applications. It is also used
in serial workflow applications (e.g. an agent carries electronic forms from machine to
machine). It is used for remote salespersons, too.
people:
Robert S. Gray, George Cybenko, David Kotz, Daniela Rus
{rgray, gvc, dfk, rus}@cs.dartmouth.edu
institution:
Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
http://www.cs.dartmouth.edu/agent/lab/
key words:

client-server, migration, RPC, Tcl, Java, Scheme, mobile-agent



example:
The following example from [61] shows an agent that submits a child that jumps from

machine to machine and executes the UNIX who command on each machine.

# procedure WHO is the child agent that does the jumping
proc who machines {

global agent

set list ""

# jump from machine to machine and exectute the UNIX who command
on each machine
foreach m $machines {
if {catch "agent_jump" $M"} {
append list "$m:\n unable to JUMP to this machine"
else {
set users [exec who]
append list "agent (local-server):\n$users\n\n"
}
}

return $list

set machines "bald cosmo lost-ark temple-doom moose muir tanaya tioga
tuolomne"
# get name from server
agent_begin
# submit the child agent that jumps
agent_submit $agent(local-ip) -vars machines -procs who -script {who
$machines}
# wait for and output the list of users
agent_receive code string -blocking
puts $string
#agent is done
agent_end

possible ouput:
bald.cs.dartmouth.edu:

rgray ttyp2 Sep 5 21:24 (:0.0)
rgray tty6 Sep 7 07:14

cosmo.dartmouth.edu:

gvc pts/0 Aug 23 10:11



details:

1 Background

Agents are an extension of the client-server paradigm which divides programs into fixed
rolls. The client can only execute services that are supported by the server (The most com-
mon communication mechanism is message passing), and the programmer is required to
handle low-level details. Remote Procedure Call (RPC) hides theses low-level details by
allowing a client to invoke a server operation using the standard procedure call mechanism.
Similar to client-server, the client is limited to services supported by a server, therefore,
transmitting the intermediate data is a waste of time. Avoiding this, the clients send a sub-
program to the server. The subprogram executes at the server and returns only the final

result to the client, and all intermediate data transfer is eliminated.

Transportable agents are autonomous programs that communicate and migrate at will, sup-
port the peer-to-peer model and are either clients or servers. Furthermore, they do not

require permanent connection between machines and are more fault-tolerant.

2 Architecture

The architecture has four levels: An A PI for each transport mechanism, a server that ac-
cepts incoming agents and provides agent communication (send messages; an agent can
send itself or a child agent to a remote site), an interpreter for each supported language, and
on top the agents themselves (see Figure 2.2). The interpreter consists of four components:
an interpreter, a security module that prevents an agent from taking malicious actions,
a state module that captures and restores the internal state of an executing agent and an

A PI that interacts with the server to handle migration, communication and checkpointing.

The second level (server or engine) performs the following tasks [63]:

e Status: Keep track of agents running on the machine and answer queries about their

status.

e Migration. Accept incoming agents and pass the authenticated agent to the applica-
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Figure 2.2: Architecture of Agent Tcl

tion interpreter.
e Communication: Allow agents to send messages to each other within the namespace.
e Nonvolatile store

3 Agent Tcl Version 1.1
Tcl is a high-level scripting language (developed in 1987), is interpreted and so it is highly

portable and easier to make sure. [60] states several disadvantages:
e inefficient compared to most other interpreted languages
e not object-oriented
e no code modularization aside from procedures
e difficult to write and debug large scripts

The architecture of Agent Tcl has two components: The server and a modified Tcl core
with a Tcl extension. The server runs on each network site and is implemented as two com-
ponents: the socket watcher for incoming agents, messages and requests - and the agent
table which keeps track of the agents that are running on the machine and buffers incoming

messages until the destination agent receives them.



all-to-all communication see Application Programming Interface

Alloc Stream Facility (ASF)

Alloc Stream Facility (ASF) is an application-level I/O facility in the Hurricane File
System (HFS). It can be used for all types of I/O, including disk files, terminals, pipes,
networking interfaces and other low-level devices [96]. An outstanding difference to UNIX
I/0 is that the application is allowed direct access to the internal buffers of the I/O library
instead of having the application to specify a buffer into or from which the I/O data is copied.

The consequence is another reduction in copying.

ASC (Alloc Stream Interface) is used internally in ASF, but it is also made available to
the application programmer. It is modeled in C. The most important operations in AST are
salloc and sfree which correspond to the operations malloc and free in C. Furthermore,
AST allows a high degree of concurrency when accessing a stream. The data is not copied
from user buffer, and the stream only needs to be locked while the library’s internal data

structures are being modified. See also HF'S.

Alloc Stream Interface (ASI) see Alloc Stream Facility, HFS

ANL (Argonne National Laboratory) - Parallel 1/0O Project

abstract:
ANL builds and develops a testbed and parallel I/O software and applications that
will test and use this software. The 1/O system applies two layers of high-performance
networking. The primary layer is used for interconnection between compute nodes
and I/O servers whereas the second layer connects the I/O servers with RAID
arrays.

aims:

e principal goal: create a testbed rich enough that a large number of experiments

can be conducted without requiring new hardware to develop [68].

e Overall goal: develop the framework for creating balanced high-performance com-



puting systems in the future that are highly I/O capable [68]. A further aim is
to provide the capability to test both parallel I/O systems and to validate those
systems in the context of a robust mass storage environment [68].
implementation platform:
IBM SP1 (compute nodes), IBM RS/6000 (I/O servers), IBM 9570 RAID
related work:
ANL collaborates with the National Storage Laboratory (NSL) and with Scalable I/O
Initiative
people:
Mark Henderson, Bill Nickless, Rick Stevens
{henderson,nickless, stevens}@mcs.anl.gov
institution:
Mathematics and Computer Science Division, ANL, Argonne, IL. 60439, USA

http://www.mcs.anl.gov/index.html

anonymous objects see SHORE
AP1000 see Fujitsu AP1000
APl see Application Program Interface

application process (A/P) see Jovian, ViPIOS

Application Program Interface (API)

There are two complementary views for accessing an OOC data structure with a global
view or a distributed view [9]. A global view indicates a copy of a globally specified
subset of an OOC data structure distributed across disks. The library needs to know the
distribution of the OOC and in-core data structures as well as a description of the re-
quested data transfer. The library has access to the OOC and in-core data distributions.
With a distributed view, each process effectively requests only the part of the data struc-
ture that it requires, and an exchange phase between the coalescing processes is needed

(all-to-all communication phase). See also Jovian.
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array distribution

An array distribution can either be regular (block, cyclic or block-cyclic) or irregular (see
irregular problems) where no function specifying the mapping of arrays to processors can
be applied [142]. Data that is stored on disk in an array is distributed in some fashion at
compile time, but it does not need to remain fixed throughout the whole existence of the

program. There are some reasons for redistributing data:
e Arrays and array sections can be passed as arguments to subroutines.

o If the distribution in the subroutine is different from that in the calling program, the

array needs to be redistributed.

PASSION defines different forms of redistribution of data (see Figure 2.3): The redis-

tribution of multidimensional arrays can be obtained in two forms:
e shape retaining: The shape of the local array remains unchanged.
e shape changing: The shape changes after redistribution.

When a main program calls a subroutine with a different distribution, it is necessary
to redistribute. After returning from the subroutine, it is necessary to redistribute (=re-

redistribution) to the original format.



Array Control Unit (ACU) see CVL
ASI (Alloc Stream Interface) see Alloc Stream Facility, HFS

automatic data layout

A Fortran D program can be automatically transferred into an SPMD node program for
a given distributed memory target machine by using data layout directives. A good data
layout is responsible for high performance [91]. An algorithm partitions the program into
code segments, called phases. Some case studies are presented in [80]. Remapping ideas

between phases can be found in [92]. See also disk-directed I/0.

B

BFS (Block File Server) see Hurricane File System (HFS)

Bit-Interleaved Parity (RAID Level 3) see RAID

Block-Interleaved Distributed-Parity (RAID Level 5) see RAID

Block-Interleaved Parity (RAID Level 4) see RAID

Block File Server (BFS) see Hurricane File System (HFS)

block services see ParFiSys

BNN Butterfly see Bridge parallel file system

bottleneck see CHANNEL, file level parallelism, 1/0 problem, Pablo, parallel file
system, RAID, Strict Two-Phase Locking

Bridge parallel file system
This file system provides three interfaces from a high-level UNIX-like interface to a low-level

interface that provides direct access to the individual disks [54]. A prototype was built on

the BNN Butterfly. See also SPIFFI

Butterfly Plus see RAPID



C

C*
C* supports data parallel programming where a sequential program operates on parallel
arrays of data, with each virtual processor operating on one parallel data element [39]. A com-

puter multiplexes physical processors among virtual processors to support the parallel model.

A variable in C* has a shape describing the rectangular structure and defining the logical
configuration of parallel data in virtual processors. Since C* is restricted to in-core data,

ViC* is proposed to deal with out-of-core computation.
cache agent see Portable Parallel File System (PPFS)

Cache Coherent File System (CCFS)
abstract:
The Cache Coherent File System (CCFS) is the successor of ParFiSys and consists

of the following main components [24]:

e Client File Server (CLFS): deals with user requests providing the file system
functionality to the users, and interfacing with the CCFS components placed in

the I/O nodes; it is sited on the clients

e Local File Server (LFS): interfaces with I/O devices to execute low level I/0

and is sited on disk nodes

e Concurrent Disk System (CDS): deals with LFS low level I/O requests and
executes real I/O on the devices and is sited on the disk nodes
aims:
The objectives of the CCFS are: a cache coherent, scalable, concurrent file system

providing a network of processors with a versatile access to file storage.



implementation platform:

GPMIMD

data access strategies:
see ParFiSys
related work:
ParFiSys
people:
see ParFiSys
institution:
see ParFiSys
key words:

distributed memory, file system, client-server

details:

The CLFS is the first level within CCFS and its main function is to cache information.
The models of a LFS as well as CLFS are related to a client-server model and include
some main concepts: light-weighted processes and channels. Light-weighted processes
(LWP) allow to treat several requests of the CLFS concurrently without blocking. Channels
are used to transfer massive data in a one-to-one communication. The main loops look

like that:
e wait for a message to arrive (communication is accomplished via message passing)
e extract the system call number and use it as an index into a function table
e call the appropriate procedure and wait for the answer (thread creation)
e reply a request

CDS provides parallel access to disk controllers and disk devices over a net of processors.
The main concepts are high performance, scalability, distribution and concurrency. CDS
will not directly be seen by the users, but a file system or a database will be between users

and CDS.



1 Design Features of CDS

e Since each type of disk offers a different balance of fault-tolerance, performance and

cost, CDS should satisfy a wide range of applications and interact with different disks.

e It should provide two different services (local and distributed), but with the same

interface.

e Process communication is handled by a POSIX like message passing mechanism.

Primitive send and receive commands are used, and reliable communication is assumed.

e Processes and threads will be used for process management. Each heavyweight process

will have many threads executing concurrently.
e Consistency always has to be insured by locking of data blocks.

e CDS carries out the mapping from virtual to physical blocks. The virtual address is
passed to a CDS routine which maps it to the physical address and carries out the cor-
responding I/O operation. Scalability is enhanced by adding disk nodes dynamically
to the I/O system.

2 CDS Architecture

CDS is similar to a client-server model, but in a distributed fashion. Each process can
be referred to as a client of a big unique ”virtual disk” server. Moreover, CDS heavily uses
threads (in order to allow the server to treat several requests concurrently without blocking),
ports (in order to receive requests from clients) and channels (transfer data in a one-to-one

communication).

2.1 Server
CDS does not have just a unique, but one server per disk node. The main goal of the single

servers is to exploit concurrency in the access to its node. Main features [125]:

e It is very simple. Only basic single node access of other CDS servers.

e Is does not worry about the existence of other CDS servers.



Is does not worry about the birth and death of the clients.

It is only devoted to serve requests with local blocks.

It serves only self-contained requests.

It is usually a very long life and robust process.

Each CDS server has an own block cache in order to be efficient enough. Moreover, Last

Recently Used policy is used.

2.2 Client
Clients have to be able to distribute incoming requests between several servers. The main

features are [125]:

e It is not a simple RPC interface, but it implements part of the whole CDS function-

ality.
e It has to keep information about how many CDS servers exist and where they are.
e Is does not worry about the birth and death of the clients.

cache manager see Galley

caching

In order to avoid or reduce the latency of physical I/O operations, data can be cached for
later use. Read operations are avoided by prefetching and write operations by postponing
or avoiding writebacks. Additionally, smaller requests can be combined and large requests
can be done instead. One important question is the location of the cache. PPFS employs
three different levels: server cache (associated with each I/O sever), client cache (holds data

accessed by user processes), and global cache (in order to enforce consistency) [73].

CAP Research Program
CAP is an integral part of parallel computing research at the Australian National University

(ANU). A great deal of work is devoted to the Fujitsu AP1000 since CAP is an agreement



between ANU and the High Performance group of Fujitsu Ltd.

CC++ (Concurrent C++) see task-parallel program

CCFS see Cache Coherent File System

CDS (Concurrent Disk System) see Cache Coherent File System (CCFS)
CDS (Client-distributed state) see concurrency algorithms

cell see Vesta

CFS see Concurrent File System

CHANNEL

PASSION introduces CHANNEL as modes of communication and synchronization between
data parallel tasks [4]. A CHANNEL provides a uniform one-directional communication
mode between two data parallel tasks, and concurrent tasks are plugged together. This
results in a many-to-many communication between processes of the communicating tasks.

The general semantics of a CHANNEL between two tasks are as follows:

e Distribution Independence: If two tasks are connected via a CHANNEL, they need not
have the same data distribution, i.e. whereas task 1 employs a cyclic fashion, task 2
can use a block fashion and the communication can still be established. Hence, both

data distributions are independent.

e Information Hiding: A task can request data from the CHANNEL in its own dzstri-

bution format. This is also true if both tasks use different data dzstribution formats.

e Synchronization: The task wanting to receive data from the CHANNEL has to wait
for the CHANNEL to get full before it can proceed.

PASSTON offers two different approaches to implement a CHANNEL: Shared File Model
and Distributed File Model.

1 Shared File Model (SFM)
Such a CHANNEL uses a shared file and is uni-directional. The shared file consists of many

regions which may be contiguous or striped. It has the following characteristics:



e Multiple-Readers/Multiple-Writers are allowed, but the compiler has to generate the
correct code to avoid overwriting of data. Furthermore, each reading process has its

own file pointer which can read any part of the file.
e Synchronization is gained via a synchronization variable at the beginning of the file.

The advantage of SFM is that it allows the communication of a dissimilar set of processors
and, hence, extends easily to a heterogeneous environment [4]. They can even have their own
file systems as long as they are convertable to the other’s machine. However, a single file can
also be a bottleneck in the system, and performing read/write to synchronize may be time

consuming.

2 Multiple File Model (MFM)

In contrast to SFM, MFM allows data to be communicated in a pipelined fashion by break-
ing the data structure into a number of smaller data sets. The intermediate storage facility
consists of multiple files. Unfortunately, these multiple files introduce extra overheads for

the implementation [4].

CHAOS

abstract:
CHAOS deals with efficiently coupling multiple data parallel programs at runtime.
In detail, a mapping between data structures in different data parallel programs is
established at runtime. Languages such as HPF, C an pC++ are supported [123].
The approach is supposed to be general enough for a variety of data structures.

aims:
coupling of multiple data parallel programs at runtime
The primary goals of the implementation were language independence, flexibility and
efficiency.

implementation platform:
The implementation runs on a cluster of four-processor SMP Digital Alpha Server

4/2100 symmetric processors, and the nodes are connected by an FDDI network.



data access strategies:
Efficiency is obtained by buffering and asynchronous transfer of data as well as pre-
computation of optimized schedules. The programming model provides two primary
operations: exporting individual arrays and establishing a mapping between a pair of
exported arrays.

portability:
PVM is used for establishing the underlying messaging layer.

related work:
similar to the software bus approach used in Polith [123]
single address space operating system Opal
Linda could also be used to couple programs [123]

Meta-Chaos, PARTI

peope:
Guy Edjlali, Alan Sussman, Joel Saltz, M. Ranganathan, A. Acharaya
{edjlali, als, saltz, ranga, acha}@cs.umd.edu

institution:
Department of Computer Science and UMICAS, University of Maryland, College Park,
MD 20742, USA
http://www.cs.umd.edu/projects/hpsl.html

key words:
coupling, distributed memory

example:
An example of such a mapping can look like follows: A pair of simulations working on
neighboring grids and periodically exchanging data at the boundary. Here the array
sections in both programs which correspond to the common boundary would be mapped
together [49].

program source

integer, dimension (200,199)::B
integer, dimension (2)::Rleft, Rright

Rleft (1) = 50 Rleft(2)

= 50
Rright (1) = 100 Rright (2) =

100



regionId=CreateRegion_HPF (2, Rleft(1), Rright(1))
src_setOfRegionId = MC_NewSetOfRegion ()
MC_AddRegion2Set (Regionld, src_setOfRegionId)
schedule = MC_ComputeSched (HPF, B, src_setOfReginId)
call MC_DataMoveSend (schedId, B)

program destination

integer, dimension (50,60)::A
integer, dimension (2)::Rleft, Rright

Rleft (1) =1 Rleft(2) = 10

Rright (1) = 50 Rright (2) = 50
regionId=CreateRegion_HPF (2, Rleft(1), Rright(1))
dest_setOfRegionId = MC_NewSetOfRegion ()
MC_AddRegion2Set (RegionId, dest_setOfRegionId)
schedule = MC_ComputeSched (HPF, B, dest_setOfReginId)
call MC_DataMoveSend (schedId, A)

Here two arrays are defined and the communication between them is established with

the Meta-Chaos command MC_DataMove.

details:

Firstly, the implementation used asynchronous, one sided message passing for inter- appli-
cation data transfer with the goal to overlap data transfer with computation [123]. Secondly,
optimized messaging schedules were used. The number of messages transmitted has to be
minimized. Finally, buffering was used to reduce the time spent waiting for data. The data
transfer itself can be initiated by a consumer or a producer data parallel program. Fur-
thermore, the inter-application data transfer is established via a library called Meta-Chaos.
PVM is the underlying messaging layer, and each data parallel program is assigned to a

distinct P VM group.

Meta-Chaos is established to provide the ability to use multiple specialized parallel libraries
and/or languages within a single application [49], i.e. one can use different libraries in one

program in order to run operations on distributed data structures in parallel.

Meta-Chaos introduces three techniques for allowing data parallel programs to interop-

erate:



1. Find out the unique features of both libraries and implement those in a single integrated

runtime support library.
2. Use a costume interface between each pair of data parallel libraries.

3. Define a set of interface functions that every data parallel library must export, and

build a so-called meta-library.

The CHAOS group is also involved in solving irregular problems.

CHARISMA (CHARacterize I/0 in Scientific Multiprocessor Applications)

abstract:
CHARISMA is a project to characterize I/O in scientific multiprocessor applications
from a variety of production parallel computing platforms and sites [89]. It recorded
individual read and write requests in live, multiprogramming workloads. Some results
are presented in [89, 122]. It turned out that most files were accessed in complex, highly
regular patterns.
aims:
measure real file system workloads on various production parallel machines
implementation platform:
CHARISMA characterized the file system activities of an Intel iPSC/860 and a TMC
CM-5 [85].
people:
David Kotz, Nils Nieuwejar, A. Purakayastha, Carla Ellis, Michael L. Best
{dfk, nils}cs.dartmouth.edu
apu@watson.ibm.com, carla@cs.duke.edu, mike@media.mit.edu
institution:
e Department of Computer Science, Dartmouth College, Hanover, NH 03755-3510,
USA

e Media Lab, MIT, Cambridge, MA 02139, USA
e Department of Computer Science, Duke University, Durham, NC 22708, USA

http://www.cs.dartmouth.edu/research/charisma.html



key words:

distributed memory, I/O characterization

check disk see coding techniques

checkpointing

Checkpointing allows processes to save their state from time to time so that they can be
restarted in case of failures, or in case of swapping due to resource allocation [10]. What is
more, a checkpointing mechanism must be both space and time efficient. Existing checkpoint-
ing systems for MPPs checkpoint the entire memory state of a program. Similarly, existing
checkpointing systems work by halting the entire application during the construction of the
checkpoint. Checkpoints have low latency because they are generated concurrently during

the program’s execution. See also ChemlIO.

ChemlO (Scalable I/O Initiative)
abstract:

ChemlO is an abbreviation for High-Performance I/O for Computational Chemistry
Applications. The Scalable I/O Initiative will determine application program re-
quirements and will use them to guide the development of new programming language
features, compiler techniques, system support services, file storage facilities, and high

performance networking software [6] [34].

Key results are:

e implementation of scalable I/O algorithms in production software for computa-

tional chemistry applications

e dissemination of an improved understanding of scalable parallel I/O systems and
algorithms to the computational chemistry community
aims:
The objectives of the Application Working Group of a the Scalable I/O Initiative
include [121]:



collecting program suites that exhibit typical I/O requirements for Grand Chal-

lenge Applications on massively parallel processors

monitoring and analyzing these applications to characterize parallel I/O require-
ments for large-scale applications and establish a baseline for evaluating the system

software and tools developed during the Scalable I/O Initiative

modifying, where initiated by the analysis, the I/O structure of the application

programs to improve performance

using the system software and tools from other working groups and representing
the measurement and analysis of the applications to evaluate the proposed file

system, network and system support software, and language features

developing instrumented parallel I/O benchmarks

application:

The Application Working Group has identified 18 major application program suites for

investigating during the Scalable I/O Initiative.

Biology

— General Neuronal Simulation Systems (GENESIS)

— 3-D Atomic Structure of Viruses

Chemistry

Scalable I/O for Hartree-Fock Methods

Quantum Chemical Reaction Dynamics
— Cross-Sections for Electron-Molecule Collisions

— Electronic Structures for Superconductors

Earth Sciences

Parallel NCAR Community Climate Model
— Four Dimensional Data Assimilation

— Land Cover Dynamics

Data Analysis and Knowledge Discovery



— Scalable I/0O for Scientific Data Processing

— Massive SAR Processing of Large Radar Data Sets
e Engineering

— 3-D Navier-Stokes

— Exflow: a Compressible Navier-Strokes Solver

— Scattering and Radiation from large Structures
e Graphics

— I/O Support for Parallel Rendering Systems
e Physics

— Vortex Models for High Tc Superconductors
— Very Large FFT’s - High Speed Data Acquisition
implementation platform:
Sun SPARC, DEC, HP 700 series, Intel Gamma, Intel Touchstone Delta, SGI,
Cray C-90, Cray T-3D, Cray Y-MP, Intel Paragon, IBM SP1, Intel iPSC/860,
nCUBE-2, CM-5, IBM RS6000
people:
James C.T. Pool (Chair), Leon Alkalaj, Upinder S. Bhalla, David Bilitch, James Bower,
C. Cohn, David W. Curkendall, Larry Davis, Erik De Schutter, Robert D. Ferrora, Ian
Foster, G. Fox, Nigel Goddard, Par Hanarahn, Rick A. Kendall, Aron Kuppermann,
Gary K. Leaf, Anthony Leonard, David Levine, Peter M. Lyster, Dan C. Marinescu,
Vincent McKoy, Daniel I. Meiron, Edmond Mesrobian, John Michalakes, K. Mills, M.
Minkoff, Caharles C. Mosher, Richard Muntz, Jean E. Patterson, Thomas A. Prince,
Joel H. Saltz, Herbert L. Siegel, Paul E. Stolorz, Roy D. Williams, Carl L. Winstead,
Mark Wu

institution:
ARCO Exploration and Production Technology, TX 75075
Argonne National Laboratory, IL 60439
California Institut of Technology, Pasadena, CA 91125
Gordon Space Flight Center



Jet Propulsion Laboratory, MS 198-219

Mt. Sinai School of Medicine, NY 10029
Parcific Northwest Laboratory, WA 99352-0999
Pittsburgh Supercomputing Center, PA 15213
Princton University, NJ 08544

Purde University, IN 47907

Syracuse University, NY 13244

University of California, CA 90024-1596
University of Maryland, MD 20742

http://www.mcs.anl.gov/chemio/

circular wait see Strict Two-Phase Locking

Client-distributed state (CDS) see concurrency algorithms

Client File Server (CLFS) see Cache Coherent File System (CCFS)

client-server see Agent Tcl, Cache Coherent File System, EXODUS, Galley,
object-oriented database, PIOUS, Portable Parallel File System (PPFS), SPFS,
TOPs, Vesta, ViPIOS

clustering
A file is divided into segments which reside on a particular server. This can be regarded as

a collection of records. What is more, each file must have at least one segment [73]. See also

PPFS.

CM-2 (Connection Machine)
CM-2 is a SIM D machine where messages between processors require only a single cycle [97].

See also Appendix: Parallel Computer Architecture.

CM-5 see CHARISMA, ChemIO, PASSION, Multipol, CMMD I/0 System,
Appendix: Parallel Computer Architecture
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Figure 2.4: Parity examples

CMMD I/O System

This system provides a parallel 1/O interface to parallel applications on the Thinking
Machines CM-5, but the CM-5 does not support a parallel file system. Hence, data is
stored on large high-performance RAID systems [54].

coalescing processes (C/P) see Jovian, Application Program Interface

coding techniques

Magnetic disk drives suffer from three primary types of failures: transient or noise-related fail-
ures (corrected by repeating the offending operation or by applying per sector error-correction
facilities), media defect (usually detected and corrected in factories) and catastrophic failures
like head crashes. Redundant arrays can be used to add more security to a system. The
scheme is restricted to leave the original data unmodified on some disks (information disks)

and define redundant encoding for that data on other disks (check disks).

In the first example in Figure 2.4, the parity is always in the disk on the right side. The



overhead is 1/G (where G is the number of disks) and the update penalty is 1 (one check
disk update is required for every information disk update). The second example is an
extension of the first one and uses a 2d-parity. On the end of each row and each column
a check disk stores the parity. The overhead is 2G/G? = 2/G and the update penalty is
2 [67]. See also RAID.

collective-l/O see disk-directed I/0, Jovian, Panda, PASSION, Vesta

collective-1/O interface see disk-directed I/0, Panda

collective communication see Jovian, loosely synchronous, MPI, PASSION

commit see concurreny algorithms, PIOUS, Strict Two-Phase Locking
communication coalescing see PARTI

communicator see MPI, MPI-10, PVM

compute node see ANL, CFS, disk-directed 1/0, Intel iPSC /860 hypercube, nCUBE,
Panda, PIOFS, PIOUS, PASSION, Vesta

compute processor see Galley

concurrency algorithms

concurrency algorithms can be divided into two classes [108]:

e Client-distributed state (CDS) algorithms are optimistic and allow the I/O dae-
mons to schedule in parallel all data accesses which are generated by a given file pointer.
This method can lead to an invalid state that forces rollback: a file operation may have
to be abandoned and re-tried. CDS algorithms distribute global state information in
the form of an operation ”"commit” or "abort” message, sent to the relevant I/O
daemons by the client. In PIOUS this model is realized with a transaction called
volatile. CDS algorithms provide the opportunity to efficiently multicast global state

information.

e Server-distributed state (SDS) algorithms are conservative, allowing an I/O dae-
mon to schedule data access only when it is known to be consistently ordered with

other data accesses. SDS never leads to an invalid state, because global state informa-



tion is distributed in the form of a token that is circulated among all I/O daemons

servicing a file operation.

concurrency control

Sequential consistency (serializability) dictates that the results of all read and write op-
erations generated by a group of processes accessing storage must be the same as if the
operations had occurred within the context of a single process [108]. It should gain the ef-
fect of executing all data accesses from one file operation before executing any data accesses
from the other one . This requires global information: each I/O daemon executing on each
I/O node must know that it is scheduling data access in a manner that is consistent with
all other I/O daemons. Concurrency control algorithms can be divided into two classes:

client-distributed and server-distributed. See also concurrency algorithms.

Concurrent Disk System (CDS) see Cache Coherent File System (CCFS)

Concurrent File System (CFS)
CFS is the file system of the Intel Touchstone Delta and provides a UNIX view of a file

to the application program [15]. Four I/O modes are supported:

e Mode 0: Here each node process has its own file pointer. It is useful for large files to

be shared among the nodes.

e Mode 1: The compute nodes share a common file pointer, and I/O requests are

serviced on a first-come-first-serve basis.

e Mode 2: Reads and writes are treated as global operations and a global synchronization

is performed.

e Mode 3: A synchronous ordered mode is provided, but all write operations have to be

of the same size.

conflict see Strict Two-Phase Locking



control thread see SPIFFI
CP (compute processor) see Galley
CP Thread see Galley

Cray C90
The Cray C90 is a shared memory platform [97].

Cray Y-MP see ChemIO, supercomputing applications

CVL (C Vector Library)
abstract:
CVL (also referred to as DartCVL) is an interface to a group of simple functions for
mapping and operating on vectors [38]. The target machine is a SIMD computer. In
other words, CVL is a library of low-level vector routines callable from C [38].
aims:
The aim of CVL is to maximize the advantages of hierarchical virtualization.
implementation platform:
DEC 12000/Sx 2000 (equivalent to MasPar MP-2 massively parallel computer)
related work:

UnCVL at University of North Carolina; there are two major differences between

DartCVL and UnCVL:

1. DartCVL uses hierarchincal virtualization; UnCVL cut-and-stack

2. DartCVL runs as much serial code as possible; UnCVL runs all serial code on
the Array Control Unit (ACU)
people:
Thomas Cormen, Nils Nieuwejar, Sumit Chawla, Preston Crow, Mlissa Hrischl, Roberto
Hoyle, Keith D. Kotay, Rolf H. Nelson, Scott M. Silver, Michael B. Taylor, Rajiv
Wickremesinghe

{thc, nils}@cs.dartmouth.edu



institution:
Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
http://www.cs.dartmouth.edu/research/pario.html

key words:

I/0O interface, vector operations

D

DAC (Directed Acyclic Graphs) see SPFS

Data Arrays are In-Core and Indirection Arrays of Out-of-core (DAI/IAO) see irregular
problems

DartCVL see CVL

data declustering see Galley, parallel file system, PIOUS, RAID, ViPIOS

data parallel

A data parallel program applies a sequence of similar operations to all or most elements of
a large data structure [4]. HPF is such a language. A program written in a data parallel
style allows advanced compilation systems to generate efficient code for most distributed
memory machines [91]. Additionally, [91] provides some guidelines to write programs in a

data parallel programming style:
e do not write machine-dependent code
e name data objets explicitly
e avoid indirect addressing where possible

data prefetching

The time taken by the program can be reduced if it is possible to overlap computation with
I/O in some fashion. A simple way of achieving this is to issue an asynchronous 1/O request
for the next slab (see PASSION) immediately after the current slab has been read. As for

prefetching, data is prefetched from a file, and on performing the computation on this data



the results are written back to disk [33]. This is repeated again afterwards.

[82] studies prefetching and caching strategies for multiple disks in the presence of application-
provided knowledge of future accesses. Furthermore, the tradeoffs between aggressive prefetch-
ing and optimal cache replacement are discussed. The results of a trace-driven simulation
study of integrated prefetching and caching algorithms are presented. Following algorithms
are discussed: aggressive, fixed horizon, reverse aggressive and forestall. Prefetching can pre-
load the cache to reduce the cache miss ratio, or reduce the cost of a cache miss by starting

the I/O early [116].

data reuse

The data already fetched into main memory is reused instead of read again from disk. As a

result, the amount of I/O is reduced [33]. See also PARTI.

data sieving
Normally data is distributed in a slab (see PASSION) and not concentrated on a special
address. Direct reading of data requires a lot of I/O requests and high costs. Therefore, a

whole slab is read into a temporary buffer and the required data is extracted from this buffer

and placed in the ICLA (see PASSION).

All routines support the reading/writing of regular sections of arrays which are defined as
any portion of an array that can be specified in terms of its lower bound, upper bound and
stride in each dimension. For reading a strided section, instead of reading only the requested
elements, large contiguous chunks of data are read at a time into a temporary buffer in main
memory [33]. This includes unwanted data. The useful part of it is extracted from the buffer
and passed to the calling program. A disadvantage is the high memory requirement for the

buffer.

data striping see RAID



DDLY (Data Distribution Layer)

abstract:

aims:

DDLY is a run-time library providing a fast high-level interface for writing parallel
programs. DDLY is not yet ready, but is supposed to support automatic and efficient
data partitioning and distribution for irregular problems on message passing
environments. Addidionally, parallel I/O for both regular and #rregular problems

should be provided.

provide a smart interface for managing matrices as abstract objects

support 1/O, partitioning and distribution

data access strategies:

I/O routines provide independence between the formats of data stored in files and in
memory. Formats such as Harwell-Boeing, typical raw and ASCII proprietary formats
are supported. Furthermore, several representations of matrices in memeory can be

managed (e.g. dense matrix, compressed sparse matrix).

portability:

HPF, Vienna Fortran

key words:

I/0O library, irregular problems

people:

G. P. Trabada, E. L. Zapata

institution:

University of Malaga, Spain

example:

In the following program fragment from [147] (designed in a SIMD style) data is read
from secondary storage and is distributed in an optimal way afterwards. Finally, each

node operates on a local problem with local data.

#include <ddly.h>
void main



ddly_m_descriptor *md;
ddly_t_descriptor *td;
int n_dim, dim_size [MAX_DIM],
Columns[],
Rows[];
float Values;

// describe the current topology
td = ddly_new_technology (n_dim, dim_size);

//open matrix descriptor associated to file
md = ddly_open_matrix (filename, DDLY_MF_HARWELLB);

// read matrix data from file
ddly_read_whole_matrix (md);

// compute partition, \wrf{distribution} for matrix and distribute
// data to all nodes
ddly_mrd (md, td);

// each node has now only local data
Values = ddly_values (md);

Columns = ddly_sp_columns (md);

Rows = ddly_sp_rowpointers (md);

// local computaion

// close matrix descriptor
ddly_close_matrix (md);

details:

The first part that has been developed for the mapping process is the Data Distribution Layer
(DDLY) which hides the communiction required to distribute data on distributed mem-
ory machines and the low level I/O operations. [147] distingushes between virtual data
structure (VDS) and internal data structure (IDS). These can be used for mapping
the original code into the underlying data structure provided by run-time support. The I/O
interface is similar to the UNIX I/0, e.g. data structures can be managed in a similar way

to UNIX file descriptors. In particular, a data distribution routine takes two arguments: a



matrix descriptor and a topology descriptor.

deadlock see Hurricane operating system, Strict Two-Phase Locking
DEC 12000/Sx 2000 see CVL

DEC 3000/500 see SPFS

DEC-5000 see disk-directed 1/0, STARFISH

DEC Alpha see TIAS, TPIE

DEC MIPS see TIAS

declustering see design of parallel 1/0 software, RAID

delayed write see supercomputing applications

demand-driven see in-core communication

derived datatype see MPI, MPI-10

design of parallel 1/0 software

[40] uses theoretical and practical results to give some hints or guidelines for the design of
parallel I/O software. Since the reason for the use of parallel machines is speed, the design
must be performance oriented and scalable. Scalable means that the disk usage is asymptot-
ically optimal as the problem and machine size increase. What is more, [40] describes two
different uses of parallel I/O: A traditional file access paradigm where a program explicitly
reads input files and writes output files, and the out-of-core one which is also known as
extended memory, virtual memory or external computing. Here data does not fit

entirely into main memory and is transferred from disk to memory and vice versa.

1 Necessary capabilities

[40] states that specific capabilities have to be fulfilled in order to support the most efficient
parallel I/O algorithms. To start off, since a block contains the smallest amount of data that
can be transferred in a single disk access [40], I/O operations always handle data which occurs
in multiples of the block size. The requirements presented below apply to both STMD (the
controller organizes the disk access on behalf of the processors) and MIMD (the processors

organize their own disk accesses) systems:



e control over declustering: Declustering means distributing data in each file across
multiple disks [40]. Such a declustering is defined by two components, a striping
unit and the distribution pattern. A striping unit refers to logically and phys-
ically contiguous data. A common distribution pattern is round-robin. These

components should be changeable by the programmers individually.

e querying about the configuration: Get information about the number of disks, block

size, number of processors, amount of available physical memory, etc.

e independent I/O: In contrast to fully striped access, where all blocks are accessed at the

same location on each disk, blocks are accessed at different locations in an independent

I/O model.
e bypassing parity
e turning off file caching and prefetching

2 Interface Proposal

[83] proposes some features for an interface for parallel programming:

e Multiopen: A file must be opened for all parallel processes rather than open the file
independently for each process. In other words, whenever a process opens a file, it is
opened for the entire parallel application. Consequently, each file is only opened once,
and each process has its own file descriptor. Additionally, a multiopen can even create

a file if it does not exist.

e directory structure: A single file-naming directory should be used for the entire file

system.
e file pointer: A file pointer can either be global or local when using a multifile.
e mapped file pointers

See also disk-directed 1/0.



DFP (distribution file pointer thread) see SPIFFI

DH (Dirty Harry) see Hurricane File System (HFS)
Direct Access see Portable Parallel File System (PPFS)
Directed Acyclic Graphs (DAC) see SPFS

Direct File Access see PASSION

Dirty Harry (DH) see Hurricane File System (HFS)

disk-directed 1/0

abstract:
Disk-directed I/O can dramatically improve the performance of reading and writing
large, regular data structures between distributed memory and distributed files [86],
and is primarily intended for the use in multiprocessors [87].

implementation platform:
Examples are running on STARFISH (on top of Proteus parallel architecture simu-
lator) on DEC-5000 workstations

data access strategies:
Double-buffering and special remote memory messages are used to pipeline the data
transfer. The key idea is that the data is moved between compute nodes and I/O
nodes, and between the I/O nodes and the disk, in a schedule that is most optimal

for the disks.

related work:
TPIE; Sandia National Laboratory produces a library of C-callable, low-level, syn-
chronous I/O functions to run on the Intel Paragon under the SUNMOS operating
system on compute nodes and OSF/1 on I/O nodes; Panda, nCUBE, Vesta
application:
Disk-directed I/O was effectively tested for the use of an out-of-core LU-decomposition
computation [85].
people:
David Kotz

{dfk}@cs.dartmouth.edu



institution:
Department of Computer Science, Dartmouth College, Hanover, NH 03755-3510
http://www.cs.darmouth.edu/research/pario.html

key words:
distributed memory, prefetching, collective-I1/0, strided access, nested pat-

terns

details:

In a traditional UNIX-like interface, individual processors make requests to the file system,
even if the required amount of data is small. In contrast, a collective-I/O interface sup-
ports single joint requests from many processes. Disk-directed I/O can be applied for such
an environment. In brief, a collective request is passed to the I/O processors for examining
the request, making a list of disk blocks to be transferred and sorting the list. Finally, they
use double-buffering and special remote memory messages to pipeline the data transfer. This
strategy is supposed to optimize disk access, use less memory and has less CPU and message
passing overhead [88]. The potential for disk-directed I/O is explored in three situations
in [86]: data-dependent distribution, data-dependent filtering and irregular subsets (see

irregular problems).

[113] distinguishes between a sequential request to a file, which is at a higher offset than the
previous one, and a consecutive request, which is a sequential request that begins where the
previous one ended. Furthermore, termini like strided access and nested patterns are
introduced. In a simple-strided access a series of requests to a node-file is done where each
request has the same size and the file pointer is incremented by the same amount between
each request. Indeed, this would correspond to reading a column of data from a matrix
stored in row-major order [113]. A group of requests that is part of this simple-strided
pattern is defined as a strided segment. Nested patterns are similar to simple strided

access, but it is composed of strided segments separated by regular strides in the file [113].

disk level parallelism see file level parallelism, HiDIOS

disk manager see Galley



Disk Resistent Arrays (DRA)

abstract:
DRA extend the programming model of Global Arrays to disk. The library contains
details concerning data layout, addressing and 1/O transfer in disk array objects. The
main difference between DRA and Global Arrays is that DRA reside on disk rather

than in main memory.

implementation platform:
Intel Paragon (PFS), IBM SP2 (PIOFS and local disks), Cray T3D, KSR-2,

SGI Power Challenge and networks of workstations

institution:
joint project between:
Pacific Northwest National Laboratory
Argonne National Laboratory

ChemlIO
application:

DRA can be used to implement user-controlled virtual memory or checkpointing of

programs that use distributed arrays.

distributed array see irregular problems, PARTI

Distributed File Model see CHANNEL

distributed memory see ADOPT, automatic data layout, CCFS, CHAOS, CHARISMA,
data parallel, DDLY, disk-directed I/0, Global Arrays, HiDIOS, Intel iPSC /860
hypercube, Intel Paragon, irregular problems, Jovian, MIMD, MPI, MPI-2,
Multipol, Pablo, Panda, PARTI, PRE, PASSION, PIOUS, PPFS, SPIFFI,
Vesta, Vulcan multicomputer

distributed memory machine see DDLY, High Performance Fortran (HPF), PAS-
SION

distributed view see Application Program Interface, Jovian

distribution

The term distribution determines in which segment the record of a file resides and where in



that segment. It is equivalent to a one-to-one mapping from file record number to a pair

containing segment number and segment record number [73]. See also PPFS.

distribution file pointer thread (DFP) see SPIFFI

distributed computing
Distributed computing is a process whereby a set of computers connected by a network is
used collectively to solve a single large program [55]. Message passing is used as a form

of interprocess communication.

distribution pattern see design of parallel 1/0 software
DRA see Disk Resistent Arrays

E

ELFS see ExtensibLe File Systems

EPVM (E persistent Virtual Machine) see programming language E

ESM (EXODUS storage manager) see programming language E, SHORE
executor see PARTI

EXODUS

EXODUS an object-oriented database effort and serves as the basis for SHORE. EX-
ODUS provides a client-server architecture and supports multiple servers and transac-
tions [21]. The programming language E, a variant of C++, is included in order to
support a convenient creation and manipulation of persistent data structures. Although EX-
ODUS has good features such as transactions, performance and robustness, there are some
important drawbacks [21]: storage objects are untyped arrays of bytes, no type information
is stored, it is a client-server architecture, it lacks of support for access control, and existing

applications built around UNIX files cannot easily use EXODUS.



EXODUS storage manager (ESM) see SHORE, programming language E
Explicit Communication see PASSION

Express

Express is a toolkit that allows to individually address various aspects of concurrent compu-

tation [55]. Furthermore, it includes a set of libraries for communication, I/O and parallel

graphics.

extended memory see design of parallel I/0 software
Extended TPM (ETPM) see Two-Phase Method (TPM)

ExtensiblLe File Systems (ELFS)

abstract:

aims:

ELFS is based on an object-oriented appraoch, i.e. files should be treated as typed
objects. Ease-of-use can be implemented in a way that a user is allowed to manipulate
data items in a manner that is more natural than current file access methods avail-
able [79]. For instance, a 2D matrix interface can be accessed in terms of rows, columns
or blocks. In particular, the user can express requests in a manner that matches the
semantic model of data [79], and does not have to take care of the physical storage of
data, i.e. in the object-oriented approach the implementation details are hidden. Ease
of development is supported by encapsulation and inheritance as well as code reuse,

extensibility and modularity.

high performance, ease of development and maintenance, and ease-of-use; four key
ideas [79]:
1. design the user interface to support ease-of-use

2. improve performance by matching the file structure to the access patterns of the

application and the type of data



3. selectively employ advanced I/O access techniques (prefetching, caching, mul-

tiple I/O threads)

4. encapsulate the implementation details
implementation platform:
Intel iPSC/hypercube + CFS
application:
radio astronomy applications [77], [78]
people:
John F. Karpovich, Andrew S. Grimshaw, James F. French
{jfk3w, grimshaw, french}@virginia.edu
institution:
Department of Computer Science, University of Virginia, Charlottesville, VA, USA
http://www.cs.viginia.edu
key words:
file system, object-orientation
example:
The following code fragments from [79] both read a specific column of integers from
a matrix. Programl uses traditional UNIX style file operations whereas Program2

applies an auxiliary two dimensional data class DD_intarray.

Programl

int i,fd;
int m[maxRows] [maxCols];

fd = open (filename);

for (i = 0; i < numRows; i++)

{
//calculate file position for row i, column x
seek (fd, position);
read (fd, numBytes);

//convert data if necessary
m[i] [x] = val;

}

close (fd);



Program?

TwoDMatrixFile f;

f.openFormatted (filename);
maxRows = f.numRows ();
maxCols = f.numColumns ();

DD_intarray m(maxRows, maxCols);
m.column (2) = f.readColumn (2);

f.close ();

external computing see design of parallel I1/0 software

F

F77 (Fortran 77) see Fortran D, MPI, PASSION

FD (File Domain) see Two-Phase Method

FDAT (File Domain Access Table) see Two-Phase Method
FE (front end computer) see SIMD

File Access Descriptor (FAD) see Two-Phase Method

File Domain (FD) see Two-Phase Method

File Domain Access Table (FDAT) see Two-Phase Method

file level parallelism

A conventional file system is implemented on each of the processing nodes that have disks,
and a central controller is added which controls a transparent striping scheme over all the
individual file systems. The name file level parallelism stems from the fact that each file is
explicitly divided across the individual file systems. Moreover, it is difficult to avoid arbi-
trating I/O requests via the controller (bottleneck). HiDIOS has introduced a disk level

parallelism (parallel files vs. parallel disks) [148].



file migration

The amount of data gets larger and larger, hence, storing this data on a magnetic disk is not
always feasible. Instead, tertiary storage devices such as tapes and optical disks are used.
Although the costs per megabyte of storage are lowered, they have longer access times than
magnetic disks. A solution to this situation is to use file migration systems that are used

by large computer installations to store more data than that which would fit on magnetic

disks [105].

file server see RAID-1I, RAID-IT

file services see ParFiSys

FLEET
FLEET is a FiLEsystem Experimentation Testbed at Dartmouth College, USA, for experi-

mentation with new concepts in parallel file systems. See also disk-directed I/0.

flush ahead see read ahead
Fortran 90 see CHAOS, Global Arrays (GA), High Performance Fortran (HPF),
MPI-2, Pablo

Fortran D
abstract:

Fortran D is a version of Fortran that provides data decomposition specifications for two
levels of parallelism (how should arrays be aligned with respect to each other, and how
should arrays be distributed onto the parallel machine) [91] (See also High Perfor-
mance Fortran (HPF).). Furthermore, a Fortran D compilation system translates a
Fortran D program into a Fortran 77 SPMD node program. A consequence can be a
reduction or hiding of communication overhead, exploited parallelism or the reduction
of memory requirements.
aims:
Fortran D is designed to provide a simple, efficient machine-independent data parallel

programming model [70].



people:
Ken Kennedy, Seema Hiranandani, Chan-Wen Tseng
{ken, seema}@cs.rice.edu
tseng@stanford.edu
institution:
Center for Research and Parallel Computing, Rice University, Houston, TX 77251-1892,
USA

http://www.crpc.rice.edu/fortran-tools/fortran-tools.html

Fortran M (FM) see task-parallel program
front end computer (FE) see SIMD

Fujitsu AP1000

The AP1000 is an experimental large-scale MIMD parallel computer with configurations
range from 64 to 1024 processors connected by three separate high-bandwidth communica-
tion networks. There is no shared memory, and the processors are typically controlled by
a host like the SPARC Server. A processor is a SPARC 25MHz, 16MB RAM processor.
Programs are written in C or Fortran. HiDIOS is a parallel file system implemented on

the AP1000.

G

GA see Global Arrays
GAF (Global Array File) see Global Placement Model (GPM)

Galley
abstract:
Galley is a parallel file system intended to meet the needs of parallel scientific

applications (see aims). It is based on a three-dimensional structuring of files [115].



Furthermore, it is supposed to be capable of providing high performance 1/0O.

aims:
It was believed that parallel scientific applications would access large files in large
consecutive chunks, but results have shown that many applications make many small,
regular, but non-consecutive requests to the file system. Galley is designed to satisfy

such applications. The goals are [114]:

e efficiently handle a variety of access sizes and patterns
e allow applications to explicitly control parallelism in file access

e be flexible enough to support a variety of interfaces and policies, implemented in

libraries
e allow easy and efficient implementations of libraries
e scale to many compute and I/O processors

e minimize memory and performance overhead

implementation platform:

IBM SP2, it also runs on most UNIX clusters
data access strategies:

Galley allows different kinds of operations: meta-data operations like file, fork and

data operations, and data operations like simple, batch and non-blocking operations.
portability:

ViC* is planed to be implemented on top of Galley

MPI, PVM or p4 can be used as communication software
application:

[115] presents how a Flexible Image Transport System can be implemented with Galley.
people:

Nils Nieuwejaar, David Kotz

{nils, dfk}@cs.dartmouth.edu
institution:

Department of Computer Science, Dartmouth College, Hanover, NH 03755-3510, USA

http://www.cs.darmouth.edu/ nils/galley.html



File

[N N\

Subfile Subfile Subfile
Fork — Data Fork Fork
Fork | Data Fork Fork
Fork | Data Fork Fork
Fork | Data Fork
Fork [ Data

IOP 0O I0OP 1 I0OP 2

Figure 2.5: 3-D Structure of Files in Galley

key words:

file system, client-server, 3-D file structuring

details:

1 File Structure

Galley is not based on the traditional UNIX-like file system interface, but Galley provides the
application with the ability to control the declustering of a file [114]. What is more, the disk
that should be accessed can also be indicated explicitly. This is achieved by composing a file
of one or more subfiles, each residing on a single disk and each being directly addressed by the
application. As a result, data distribution and the degree of parallelism can be controlled.
A subfile is decomposed and consists of one or more independent forks, which is a linear,
addressable sequence of bytes. The number of subfiles in a file is fixed whereas the amount
of forks is variable. The whole file structure is depicted in Figure 2.5. This concept can be

used for storing related information - that is available independently - logically together.

2 System Structure
Galley is based on the client-server model where a client is a user application linked with
the Galley run-time library running one a compute processor (CP) [114]. In particular,

the run-time library receives requests from the application, translates them into lower-level



requests and passes them to the servers on I/O processors (IOP). It is the task of the
library to handle the data transfer between compute and I/O processors. Since Galley
does not impose communication requirements on a user’s application, any communication

software like MPI, PVM or p4 can be used.

Each IOP is composed of several units and has one thread to handle incoming I/O requests
for each compute processor. Multithreading allows to service requests simultaneously. An
IOP receives a request from a CP. Thereafter a CP Thread interprets the requests, for-
wards them on to the appropriate worker thread and handles the transfer of data between
IOP and CP. As in Vesta, meta-data is distributed across all IOPs. The data transfer
also includes a cache manager which maintains a separate list of requested disk blocks for
each thread, and a disk manager which maintains a list of blocks that are scheduled to be

read or written.

General Purpose MIMD machine see GPMIMD
GFP (global file pointer thread) see SPIFFI
GFP thread see SPIFFI

Global Arrays (GA)

abstract:
Global Arrays are supposed to combine features of message passing and shared
memory, leading to both simple coding and efficient execution for a class of appli-
cations that appears to be fairly common [112]. Global arrays are also regarded as
” A Portable 'Shared Memory’ Programming Model for Distributed Memory Comput-
ers”. GA also support the NUMA (Non-Uniform Memory Access) shared memory
paradigm. What is more, two versions of GA were implemented: a fully distributed
one and a mirrored one. See also Disk Resistent Arrays(DRA).

aims:
GA provides a portable interface where each process in a MIMD parallel program

can independently, asynchronously and efficiently access logical blocks of physically



distributed matrices, with no need for explicit cooperation by other processes.
implementation platform:
Libraries and tools have been implemented on the Intel Touchstone Delta and Intel
Paragon, IBM SP1, Kendal Square KSR-2 and UNIX workstations. In general,
GA support distributed and shared memory machines.
data access strategies:

e operations have implied synchronization; an asynchronous mode is available, too.

e true MIMD style operation invocation
portability:
Basic functionalities may be expressed as single statements using Fortran-90 array
notation. Operations can be used for Fortran and C.
interfaces to: ScaLAPACK, PelGS parallel eigensolver library, SUMMAparallel matrix
multiplication, MPI, PVM
application:
large chemistry applications for the HPCCI project and EMSL [112];
Some experiments with NWChem, a complex chemistry package on top of GA, were
performed.
people:
Jaroslav Nieplocha, Robert J. Harrison, Richard J. Littlefield
{jmieplocha, rj harrison, rj.-littelfield}@pnl.gov
institution:
Pacific Northwest Laboratory, P.O. BOX 999, Richland, WA 99352, USA
http://www.emsl.pnl.gov:2080/docs/global/ga.html
key words:
MIMD, distributed memory, shared memory, networked workstation clusters
example:
The example uses a FORTRAN interface to create an n x m double precision array,

blocked in at least 10x5 chunks [112].

integer g_a, n, m, ilo, ihi, jlo, jhi, 1dim
double precision local (1:1dim, *)



c
call ga_create (MT_DBL, n, m, ’A’, 10, 5, g_a)
call ga_zero (g_a)

call ga_put (g_a, ilo, ihi, jhi, local, 1dim)

details:

The current GA programming model can be characterized as follows [112]:

e MIMD parallelism is provided using a multi-process application, in which all non-GA

data, file descriptors, and so on are replicated or unique to each process.

e Processes can communicate with each other by creating and accessing GA distributed

madtrices.

e Matrices are physically distributed blockwise, either regularly or as the Cartesian prod-

uct of irregular distributions (see irregular problems) on each axis.

e Each process can independently and asynchronously access any two-dimensional patch
of a GA distributed matrix, without requiring cooperation by the application code in

any other process.

e Each process is assumed to have fast access to some portion of each distributed matrix,
and slower access to the remainder. These speed differences define the data as being

local’ or ’remote’.

e Each process can determine which portion of each distributed matrix is stored ’locally’.
Every element of a distributed matrix is guaranteed to be ’locally’ to exactly one

process.

In comparison to common models, GA are different since they allow task-parallel access to

distributed matrices. Furthermore, GA support three distinctive environments [112]:

e distributed memory, message passing parallel computers with interrupt-driven
communication (Intel Gamma, Intel Touchstone Delta and Intel Paragon, IBM

SP1)



e networked workstation clusters with simple message passing
e shared memory parallel computers (KSR-2, SGI)

Global Array File (GAF) see Global Placement Model (GPM)
global file pointer thread (GFP) see SPIFFI

Global Placement Model (GPM)

In PASSION there are two models for storing and accessing data: the Local Placement
Model (LPM) and the Global Placement Model (GPM) [14]. For many applications in
supercomputing main memory is too small, therefore, main parts of the available data are
stored in an array on disk. The entire array is stored in a single file, and each processor can
directly access any portion of the file [31]. In a GPM a global data array is stored in a single
file called Global Array File (GAF) [33]. The file is only logically divided into local ar-
rays, which saves the initial local file creation phase in the LPM. However, each processors’

data may not be stored contiguously, resulting in multiple requests and high I/O latency time.

global view see Application Program Interfac, Jovian, VIP-FS

GPMIMD (General Purpose MIMD)

A general purpose multiprocessor I/O system has to pay attention to a wide range of ap-
plications that consist of three main types: normal UNIX users, databases and scientific
applications [23]. Database applications are characterized by a multiuser environment with
much random and small file access whereas scientific applications support just a single user

having a large amount of sequential accesses to a few files.

The main components are processing nodes (PN), network, input/output nodes (ION)
and disk devices. In order to describe a system, four parameters can be used [23]: number
of I/O nodes, number of controllers, number of disks per controller, and degree of synchro-
nization across disks of a controller. Additionally, another two concepts must be considered:

file clustering and file striping. A declustered file is distributed across a number of disks
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Figure 2.6: GPMIMD Architecture

such that different blocks of the same file can be accessed in parallel from different disks. In

a stripped file a block can be read from several disks simultaneously.

The GPMIMD machine is a multiprocessor system with integrated hardware and software [25].
The communication between the GPMIMD and the host is accomplished using the commu-
nication channels of a communication node of the GPMIMD machine (see Figure 2.6). The
front-end computer (on which the system software is based) is a gateway to the GPMIMD
system which provides software development, debugging and control tools. The front-end
computer can be any computer system and has the following three primary functions in the

GPMIMD system [25]:
e [t provides a development and debugging environment for applications.

e It runs applications and transmits instructions to the parallel processing units.



e It provides maintenance and operation utilities for controlling the GPMIMD machine.

Grand Challenge Applications

Massively parallel processors (MPPs) are more and more used in order to solve Grand
Challenge Applications which require much computational effort [31]. They cover fields like
physics, chemistry, biology, medicine, engineering and other sciences. Furthermore, they
are extremely complex, require many Teraflops of communication power and deal with large
quantities of data. Although supercomputers (see supercomputing applications) have
large main memories, the memories are not sufficiently large to hold the amount of data re-
quired for Grand Challenge Applications. High performance I/O is necessary if a degrade of
the entire performance of the whole program has to be avoided. Large scale applications often
use the Single Program Multiple Data (SPMD ) programming paradigm for MIMD

machines [12]. Parallelism is exploited by decomposing of the data domain.

H

Hamming code see RAID
HFS see Hurricane File System (HFS)

HiDIOS (High performance Distributed Input Output System)

abstract:
HiDIOS (part of the CAP Research Program) is a parallel file system for the
Fujitsu AP1000 multicomputer. What is more, HiDIOS is a product of the ACSys
PIOUS project. HiDIOS uses a disk level parallelism (instead of the file level
parallelism) [148] where a parallel disk driver is used which combines the physically
separate disks into a single large parallel disk by stripping data cyclically across the
disks. Even the file system code is written with respect to the assumption of a single
large, fast disk.

aims:

e high speed, robustness, usability



efficient use of a large number of disks using a fast network

e maximize disk throughput for large transfers

present a single coherent file system image

portability, scalability

e low impact on processor and memory resources

implementation platform:
Fujitsu AP1000 multicomputer

data access strategies:
In HiDIOS the scheduling problem is solved by threads, i.e. each I/O request spawns a
new thread, and threads also control the queuing of disk operations and the allocation
of memory resources.

portability:
AP shell can be invoked from a front end host of an Fujitsu A P1000 that supports
H:DIOS

related work:
PIOUS, MPI
people:
Andrew Tridgell, David Walsh
{andrew.tridgell, david.walsh}@cs.anu.edu.au
institution:
Australian National University
http://cafe.anu.edu.au/cap/projects/filesys/
key words:

file system, distributed memory, disk level parallelism

details:

Requests are placed in request queues, which are thereafter processed by a number of in-
dependent threads [148]. After request processing the manager can return and, hence, can
receive further requests while previous ones may be blocked waiting for disk I/O. The meta-

data system makes it possible to immediately service meta-data manipulation (such as file
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Figure 2.7: Data Distribution in Fortran 90D/HPF

creation, renaming) without disk I/0.

Hierarchical Clustering see Hurricane File System (HFS)

HPF (High Performance Fortran)

High Performance Fortran is an extension to Fortran 90 with special features to specify data
distribution, alignment or data parallel execution [141], and it is syntactically similar to
Fortran D [12]. HPF was designed to provide language support for machines like SIMD,
MIMD or vector machines. Moreover, it provides directives like ALIGN and DISTRIBUTE for
distributing arrays among processors of distributed memory machines. Here an array
can either be distributed in a block or cyclic fashion. Figure 2.7 depicts eight distribution
styles supported by HPF. DISTRIBUTE specifies which parts of the array are mapped to each

processor, i.e. each processor has a local array associated with it.

A sample program in HPF looks as follows:

REAL A(200), B(200), C(200,200)
$CHPF PROCESSORS PRC(4)

$CHPF TEMPLATE DUMMY (200)
$CHPF DISTRIBUTE DUMMY (BLOCK)



$CHPF ALIGN (i) with DUMMY(i):: A, B
$CHPF ALIGN (*,i) with DUMMY(i):: C\\
HPF is also supposed to make programs independent of single machine architectures [44].
Although HPF can reduce communication cost and, hence, increase the performance, this is

only true for regular but not for #rregular problems.

HPSS (High-Performance Storage System) see Network-Attached Peripherals (NAP),
Scalable 1/0 Facility

Hurricane File System (HFS)

abstract:
The Hurricane File System is developed for large-scale shared memory multicomput-
ers. Since application I/O requirements for large-scale multiprocessors are not yet well
understood, the file system must be flexible so that it can be extended to support new
I/0 interfaces [95].

aims:
The mail goals are scalability, flexibility and maximize I/O performance for a large

set of parallel applications. There are three important features of HF'S:

e Flexibility: HF'S can support a wide range of file structures and file system policies.

e Customizability: The structure of a file and the policies invoked by the file system

can be controlled by the application.

o Efficiency: little I/O and CPU overhead
implementation platform:
HF'S was ported to: IBM R6000/350, Sun 4/40 with SunOS Version 4.1.1, SGI Iris
4d/240S IRIX System V release 3.3.1 with AIX Version 3.2
data access strategies:
storage objects

related work:

CFS, Vesta, OSF/1, nCUBE, Bridge file system, RAMA file system



people:
Orran Krieger, Michael Stumm, Karen Reid, Ron Unrau
{okrieg, stumm, reid, unrau}@eecg.toronto.edu
institution:
Department of Electrical and Computer Engineering, University of Toronto, Canada,
M5S 1A4
http://www.eecg.toronto.edu/parallel/hurricane.html
key words:
shared memory, file system, hierarchical clustering, storage object
example:
The code fragments from [96] illustrate the funtions salloc and sfree, and a read

function implemented using ASI.

void *salloc (FILE *iop, int *lenptr)

{
void *ptr;
AquireLock (iop->lock);
ptr = iop—>bufptr;
if (iop->bufcnt >= *lenptr)
{
iop—>refcnt++;
iop—>bufcnt —= *lenptr;
iop—>bufptr += *lenptr;
}
else
ptr = iop->u_salloc (iop, lenptr);
ReleaseLlock (iop->lock);
return ptr;
}

void sfree (FILE *iop, void *ptr)
{
int rc = 0;
AcquireLock (iop-lock);
if ((ptr <= iop->bufptr) && (ptr >= iop->bufbase)
iop—>refcnt--;
else
rc = iop->u_sfree (iop, ptr);
ReleaseLock (iop->lock);



return rc;

}

int read (int fd, char *buf, int length)

{
int error;
FILE #*stream = streamptr (fd);
if (ptr = Salloc (stream, SA_READ, &length))
{
bcopy (ptr, buf, length);
if (lerror = sfree (stream)))
return length;
}
else
error = length;
RETURN_ERR (error);
}
details:

Distributing the disks across the system has the advantage that some disks can be made
more local to a processor which reduces access time and costs. So the file system must try

to manage locality so that a processor’s I/O requests are primarily directed to nearby devices.

1 Hierarchical Clustering

The basic unit is the cluster, which provides the full functionality of a small-scale operat-
ing system [95] (see Figure 2.8). On a large system, multiple clusters are instantiated such
that each cluster manages a unique group of 'neighboring’ processors where neighboring’
implies that memory access within a cluster is less expensive than accesses to another clus-
ter. Furthermore, all system services are replicated to each cluster. Clusters cooperate and
communicate in a loosely coupled fashion. For larger systems extra levels of clusters can be
added hierarchically (super clusters, super super clusters). If possible, requests are handled
within a cluster, but non-independent requests are resolved by servers which are located at
the higher levels in the cluster hierarchy. The costs of non-independent requests depend on

the degree of sharing those requests.
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2 The File System Architecture
HFS is a part of the Hurricane operating system (see Figure 2.9). The file system
consists of three user level system servers: the Name Server, Open File Server (OFS)

and Block File Server (BFS).

e The Name Sever manages the name space and is responsible for authenticating re-

quests to open files.
e The OFS maintains the file system state kept for each open file.

e The BFS controls the system disks, is responsible for determining to which disk an

operation is destined and directs the operation to the corresponding device driver.

e Dirty Harry (DH) collects dirty pages from the memory manager and makes requests

to the BFS to write the pages to disk.

e The Alloc Stream Facility (ASF) is a user level library. It maps files into the
application’s address space and translates read and write operations into accesses to

mapped regions.

Each of those file system servers maintains a different state. Whereas the Name Server

maintains a logical directory state [95] (e.g. access permission and directory size) and di-
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rectory contents, the OFS maintains logical file information (length, access permission, ...)
and the per-open instance state. Finally, the BFS maintains the block map for each file.
Obviously, these states are different from each other and independent, consequently, there
is no need for different servers within a cluster to communicate in order to keep the state

consistent [95].

Example: A file is opened and A SF sends the 'open’ to the Name Server which translates
the file name into its token (a number which identifies the file). After checking whether access
is allowed the request is forwarded to the BFS. The BFS uses the token to get information
about the file state and forwards this information to the OFS. The OFS records the file

state and the file token and returns a file handle to the application.

3 Storage Objects

For a file system it is important to be easily extensible to support new policies, so HFS
uses an object oriented building-block approach [93]. Files are implemented by combining
together a number of simple building blocks called storage objects. Each storage object
defines a part of a file’s structure and encapsulates meta-data and member functions that
operate on member data. Since HFS allows applications control over the storage objects,
the application can define the internal structure of files as well as the policies. In contrast
to most existing file systems, HF'S supports an unlimited set of file structures and policies.
Every storage object is made up of three components: one for the BFS, one for the OFS
or the Name Server, and one for the application library (ASF). For code reuse, storage

objects can be derived from other storage objects.

A storage object can either be persistent or transitory, depending whether the storage
object is stored on disk (persistent) or if it exists just when a file is actively accessed

(transitory).

e Transitory storage objects contain all file system functionalities that are not specific
to the file structure and, hence, do not have to be fixed at file creation time. Examples

are latency-hiding policies, compression policies, advisory locking policies etc.
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Figure 2.10: The HFS architecture

e Persistent storage objects define the structure of a file, store file data and file system

states on disk.

4 File system layers
HF'S consists of the following three logical layers: application-level library, physical server

layer and logical server layer (see Figure 2.10).

The application-level library is the library for all other I/O servers provided by the Hurri-
cane operating system. It has the aim to service as much application requests as possible
within the application-level. The physical layer directs requests for file data to the disks and
maintains the mapping between file blocks. Furthermore, it is responsible for file structure
and policies. All Physical layer Storage Objects (PSO) are persistent. The logical
server layer implements all file system functionalities that do not have to be implemented at

the other layers.

Hurricane operating system
It is structured according to the Hierarchical Clustering in HF'S, i.e. the file system
on each cluster provides the functionality of a full, small scale file system. The file system

state is cached whenever possible to minimize cross-cluster communication. The state is kept



consistent by per-cluster-server communication. This also contributes to the distribution

of disk 1/0.

Hurricane is a micro-kernel and single storage operating system that supports mapped file
I/O. A mapped file system allows that the application can map regions of a file into its
address space and access the file by referencing memory in mapped regions. Moreover, main

memory can be used as a cache of the file system.

Another feature of Hurricane is a facility called Local Server Invocations (LSI) that
allows a fast, local, cross-address space invocation of server code and data, and results in
new workers being created in the server address space. LSI also simplifies deadlock avoid-

ance [95].

i-node see Portable Parallel File System (PPFS), Vesta
I/O daemon see concurrency algorithms, parallel file system, PIOUS, S-2PL
I/O Device Drive Layer (IDD) see Virtual Parallel File System

I/O interfaces

[93] describes three main classes of I/O interfaces

e read/write system-call interfaces: The best known interface of this type is the UNIX
one (see UNIX I/0). System calls like open, read, write, lseek, close, fcntl

and ioctl are used.

e mapped file system-call interface: It is supported by most modern operating systems.
Briefly, a contiguous memory region of an application address space can be mapped to
a contiguous file region on secondary storage. Furthermore, a uniform interface for all

I/O operations is guaranteed, i.e. the same I/O operations can be used for either files,



terminals or network connections.

application-level interfaces: An example is the standard I/O library of the C program-
ming language. The functions provided by stdio correspond to the ones of the UNIX
I/0 interface. See also Alloc Stream Facility.

In addition to the sequential I/O interfaces mentioned above, there are also several paral-

lel I/0O interfaces. A 'good’ parallel I/O interface should have following properties [94]:

flexibility: simple for novice programmers, but still satisfying the performance require-
ments for expert programmers. Additionally, an application should be free to choose

the amount of policy related information it specifies to the system.

incremental control: A programmer should be able to write a functionally correct
program and then incrementally optimize its I/O performance. Additional information

should be provided in order to get better performance.

dynamic policy choice: Applications should be allowed to change dynamically the poli-

cies used.
generality: A policy should refer to both explicit and implicit 1/O.

portability: An interface should be applicable to many different parallel systems (dis-

tributed, shared memory).
low overhead

concurrency support: Well defined semantics are required when multiple threads access

the same file.

compatibility

I/O node (ION) see ADOPT, CCFS, disk-directed 1/0, Intel iPSC/860 hyper-
cube, Intel Touchstone Delta, Panda, ParFiSys (Parallel File System), PI-
OUS, PPFS, S-2PL, Vesta

I/O problem

The I/O problem (also referred to as the I/O bottleneck problem in [16]) stems from



that fact that the processor technology is increasing rapidly, but the performance and the
access time of secondary storage devices such as disks and floppy disk drives have not im-
proved to the same extend [50]. Disk seek times are still low, and I/O becomes an important
bottleneck. The gap between processors and 1/O systems is increased immensely, which
is especially obvious and tedious in multiprocessor systems. However, the I/O subsystem

performance can be increased by the usage of several disks in parallel. As for the Intel

Paragon XP/S, RAIDs are supported.

I/O processor see Galley

I/0 Requirement Graph (IORG) see ViPIOS

I/O server sce ANL, HFS, ParFiSys, PPFS

IBL (Infinite Block Lookahead) see read ahead

IBM 9570 RAID see ANL (Argonne National Laboratory)

IBM AIX Parallel I/O File System see PIOFS

IBM R6000/350 see HF'S

IBM RS/6000 see ANL (Argonne National Laboratory), ChemIO, SPFS, Vesta
IBM SP see ADIO, ROMIO

IBM SP1 see ANL (Argonne National Laboratory), Global Array (GA), Multipol,
Vesta, ViPIOS

IBM SP2

SP2 is a homogeneous parallel system since the nodes are binary compatible, but it is very
heterogeneous in the point of view of the availability of local disks, direct network connec-
tions and distribution of physical memory [127]. See also Appendix: Parallel Computer

Architecture.

IDD (I/O Device Drive Layer) see Virtual Parallel File System

in-core communication

In-core communication can be divided into two types: demand-driven and producer-



driven [14].

e demand-driven: The communication is performed when a processor requires off-
processor data during the computation of the ICLA (see PASSION). A node sends

a request to another node to get data.

e producer-driven: When a node computes on an ICLA and can determine that a
part of this ICLA will be required by another node later on, this node sends that data
while it is in its present memory. The producer decides when to send the data. This
method saves extra disk access, but it requires knowledge of the data dependencies so

that the processor can know beforehand what to send.

In-core Communication Method see PASSION

In-core Local Array (ICLA) see PASSION, data sieving
independent disk addressing see parallel file system
Infinite Block Lookahead (IBL) see read ahead
information disk see coding techniques

inspector see PARTI

Intel forced message types see PARTI

Intel iPSC/860 hypercube

The Intel iPSC/860 is a distributed memory, message passing MIMD machine, where
the compute nodes are based on Intel i860 processors that are connected by a hypercube
network [90]. I/O nodes are connected to a single compute node and handle I/O. What
is more, I/O nodes are based on the Intel i386 processor. See also PARTI, Appendix:

Parallel Computer Architecture.

Intel Paragon

The Intel Paragon (also referred to as Intel Paragon XP/S) multicomputer has its own oper-
ating system OSF /1 and a special file system called PFS (Parallel File System). The
Intel Paragon is supposed to address Grand Challenge Applications [75]. In particu-

lar, it is a distributed memory multicomputer based on Intel’s teraFLOPS architecture.



More than a thousand heterogeneous nodes (based on the Intel i860 XP processors) can be
connected in a two-dimensional rectangular mesh. Furthermore, these nodes communicate
via message passing over a high-speed internal interconnect network. A MIMD architec-
ture supports different programming styles including SPMD and SIMD. However, it does
not have shared memory [54]. SPIFFI is a scalable parallel file system for the Intel

Paragon.

Intel Touchstone Delta

The Intel Touchstone Delta System is a message passing multicomputer consisting of pro-
cessing nodes that communicate across the two dimensional mesh interconnecting network.
It uses Intel i860 processors as the core of communication nodes. In addition, the Delta has
32 Intel 80386 processors as the core of the I/O nodes where each I/O node has 8 Mbytes
memory that serves as I/O cache [15]. Furthermore, other processor nodes such as service

nodes or ethernet nodes are used.

inter-communicator see MPI

Interface layer see Virtual Parallel File System

Internetworking see operating system components

Interprocedural Partitial Redundancy Elimination algorithm (IPRE) see PRE
intra-communicator see MPI

Intranetworking see operating system components

ION see ADOPT, CCFS, disk-directed I/0, Intel iPSC/860 hypercube, Intel
Touchstone Delta, Panda, ParFiSys (Parallel File System), PIOUS, PPFS,
S-2PL, Vesta

IORG (I/O Requirement Graph) see ViPIOS

IOP (1/O processor) see Galley

IPRE see Partial Redundancy Elimination (PRE)

irregular (unstructured) problems

[152] introduces three different kinds of irregularity:



e irregular control structures: These are conditional statements making it inefficient to

run on synchronous programming models.
e irregular data structures: unbalanced trees or graphs

e irregular communication patterns: leads to non-determinism

1 Irregular Problems in PASSION

Basically, in irregular problems data access patterns cannot be predicted until runtime [32].
Consequently, optimizations carried out at compile-time are limited. However, at run-time
data access patterns of nested loops are usually known before entering the loop-nest, which
makes it possible to utilize various preprocessing strategies. The following HPF-example
illustrates a typical irregular loop, where array1 is known only at run-time.

real x(n_node), y (n_node)

integer arrayl(n_edge, 2)

do i =1, n_step
do j =1, n_edge
x(array1(i, 1)) = x(array(i, 1)) + y(arrayi1(i,2)
x(arrayl(i, 2)) = x(array(i, 2)) + y(array1(i,1)
end do
end do

PASSION contains run-time routines to solve out-of-core irregular problems on dis-
tributed memory machines. The OOC computation is executed in three stages: data
and/or indirection array partitioning, pre-processing of the indirection array and actual com-

putation.

[17] also deals with irregular problems, but bases its work on PASSION. In particular, [17]
presents the design of various steps, runtime system and compiler transformations to sup-
port irregular out-of-core problems. The strategy applied uses three code phases (similar to
CHA OS) called work distributor, inspector and executor. The goal of the optimization

1s to minimize communication.

Two kinds of OOC problems are considered in [17]: the first one is based on the assumption

that data can fit into the system’s memory whereas data structures describing interactions



are OOC. This class can be referred to as Data Arrays are In-Core and Indirection
Arrays are Out-of-core (DAI/IAOQ). [17] states seven steps in which the DAI/TAO

computation is performed:
1. Default Initial and Work Distribution
2. Partition Data Arrays
3. Redistribute Data Arrays
4. Compute new iteration tiles
5. Redistribute local files with indirection arrays
6. Out-of-Core Inspector

7. Out-of-Core Executor

Some experiments have been performed using a program which includes the data parallel
loops taken from the unstructured 3-d Euler solver. The experiments were carried out on an

Intel Paragon.

The second class of problems considered in [17] is a generalized version of the OOC problem,
i.e. both the data arrays and the interaction/indirection arrays are OOC. Here an update
value of a node may also require disk I/O. Hence, the maximum number of updates should
be preferred in one update I/O operation. The approach is based on the iteration loop
transformation. The steps 1 to 5 are the same, only 6 and 7 from above have to be changed

and applied to the new problem.

2 Irregular Problems in CHAOS

[120] introduces four basic steps which are necessary to solve irregular problems:
1. data partitioning
2. partitioning computational work

3. software caching methods to reduce communication volume



4. communication vectorization to reduce communication startup costs

The languages Vienna Fortran and Fortran D also allow the user to specify a customized
distribution function which is in contrast to the standard data distribution like block or

cyclic.

Applications using the CHA OS-library which want to solve irregular problems are involved

in five major steps [120]:

e decompose the distributed array irregularly with the user provided information; The

partitioner calculates how data arrays should be distributed.

e The newly calculated array distributions are used to decide how loop iterations are
to be partitioned among processors. On distributing data, the runtime routines for this

step determine on which processor each iteration will be executed.
e actual remapping of arrays from the old distribution to the new distribution
e preprocessing needed for software caching

CHAOS has implemented a set of optimization primitives in a library called PARTL

3 Berkeley’s library

[152] states two basic techniques for implementing shared distributed data structures: repli-
cation and partitioning. Replication is supposed to give high throughput for read-only op-
erations whereas partitioning has opposite characteristics. A library developed at Berkeley
uses a combination of both (see Multipol). The programming model is an event driven
one, where each processor repeatedly executes a scheduling loop, which looks for work in
one or more scheduling queues. [152] also represents a way to implement distributed data
structures. A relaxed consistency model is applied and looks as follows: Each processor will
see a consistent version of the data structure, but the operation does not always take effect

on all processors simultaneously.



iteration loop transformation see irregular problems

J

Jovian

abstract:
Jovian is an I/O library that performs optimizations for one form of collective-1/0.
It makes use of a Single Program Multiple Data (SPMD) model of computation.
aims:
optimize performance of distributed memory parallel architectures that include mul-
tiple disks or disk arrays
implementation platform:
IBM SP1, Intel Paragon
data access strategies:
regular and irregular access patterns (see irregular problems)
portability:
The file operations are done through the native file system. Hence, the Jovian library
is portable across multiple memory platforms, including networks of workstations [9].
related work:
PASSION, disk-directed 1/0, CHAOS, PARTI
application:
Geographical Information Systems (GIS), Data Mining
people:
Robert Bennett, Kelvin Bryant, Alan Sussman, Raja Das, Joel Saltz
{robert, ksb, als, raja, saltz}@cs.umd.edu
institution:
Department of Computer Science, University of Maryland, College Park, MD 20742

http://www.cs.umd.edu/projects/hpsl/io/io.html



key words:

SPMD, collective-1/0, out-of-core, distributed memory, loosely synchronous

details:

Jovian distinguishes between global and distributed views of accessing data structures.
In the global view the I/O library has access to the in-core and out-of-core data distri-
butions. What is more, application processes requesting I/O have to provide the library
with a globally specified subset of the data structure. In contrast, in the distributed view
the application process has to convert local in-core data indices into global out-of-core
ones before making any I/O request [9]. The library consists of two types of processes: ap-
plication processes (A /P) and coalescing processes (C/P) (similar to server processes
in a DBMS). At link time there is no distinction between A /Ps and C/Ps [9]. The name
C/P stems from the fact that coalescing I/O requests into a larger one can increase 1/0
performance. A user can determine which process will run the application and which will

perform coalescing of 1/O requests.

The implementation of collective read/write operations proceeds in several phases [9]:

e Request: Each A /P makes a Jovian I/O call to read or write. The library creates the
required block requests from the various types of I/O calls and forwards these requests

to a statically assigned C/P.

e Exchange: The requests that cannot be satisfied locally are forwarded to the C/P in

a collective communication phase.

e Read and Return Blocks: The C/Ps read the requested blocks from disk and send
them directly to requesting A /Ps.

e Send and Write Blocks: The C/Ps create communication schedules to receive data

from A /Ps.



K

Kenal Square (KSR-2)

KSR-2 is a non-uniform access shared memory machine. See also Global Array (GA).

L

large request see RAID-I

Last Recently Used see CCFS

latency see parallel file system

LFP (local file pointer) see SPIFFI

LFS (Local File Server) see Cache Coherent File System (CCFS)

LFS (Log-Structured File System) see RAID-IT

Light-weighted processes (LWP) see Cache Coherent File System (CCFS)

Linda
Linda is a concurrent programming model with the primary concept of a tuple space, an

abstraction via which cooperating processes communicate [55].

load utility see object-oriented database

Local Array File (LAF) see PASSION

local file pointer (LFP) see SPIFFI

Local File Server (LFS) see Cache Coherent File System (CCFS)
Local Placement Model see Global Placement Model (GPM)
Local Server Invocation (LSI) see Hurricane operating system
lock see Strict Two-Phase Locking

Log-Structured File System (LFS) see RAID-IT

logical data locality see ViPIOS



loosely synchronous

In a loosely synchronous model all the participating processes alternate between phases of
computation and I/O [9]. In particular, even if a process does not need data, it still has
to participate in the I/O operation (See also Two-Phase Method.). What is more, the

processes will synchronize their requests (collective communication).

LPM (Local Placement Model) see Global Placement Model (GPM)
LSI (Local Server Invocation) see Hurricane operating system
LWP (Light-weighted processes) see Cache Coherent File System (CCFS)

M

many-to-many communication see CHANNEL

mapped-file /0O
A contiguous memory region of an application’s address space can be mapped to a contigu-
ous file region on secondary storage. Accesses to the memory region behave as if they were

accesses to the corresponding file region [94].

The advantages of mapped-file I/O [94]:
e little policy related information is embedded in access to file data

e secondary storage is accessed in the same fashion as other layers in the memory hier-

archy
e low overhead

e exploiting the memory manager



The main disadvantage is that mapped file I/O can only be used for accessing disk files
while I/0 interfaces support also accesses to a file, terminal or network connection. The
Hurricane File System has a library called Alloc Stream Facility (ASF) which refers
to this problem.

Under paricular circumstances, mapped-file I/O can result in more overhead than read/write
interfaces. E.g. writing large amounts of data past the end-of-file (EOF), modifying entire
pages when data is not in the file cache [94].

MasPar MP-2 see CVL

Massively Parallel Processor (MPP) see Grand Challenge Applications, Cache Co-
herent File System (CCFS), Pablo, PVM

master client see Panda (Parallel AND Arrays)

master node see Vesta

master server see Panda (Parallel AND Arrays)

master-slave see p4, PVM, SHORE

mean-time-to-failure (MTTF) see RAID

Memory-Style ECC (RAID Level 2) see RAID

Mentat Programming Language see MPL

message passing see Agent Tcl, CCFS, CHAOS, DDLY, distributed comput-
ing, Global Arrays, Intel iPSC/860 hypercub, Intel Paragon, Intel Touchstone,
MIMD, MPI, MPI-2, p4, PASSION, PIOUS, PVM, Vesta, VIP-FS

Message Passing Interface Forum (MPIF) see MPI, MPI-2

Meta-Chaos see CHAOS

meta-data see Galley, HiDIOS, HFS, Portable Parallel File System (PPFS),
SPIFFI, Vesta

metacomputing
Metacomputing defines an aggregation of networked computing resources, in particular net-

works of workstations, to form a single logical parallel machine [107]. It is supposed to offer a



cost-effective alternative to parallel machines for many classes of parallel applications. Com-
mon metacomputing environments such as P VM, p4 or MPI provide interfaces with similar
functions as those provided for parallel machines. These functions include mechanisms for
interprocess communication, synchronization and concurrency control, fault tolerance,
and dynamic process management. Except of MPI-IO, they do not support file I/O or

serialize all I/O requests.

MIMD (Multiple Instruction Stream Multiple Data Stream)

MIMD is a more general design than SIMD), and it is used for a broader range of applica-
tions [3]. Here each processor has its own program acting on its own data. It is possible to
brake a program into subprograms which can be distributed to the processors for execution.
Several problems can occur. For example, the scheduling of the processors and their syn-
chronization. What is more, there will also be a need for more flexible communication than
in a SIMD model. MIMD appears in two forms. First, with a private memory for each
process - also referred to as distributed memory - and, second, with a shared memory.

A distributed memory approach uses message passing for interprocess communication.

Mirrorde (RAID Level 1) see RAID

mirroring see RAID

MMP (Massively Parallel Processor) see Grand Challenge Applications
moderate request see RAID-I

MPI (Message Passing Interface)

abstract:
In the last years, many vendors have implemented their own variants of the message
passing paradigm, and it turned out that such systems can be efficiently and portably
implemented. Message Passing Interface (MPI) is the de facto standard for message
passing. MPI does not include one existing message passing system, but makes use
of the most attractive features of them. The main advantage of the message passing

standard is said to be ’portability and ease-of-use’ [52]. MPI is intended for writing



aims:

message passing programs in C and Fortran77. The following passage is only based

on the standard produced in May 1994 and does not inlcude new features from MPI-2.

The goal of MPI was to develop a widely used standard for message passing programs,

and to allow the communication of processes which are used by an MPI program.

data access strategies:

MPI is suitable for the use of MIMD (multiple instruction stream multiple data
stream) programs as well as SPMD (single program multiple data). Blocking commu-
nication is the standard communication mode. A call does not return until the message
data and envelope have been safely stored, and the send is free to access and overwrite
the send buffer. MPI offers three additional communication modes that allow one to
control the choice of the communication protocol. These three additional modes are:

buffered mode, synchronous mode and ready mode.

In a blocking approach, a send command waits as long as a matching receive command
is called by another process. Moreover, if the process returns from this procedure, the
resources (such as buffers) can be reused (see data rewse). On the other hand, in a
nonblocking communication, a procedure may return before the operation completes,

and before a user is allowed to reuse resources specified in the call.

portability:

I/O is a very important feature, but MPI (Version May 1994) does not support it
(MPI-2does!). MPI-IO [111]is based on the MPI standard and serves as a standard
for parallel I/O within a message passing system. C, C++, Fortran

related work:

MPI-2, PVM (see PVM for a comparison of PVM and MPI)

people:

Jack Dongarra, David Walker (Conveners and Meeting Chairs); a detailed list of people
is omitted here

dongarra@cs.utk.edu



institution:
MPI was developed by the Message Passing Interface Forum (MPIF) with par-
ticipation from over 40 organizations.
http://www.mpi-forum.org
key words:
message passing, distributed memory, SIMD, MIMD
example:

#include "mpi.h"
main (argc, argv)

int argc,
myrank,
num_proc;
{

MPI_Init (&argc, argv); // initialise MPI

MPI_Comm_rank (MPI_COMM_WORLD, &myrank); // find rank

MPI_Comm_size (MPI_COMM_WORLD, &num_proc); // find number of processes

printf (’My process number is %d and %d processes are used.\n’,
myrank, num_proc);

MPI_Finalize (); // terminate MPI computation

details:

1 The Basics of MPI

The easiest way of interprocess communication is the basic point-to-point communica-
tion, where two processes exchange their messages by the basic operations SEND and RE-
CEIVE. Although MPI is a powerful and complex standard, it is possible to write programs

which use just six basic functions [52].

MPI_Init initiate an MPI computation

MPI _Finalize terminate a computation
MPI_Comm_size determine number of processes
MPI_Comm_rank determine current process’ identifier
MPI_Send send a message

MPI_Recv receive a message
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Figure 2.11: Noncontiguous Data Chunks in MPI

2 Derived Datatypes

In the former descriptions of point-to-point communication, MPI routines have only in-
volved simple datatypes such as integers, reals, characters or arrays. Furthermore, contiguous
buffers have to be used, i.e. one element of an array or the whole array has to be sent by a
single MPT_Send. Derived datatypes allow to define noncontiguous elements to be grouped
together in a message. This general mechanism allows one to transfer chunks of an array
directly without copying noncontiguous elements into a buffer before being sent. A general

datatype specifies two things:
e a sequence of basic datatypes
e a sequence of integer displacements

Such a pair of sequences is referred to as a type map. The displacement is not required to be
distinct, positive, or in an increasing order. The basic datatypes in MPI are particular cases
of a general datatype and can also be represented by a type map. For example, MPI_INT
has the following type map: (int,0) with displacement 0 (no gap in between two adjacent

integer values in the buffer or storage). All the other basic datatypes are similar.

For instance, an array consists of 50 elements and only the shaded elements (see Figure 2.11)
are to be sent, i.e. the block size is 2 (two elements) and the stride is 10 (eight elements in

between the shaded ones).

3 Collective Communication

In a point-to-point communication only two processes can compete in an information
exchange process. One process sends data, and the other one receives that message. A col-
lective communication is defined as a communication that involves a group of processes

rather than only two. For instance, on process has to distribute an array to all other processes



available. If a point-to-point communication is used, many send receive pairs have to be
executed, and always the same information is transferred. For convenience, these operations

can be done with one instruction by a broadcast command.

MPT offers the following functions for collective communication [52]:

e Barrier: Synchronises all processes.

Broadcast: Sends data from one process to all processes.

Gather: Gathers data from all processes to one process.

Scatter: Scatters data from one process to all processes.

Reduction operations: Sums, multiplies, etc., distributed data.

A collective operation means that all processes in a group have to execute the communication
routine with the same parameters. This is an important difference between collective and
point-to-point communication. In the latter, a receive has at least one different argu-
ment that is not the same in the send call: destination and source have to be adjusted. In
a collective communication either a destination or a source has to be stated, depending
on the function. Collective routines such as broadcast or gather have a single originating or
receiving process called the root. In other words, instead of using a source and a destination,
only a root process is defined. Another key argument is the communicator that defines the

group of participating processes.

A collective communication provides stricter type matching conditions than a point-to-
point communication. The amount of data sent must exactly match the mount of data
specified by the receiver. What is more, a collective communication may or may not have
the effect of synchronizing all calling processes (MPI_Barrier excluded), because collective

routines return as soon as their participation in the collective communication is complete.

4 Groups and Communicators

Communicators in general provide an appropriate scope for all communication operations



in MPI. They are divided into two kinds: intra- and inter-communicators. A intra-
communicator is used for operations within a group of processes. A group is defined as
an ordered collection of processes, each with a rank. It is possible to create more than one
group, each with its own intra-communicator. Processes can only communicate with their
specified group. An inter-communicator allows a point-to-point communication be-

tween two independent groups.

MPI-2

abstract:
MPI-2 is the product of corrections and extensions to the original MPI Standard
document. Although some corrections were already made in Version 1.1 of MPI, MPI-2
includes many other additional features and substantial new types of functionality [104].
In particular, the computational model is extended by dynamic process creation and
one-sided communication, and a new capability in form of parallel I/O is added (MPI-
I0). (Note that every time when MPI is mentioned this dictionary refers to Version
1.0. Thus, if a passage refers to MPI-2, it explicitly uses the term MPI-2.)

aims:
see MPI and MPI-10

data access strategies:
see MPI and MPI-10

portability:
see MPI and MPI-10

related work:
MPI, MPI-IO, PVM, ROMIO

people:
Many people have served on the Message Passing Interface Forum, but here
only the primary coordinators are stated: Ewing Lusk, Steve Huss-Ledrerman, Bill
Saphir, Marc Snir, Bill Gropp, Anthony Skjellum, Bill Nitzberg, Andrew Lumsdaine,
Jeff Squyres, Arkady Kanevsky



institution:
Message Passing Interface Forum
http://www.mpi-forum.org

key words:

message passing, distributed memory, I/O interface, SIMD, MIMD

details:
In the following passages only the most significant new features of MPI-2 are discussed briefly,

but the features from MPI Versions 1.0 and 1.1 are still valid and compatible.

1 Process Creation and Management

The static process model from MPI is extended, i.e. it is now possible to create or delete
processes from an application after it has been started [104]. The work was influenced by
PVM, where such a process management is already included. However, resource control is
not addressed in MPI-2, but it is assumed to be provided externally (e.g. by computer ven-
dors, in case of tightly coupled systems, or by a third software package in case of a cluster of
workstations). To sum up, MPI-2 does neither manage the parallel environment nor change

the concept of communicators.

2 One-Sided Communications

The MPI communication mechanisms are extended by Remote Memory Access (RMA)
which allows that one process can specify all communication parameters for both the send-
ing and the receiving side. In other words, communication routines can be completed by a
single process. Moreover, this mechanism avoids the need for global computations or explicit
polling [104]. In more detail, the following three communication calls are provided: MPI_PUT
(remote write), MPI_GET (remote read) and MPI_ACCUMULATE (remote update). It is supposed
that these functions should enable fast communication mechanisms provided by various plat-

forms.

3 Extended Collective Operations

Shortly, there a some extensions regarding the collective routines in M PI, additional routines



for creating intercommunicators and two new collective routines: a generalized all-to-all and

exclusive scan. What is more, ”in place” buffers can be specified.

4 External Interfaces
MPI-2 allows developers to layer on top of MPI-2 by means of generalized requests. What
is more, users should be able to define nonblocking operations which occur asynchronously

and, hence, concurrently with the execution of the user code.

5 I/0 Support
The previous versions of MPI did not include any support for parallel I/O. MPI-2 picks up
the basic ideas from MPI-I10 and includes them into the MPI-2 standard.

Finally, MPI-2 also includes C++ bindings and discusses Fortran 90 issues.

MPI-10

abstract:
Despite the development of MPI as a form of interprocess communication, the I/0
problem has not been solved there. (Note: MPI-2 already includes I/O features.)
The main idea is that I/O can also be modeled as message passing [111]: writing
to a file is like sending a message while reading from a file corresponds to receiving
a message. Furthermore, MPI-IO supports a high-level interface in order to support
the partitioning of files among multiple processes, transfers of global data structures
between process memories and files, and optimizations of physical file layout on storage
devices [111].

aims:
The goal of MPI-IO is to provide a standard for describing parallel I/O operations
within an MPI message passing application. Other goals [111]:

e targeted primarily for scientific applications
e favors common usage patterns over obscure ones

e the features are intended to correspond to real world requirements



e allows the programmer to specify high level information about 1/0

e performance rather than just functionality
data access strategies:
MPI-IO provides three different access functions including positioning, synchronizm
and coordination. Positioning is accomplished by explicit offsets, individual file point-
ers, and shared file pointers. As for synchronizm, MPI-10 provides both synchronous
and asynchronous (blocking, nonblocking respectively) versions. Moreover, MPI-IO
supports collective as well as independent operations.
portability:
MPI-IO provides two different header files and, hence, can be used in the C and in the
Fortran programming languages. MPI derived data types are used.
C, C++, Fortran
related work:
MPI-2, ROMIO
people:
a list of people is omitted here
mpi-io-requests@nas.nasa.gov
institution:
The MPI-IO proposal was made by the MPI-IO committee which consists of people
from the following institutions:
IBM T.J. Watson Research Center
NASA Ames Research Center
Lawrence Livermore National Laboratory (LLNL)
Argonne National Laboratory (ANL)

http://lovelace.nas.nasa.gov/MPI-I0

key words:
MPI, high-level interface, message passing, 1/0O features, MPI-2
example:

In the example, processes access data from a common file.



#include "mpi.h"
#include "mpio.h"
#define SIZE 1024

main (argc, argv)

int argc;

char *argvl[];

{
int rank, buf[SIZE];
MPIO_File fh; // file handle
MPIO_Offset offset; // offset in file
MPIO_Status status;

MPI_Init (&argc, &argv);
MPIO_Init (&ragc, &argv); // initialize MPI-IO
MPI_Comm_rank (MPI_COMM_WORLD, &rank);

// each process opens a common file called ’test’
MPIO_Open (MPI_COMM_WORLD, "test", MPIO_CREATE | MPIO_RDWR,
MPIO_OFFSET_ZERO, MPI_INT, MPI_INT, MPIO_HINT_NULL, &fh);

// perform computation

// write buffer

offset = rank * SIZE;

MPIO_Write (fh, offset, buf, MPI_INT, SIZE, &status);

// perform computation

// read the previously stored data in to buffer
MPIO_Read (fh, offset, buf, MPI_INT, SIZE, &status);

// perform computation
MPIO_Close (fh);

MPIO_Finalize ();
MPI_Finalize ();

details:

MPI-IO has six basic functions that are sufficient to write many useful programs [111].
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Figure 2.12: Tiling a file using a filetype

MPI0 Init initialize MPI-1O

MPI0_Open open a file

MPIO_Read read data from a particular location in the file
MPIO Write write data to a particular location in the file
MPIO Close close a file

MPIO_Finalize terminate MPI-IO

MPI-IO should be as MPI friendly as possible [111]. Like in MPI, a file access can be
independent (no coordination between processes takes place) or collective (each process of a
group associated with the communicator must participate in the collective access). What
is more, MPI derived data types are used for the data layout in files and for accessing
shared files. The usage of derived data types can leave holes in the file, and a process
can only access data that falls under holes (see Figure 2.12). Thus, files can be distributed

among parallel processes in disjoint chunks.

Since MPI-IO is intended as an interface that maps between data stored in memory and a
file [111], it basically specifies how the data should be laid out in a virtual file structure rather
than how the file structure is stored on disk. Another feature is that MPI-IO is supposed to

be interrupt and thread safe.

MPI-IO committee see MPI-10



MPL (Mentat Programming Language)
Mentat is an object oriented parallel processing system [79]. MPL is a programming language

based on C and used to program the machines MP-1 and MP-2 [38].

Multi-user Multimedia-on-Demand Server

At the heart of this system is a high-performance server which is a massively parallel pro-
cessor (MPP) optimized for fast parallel I/O. The sever is connected to high-speed wide-
area-network with ATM switches. The remote clients are computers with tens of megabytes

of main memory and hundreds of megabytes of secondary storage [66].

multifiles see design of parallel I/0 software, ParFiSys (Parallel File System)

Multipol
abstract:
Multipol is a publicly available [153] library of distributed data structures designed for
irregular applications (see ¢rregular problems). Furthermore, it contains a thread
system which allows overlapping communication latency with computation [154].
aims:
development of irregular parallel applications
implementation platform:
Thinking Machines CM-5, Intel Paragon, IBM SP1; in the future [154]: network

of workstations

data access strategies:
A communication layer provides portable communication primitives for bulk-synchronous
(put and get operations) and asynchronous communication (to start a thread on a re-
mote processor).

related work:
PARTI provides compiler analysis and runtime support, but it is not effective in
asynchronous applications due to the dynamic change of computation patterns [154].

TAM (Threaded Abstract Machine)



application:
symbolic applications that require dynamic irregular data structures written for dis-

tributed and some for shared memory multiprocessors [153]:

e Knuth-Bendix (used in automatic theorem providing systems based on equations

called ”rewrite rules”)
e Term Matching, Eigenvalue
e Groebner Basis (completion procedure to manipulate polynomials)

e Phylogeny Problem (problem of determining the evolutionary history for a set of

species - fundamental in molecular biology)

e Tripuzzle (problem to compute the set of all solutions to a single player board
game)

people:

Chih-Po Wen, Soumen Chakrabarti, Etienne Deprit, Arvind Krishnamurthy, Katherine

Yelick, Jeft Jones

{cpwen, soumen, deprit, yelick, arvind, jjones}@cs.berkeley.edu
institution:

University of California, Berkeley, CAL 94720, USA

http://HTTP.cs.Berkeley.EDU/Research/Projects/parallel/castle/multipol
key words:

I/0O library, distributed memory, distributed data structures, érregular problems

details:

The logically shared data structure is physically distributed among the processors. Since
distributed memory architectures do not support a shared address space, computation
migration (see also Agent Tecl) can be used to save communication costs [154], i.e. the
operation migrates to the processor where the bucket resides; this avoids data prefetching,
however, the latency may be longer. A communication layer called ’active messages’ can be
applied for computation migration. A split-phase interface is provided for operations that
may require communication. Such an operation returns after having done local computa-

tions, but never waits for communications to complete. Therefore, the caller has to check for



completion.

MTTF (mean-time-to-failure) see RAID

N

Name Server see Hurricane File System (HFS)
NAP see Network-Attached Peripherals

nCUBE

The proposed file system for the nCUBE is based on a two-step mapping of a file into the
compute node memories [113], where the first step provides a mapping from subfiles stored
on multiple disks to an abstract data set, and the second step is mapping the abstract data
set into the compute node memories. One drawback is that it does not provide an easy

way for two compute nodes to access overlapping regions of a file [113]. The throughput

is examined in [84]. See also PASSION.
nested patterns see disk-directed 1/0

Network-Attached Peripherals (NAP)

NAP make storage resources directly available to computer systems on a network without
requiring a high-powered processing capability [134]. This makes it possible for a single
network-attached control system such as HPSS (High-Performance Storage System)
to manage access to the storage devices without being required to handle the transferred
data. In particular, HPSS is capable of coordinating concurrent I/O operations over a non-
blocking network fabric to achieve very high aggregate I/O throughput. See also Scalable
I/0 Facility (SIOF).

NAP features [134]:



e 1/0O operations performed under the control of a master via an authenticated control

path
e data transfers directly with the client to obtain optimal performance

e access via conventional network media using conventional protocols to provide a reliable

data path

Non-Redundant (RAID Level 0) see RAID

O

object-oriented database (OODB)
An OODB requires a load utility in order to be able to load much data quickly from disk
into main memory, especially if neither the data nor the id map fits in memory. [151] states

two large databases in the scientific community:
e The Human Genome Database
e The climate modeling project

[151] presents some algorithms for a good load utility, one is the partitioned-list where
random data access can be eliminated by writing the id map to disk as a persistent list,
and using a hash join to perform lookups. In particular, virtual memory structures or

persistent B+ trees are applied.

A database system based on workstations is also implemented using a client-server archi-
tecture [53]. As for the client-server EXODUS, it utilizes a page server architecture.
Here clients interact with servers by sending requests for specific database pages or groups

of pages [22].



object-oriented data base management system (OODBMS) see SHORE
OCAD (Out-of-core Array Descriptor) see PASSION

OCLA (Out-of-core Local Array) see PASSION

OFS (Open File Server) see Hurricane File System (HFS)
one-to-one communication see CCFS

Open File Server (OFS) see Hurricane File System (HFS)

operating system components
[10] depicts operating system components that offer coverage over three critical requirements

for message-based massively parallel multicomputers:
e networking

— Intranetworking enables communication between processors that are part of the
same multicomputer and may be within or between parallel programs. There are

two distinctive solutions: unprotected and protected communication.

— Internetworking enables communication between remote processors connected

by networks such as Ethernet, HIPPI, FDDI and ATM.

e memory management includes three techniques: Shared Virtual Memory, Remote

Memory Servers and Checkpointing

e file and object store: It will be comprised by three major tasks: Firstly, defining
and implementing a standard application interface to both the Intel Parallel File
System (PFS) and the IBM Vesta Parallel File System. Secondly, it will be explored
whether a parallel, persistent object store can provide satisfactory performance to HF'S
applications. Finally, design and evaluation of alternative strategies for prefetching

files and objects from tertiary storage into secondary storage.

OOC (out-of-core) see API, irregular problems, PASSION, Two-Phase Method
(TPM), ViPIOS



OODB see object-oriented data base
OODBMS (object-oriented data base management system) see SHORE
Opal see CHAOS

OPT++

abstract:
OPT++ is an object-oriented tool for Extensible Database Query Optimization to
simplify the implementation, extension and modification of an optimizer [76]. Moreover,
OPT++ uses object-oriented programming tools from C++, even the search strategy
is a class. The optimizer consists of three components: a Search Strategy, a Search
Space and the Algebra.
aims:
It should be easy to add new operators and execution algorithms, experiments should
be enabled and flexibility should not influence the efficiency in a negative way.
implementation platform:
experiments were executed on a Sun SPARC-10/40
related work:
EXODUS Optimizer Generator, Volcano Optimizer Generator
people:
Navin Kabra, David J. DeWitt
{navin, dewitt}@cs.wisc.edu
institution:
Computer Science Department, University of Wisconsin, Madison, WI 53706, USA
http://wuw.cs.wisc.edu/shore/
key words:
object-oriented database, query optimizer
example:

see Figure 2.13

details:

The query is represented by an operator [76] tree where each node denotes a logical query



Join Loops.Join

SELECT * FROM Emp, Dept Emp.dno = Dept.dno Emp.dno = Dep.dno
XV,\';'DEEE Emp.dno"= D?p.dno Select SelectScan
mp.name ="Joe
Emp.name = "Joe" Emp.name = "Joe"
Emp Dept Emp Dept
(a) SQL Query (b) Operator Tree (c) Access Plan

Figure 2.13: Query Representation in OPT++

algebra operator as an input. The operators in the tree are replaced by the algorithms and
yield an access plan or execution plan. OPT++ has implemented a number of search strate-

gies including Bottom-up Search, Transformative Search and Random Search Strategies.
Ordered Access see Portable Parallel File System (PPFS)

OSF/1
OSF/1 is the operating system for the Intel Paragon multicomputer. See also PFS.

out-of-core (OOC) see C*, disk-directed I/0, irregular problems, Jovian, Panda,
PIM, PASSION, supercomputing applications, TPM, ViC*, Vienna Fortran
Out-of-core Array Descriptor (OCAD) see PASSION

Out-of-core Communication Method see PASSION

Out-of-core Local Array (OCLA) see PASSION

Overlapping or Disjoint Access see Portable Parallel File System (PPFS)

P

p4
p4 is a library of macros and subroutines developed at A NL for programming parallel ma-

chines [55]. It supports shared memory and distributed memory, where the former is



based on monitors and the later is based on message passing. Like in PV M, p4 offers a

master-slave programming model.

P+Q Redundancy (RAID Level 6) see RAID

Pablo

abstract:
Pablo is a massively parallel, distributed memory performance analysis environment
to provide performance data capture, analysis, and presentation across a wide variety of
scalable parallel systems [124]. Pablo can help to identify and remove performance bot-
tlenecks at the application or system software level. The Pablo environment includes
software performance instrumentation, graphical performance data reduction and anal-
ysis, and support for mapping performance data to both graphics and sound [124]. In
other words, Pablo is a toolkit for constructing performance analysis environments.

aims:

e portability
e scalability: The performance of a system can be increased by adding processors.

e extensibility: The user should be able to interact with the data to change the
types of data analysis and to add new analysis as needed [124]. What is more,
the system should also be sufficient for different kinds of users including novice,
intermediate and expert.

implementation platform:
Intel iPSC/860 hypercube and Intel’s NX/2 operating system

related work:
Prism and NV for CM-Fortran, Forge90 for F90 and HPF, MPP-Apprentice perfor-
mance tool for C, Fortran, Fortran90

people:
Daniel A. Reed, Ruth A. Aydt, Tara M. Madhyastha, Roger J. Noe, Keith A. Shields,
Bradley W. Schwartz, Jhy-Chun Wang

{reed, aydt}@cs.uiuc.edu



institution:
Department of Computer Science, University of Illinois, Urbana, IL 61801
http://bugle.cs.uiuc.edu/Projects/I0/io.html

key words:
performance analysis

example:
The sample file from [5] contains performance trace data such as a single Stream At-
tribute, two Record Descriptors, and four Record Data instances (details below). The
Stream Attribute gives information about the trace file (created on 1 Febr. 1992), and
the Record Descriptors define the event types ”message send” and ”context switch”
(labeled with #1 and #2).
SDDFA
/*

x"run date" "February 1, 1992"
*/ 55

#1: // "event" "message sent to one ore more processes"
"message send" {
double "timestamp";
int "sourcePE"; // "Source" "Processor Sending Message"
int "destinationPE"[]; // "Destination" "Processor(s) Receiving Message"
int "message length" // "Size" "Message length in bytes"
+5s
#2;
"context switch" {
double '"timestamp";
int ‘'"processor";
char "processName[]";
35
"context switch" {100.150000, 2, [8] { "file i/o" } I};;
"'message send" {101.100000, O, [4] {1, 3, 5, 7, }, 512};;
"message send" {102.150000, 7, [1]1 {1}, 1012};;

"context swtich" {108.000000, 4, [4] {"idle"} };;



details:

The Pablo instrumentation software has three components [124]:
e graphical interface for interactively specifying source code instrumentation points

e C and Fortran parsers that emit source code with embedded calls to a trace capture

library
e trace capture library that records the performance data

Since there is no standard data format for processing trace data from sequential or parallel
computer systems [124], the Pablo Self-Describing Data Format (SDDF) has been de-
veloped. It is a trace description language for specifying both the structure of data records
and data record instances. The format can be represented in ASCII and binary format.
Each SDDF file contains a flag indicating the byte ordering used by the file [5]. There ex-
ists also a library of C++ classes that provides an interface to the data stored in SDDF files.

A correct SDDF file can only be created if the SDDF syntax rules are obeyed. The SDDF
meta-format, which is supposed to be the key source of flexibility [1], has four classes of

records [5]:
e Command: conveys the action to be taken e.g. %17;

e Stream Attribute: gives information pertinent to the entire file e.g.:

/*
x'"Stream Attribute: This is just information"
*/ 55

e Record Descriptor: declares the record structure (see program fragment followed by

#1)

e Record Data: encapsulates data values

E.g.: {"context switch" {100.150000, 2, [8] {"file i/o"} };;



Each file begins with a header identifying the file format: SDDFA represents an ASCII file
and SDDFB a binary file. A record in the file is referred to as a packet. The four types of
these packets are stated above. A packet consists of a header and a body (except command
packets). [5] gives details on the usage of the SDDF Interface Library. A description of the

classes and methods is given in [64].

Pablo Self-Describing Data Format (SDDF) see Pablo
page server architecture see object-oriented database (OODB)

paged translation table see PARTI

Panda (Persistence AND Arrays)
abstract:

Panda is a library for input and output of multidimensional arrays on parallel and
sequential platforms [131, 132]. Panda provides easy-to-use and portable array-oriented
interfaces to scientific applications, and adopts a server-directed 1/O strategy to achieve
high performance for collective I/O operations.

aims:
Provide easy-to-use, portable, and high performance I/O support for synchronized
collective I/O operations in SPMD-style application programs on workstation clusters
and distributed memory multiprocessor platforms [30].

implementation platform:
Panda currently has been ported on a wide range of platforms:
Intel iPSC/860 (Intel CFS),
IBM SP2 (AIX JFS file system and IBM PIOFS parallel file system),
Intel Paragon (Intel PFS), SGI Origin 2000 (SGI xFS),
Cray T3E (Unix File System),
SUN workstations (SunOS),
HP workstations with an FDDI interconnect (HP-UX),
Windows NT PC clusters with a Myrinet interconnect (WinNT file system)

data access strategies:

applications are closely synchronized during I/0O [128]



support for blocking collective-I/0 [30]

Panda overlaps its file system I/O activities with its internal communication and com-

putational activities.

Panda uses MPI as its internal communication mechanisms to move data between

clients and servers.

In order to achieve ease-of-use and application portability Panda uses an array-oriented

high level interface. Furtermore, high performance is gained by the usage of the server-

directed I/0 strategy to form long, sequential requests whenever possible.
portability:

Panda uses MPI for interprocess communication
related work:

two-phase 1/0, disk-directed 1/0, Two-Phase Method (PASSION)

Hierarchical Data Format (HDF')

POSTGRES DBMS is enhanced: focus on read-only application that can take advan-

tage of the query capabilities of a DBMS [129]

ViPIOS, HPF (hints to the compiler with ALIGN and DISTRIBUTE), Vesta
application:

computational fluid dynamics (CFD) at NAS (airflow over aircraft and spacecraft)

the flow solver is written in an SPMD style in Fortran using explicit message passing
people:

Current group members:

Marianne Winslett (group leader), Y. Chen, Y. Cho, S. Kuo, J. Lee, and K. Motukuri.

{winslett, ying, ycho, s-kuo, jleel7, motukuri}@bunny.cs.uiuc.edu

Past group members:

K.E. Seamons, M. Subramaniam, P. Jones, and J. Jozwiak.

institution:
Computer Science Department, University of Illinois, Urbana, Illinois 61801, USA
http://drl.cs.uiuc.edu/panda/

key words:

server-directed I/O, SPMD, high-level interface, MPI, database, chunking, dis-

tributed memory
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Figure 2.14: Panda Server-Directed 1/O Architecture

details:

Panda combines three techniques in order to obtain performance [128]:
e storage of arrays by subarray chunks in main memory and on disk
e high-level interfaces to I/O subsystems
e use of disk-directed I/0 to make efficient use of disk bandwidth

Array chunking can improve the locality of computation on a processor, and improve 1/O
performance. High-level interfaces are considered to be flexible, easier to be used by pro-

grammers and give applications better portability [128].

1 Internal Architecture

Nodes in Panda can be classified into compute nodes (Panda clients) and I/O nodes
(Panda servers, see Figure 2.14). Panda uses the server directed-I/O (i.e. I/O nodes
direct the flow of I/O requests) strategy to handle application I/O requests [128]. Panda



allows to distribute arrays across compute nodes using HPF data distribution semantics.

The I/0O request handling is carried out as follows: When an I/O request is issued, one com-
pute node informs the servers of the upcoming I/O request, including the array distribution
information, array sizes, and array ranks [98, 138]. The servers digest the information and
make plans to handle the upcoming requests. For write requests, once each server determines
what data is his responsibility, it gathers data in a large I/O buffer and issues the file system
request, to write out the entire buffer. The reverse is used for reads. Communication between
servers does not take place during plan formation or while array data is gathered or scattered
to the clients. The same is true for clients. At the end of I/O request handling, all the servers
synchronize, and one of the servers, the master server, informs the master client who in turn,

informs all other clients about the completion of the I/O requests.

On platforms with fast interconnect and slow disks, e.g., IBM SPs, the Panda performance
is limited by the peak throughput of the underlying file system. However, on platforms with
relatively fast disks, but slow interconnects, such as an FDDI connected HP workstation clus-
ter, the performance can be bottlenecked by the underlying communication system. Panda
currently uses different optimization algorithms to optimize I/O performance for different

platforms.

2 Scalable Message Passing
Each client computes which servers it should communicate with in order to avoid an addi-
tional message to be exchanged [30]. Thus, the clients require certain information concerning

the entire 1/O request.

3 Panda and the Database Approach

Recent commercial database management systems (DBMS) are not applicable to scientific
application due to the lack of many characteristics and facilities required in a computation
intensive environment [130]. The members of Panda explore the use of flexible chunked array

storage formats to store arrays on disk [130].
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Figure 2.15: 3-D array divided into multidimensional chunks

An array has to be divided into chunks and can be stored contiguously on disk (see Fig-
ure 2.15). A chunk number is used to compute the correct chunk offset. What is more,
chunks may be of different sizes within a single array, and can be stored in a packed or

unpacked fashion.

A chunk can as well be divided into subchunks or can form a multidimensional array of lower
rank [131], which can be referred to as array of chunks. Ideally, each processor will work on
a single chunk at a time. The low-level interface allows reads and writes of logical chunks of
an array. In contrast, the high-level interface supports the declaration of certain arrays to
be part of checkpoints, time step outputs or restarts. The information about the chunk lo-

cations is stored in Panda’s schema files which can be used for the subsequence data accesses.

Paradise (PARAallel Data Information SystEm)
The goal is to apply an object-oriented and parallel database approach of EXODUS. Par-
adise supports storing, browsing, and querying of geographic data sets [47]. Moreover, an

extended-relational database model is used. SHORE serves as the storage manager for per-



sistent objects. The Intel Paragon was used for some experiments.

parallel file system

A parallel file system tries to eliminate the I/O bottleneck by logically aggregating mul-
tiple independent storage devices into a high-performance storage subsystem [108]. The
bandwidth can be increased by independent disk addressing (the file system can access
data conconcurrently from different files) and data declustering (a single file can be ac-

cessed in parallel).

Figure 2.16 depicts a very common model for a general parallel file system. Here the file
system is implemented over a set of independent I/O nodes that can be accessed by a set
of compute nodes via a high-speed interconnect. On each of the I/O nodes resides an
I/O daemon which implements general data access methods, disk scheduling, caching,
prefetching etc. In contrast, library routines linked with applications reside on each com-
pute node. These libraries implement the file system interface and manage all communica-

tion with the I/O nodes.

The following passage describes the minimal event sequence required for data access [108]:
Firstly, it is determined which I/O nodes contain the data to be accessed. In order to deter-
mine this, messages are sent to the I/O daemons requesting that data to be read or written.
Each daemon satisfies each request independently and sends a reply. The library function
returns control to the caller only if all results have been collected. Concurrency control
mechanisms have to be employed in order to guarantee correct transactions. However, con-

currency control negates some of the performance benefits of data declustering [108].

A parallel file system requires special research issues: In detail, traditional measurements
of /O performance are throughput and latency. Latency is the time elapsed between
issuing a request and completing it whereas throughput is the average number of requests
completed over a period of time. It can be stated that general improvements in I/O perfor-

mance do not necessarily imply improvements in both throughput and latency. The two
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Figure 2.16: Generic Parallel File System Architecture

basic methods to minimize the effects of latency are latency avoidance and latency tolerance.

Another way of avoiding latency of physical I/O operations is to cache frequently used
data. Furthermore, the location of the cache is an important issue. Whereas in a conven-
tional memory hierarchy a cache is located on the bus between a fast and a slow memory, in
a parallel I/O system the boundary is distributed to access parallel secondary storage and
parallel processors. In addition, one can distinguish between a global, client and server cache.
Striping, clustering and distribution are important terms regarding data distribution.
In order to increase the mean time to failure RAIDs are used. [7] presents some data on

analyzing distributed file systems.

Parallel File System see PFS

parallel I/O interface see I/0 interfaces

ParClient see ParFiSys (Parallel File System), Cache Coherent File System
(CCFS)



ParFiSys (Parallel File System)

abstract:
ParFiSys was developed to provide I/O services for a General Purpose MIMD
machine (GPMIMD). It was named CCFS in earlier projects. ParFiSys tries to

realize the concept of ”minimizing porting effort” in the following way [27]:

e standard POSIX interface

e parallel services are provided transparently, and the physical data distribution

across the system is hidden

e a single name space allows all the user applications to share the same directory
tree
aims:
provide I/O services to scientific applications requiring high I/O bandwidth to minimize
application porting effort, and to exploit the parallelism of a generic message passing
multicomputer
implementation platform:
GPMIMD
developed on a UNIX multiprocessor environment; operational on the following en-
vironments: Transputer T800 and T9000 multiprocessors, IBM/SP2 and UNIX
multiprocessors.
data access strategies:
e Segmented files: Each file is composed of one or more segments and uses a file

pointer with the items ”segment number” and ”segment internal address”.
e Multifiles: A multifile can be accessed in parallel as a set of subfiles.
e Global files: provides file pointer sharing

e Space preallocation: Resources for a file can be allocated in advance.
portability:
MPI-IO0 can be integrated in ParFiSys



related work:
MSS (Mass Store System), DPU (Data Parallel UNIX), CFS, CM-5 sfs, Vesta, Gal-
ley
people:
J. Carretero, F. Perez, P. de Miguel, F. Garcia, L. Alonso, F. Rosales
{jcarrete, fperez, pmiguel, fgarcia, lalonso, frosal}@fi.upm.es
institution:
Facultata de informatica, UPM (Universidad Politechnica de Madrid), Campus Mon-
teganceda, E-28660 Boadilla des Monte, Madrid, Spain
http://laurel.datsi.fi.upm.es/ gp/parfisys.html
key words:

file system, GPMIMD, data distribution, MPP, message passing

details:
Since ParFiSys is the successor of CCFS and there are only a few differences (mainly con-

cering cache coherence policies), the correspondence is stated here:
e ParClient corresponds to CLFS
e ParServer corresponds to LFS
e ParDisk corresponds to CDS

1 Architecture and Design

The architecture is divided into two levels called file services and block services. In
the first level there are ParClients (one on each PN, processing node) which translate
user requests into logical block requests, and the ParServers (on each ION, I/O node)
in the second level interact directly with the I/O devices located on their own ION (see

Figure 2.17).

ParFiSys uses following three techniques to translate user’s I/O requests into orders of the
physical system: data distribution, transparent parallel access and operation grouping. In

addition, the performance is increased by internal features such as read ahead, flush ahead,
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Figure 2.17: ParFiSys Architecture

extensive data caching and resource preallocation. In order to obtain data distribution,
ParFiSys requires four steps to translate user logical byte addresses into internal physical

block addresses:
e mapping user logical bytes to ParFiSys logical blocks
e mapping ParFiSys logical blocks to physical I/O nodes
e mapping ParFiSys logical blocks of each I/O node to physical devices
e mapping ParFiSys logical blocks to device physical blocks

The first level in ParFiSys (the ParClient), provides file services that can be obtained in
two ways by either linked libraries or by a message passing library. A linked library is pre-
ferred for a parallel machine, where a single user is usually expected per processing node.
A message passing library is preferred in distributed systems, where requests can be sent
to the ParClient by several users. In a linked library architecture the ParClient has to

be present on every processing node (PIN) requesting I/O whereas the message passing



approach allows remote users for a ParClient. The task of the ParClient is to translate
user addresses into logical blocks establishing the connections with the ParServers, handle
all communication through a high performance I/O library called ParServer Library. I/O
servers are contacted with via message passing. The ParServers, located at the I/O
nodes, deal with logical block requests and translate them to the logical secondary storage

devices.

2 Data D:istribution

A very generic distributed partition allows to create several types of file systems on any kind
of parallel I/O system. Such a distributed partition has a unique identifier, physical layout,
etc. The physical layout is represented by the following tuple and describes the set of I/O

nodes, controllers per node and the devices per node [26]:

({NODE,},{CTLR_ },,{DEVy}n.)
ParFiSys supports three kinds of predefined file systems on the partition structure [28]:
e UNIX-like non-distributed file systems, where 'NODE’=1, ’‘CTLR’=1 and 'DEV’=1

e Extended distributed file systems with sequential layout, where 'NODE’=a, "CTLR’=b
and 'DEV’=c

e Distributed file systems striped with cyclic layout, where 'NODE’=a, "CTLR’=b and
'DEV’=c. Here blocks are distributed through the partition devices in a round-robin

fashion.

3 Data Access
Since most file systems have drawbacks because of using the logical block as the basic unit [28],

following cache management algorithms are included:
e grouped management of the mapping and block I/O steps of each request

e grouping of several independent I/O requests



The mapping is established in a UNIX-like fashion and uses direct blocks, single indirect
blocks, double indirect blocks and triple indirect blocks. In order to optimize the mapping a

fixed number of blocks is premapped in advance to the next user request.

On mapping the user buffer to file system blocks, the whole block list is searched in the
ParClient cache with a single seek operation. A present block (found in the cache) is im-
mediately copied to the user space whereas absent blocks have to be requested through the
ParServer library. The requesting is done concurrently to each ParServer, overlapping

I/O and computation.

4 Resource Management

Allocating a big number of blocks can be very time consuming. Therefore, preallocation
algorithms obtain a predetermined number of free resources whenever possible and yield in
a major increase of the performance. However, a new problem named ”resource liberation”
is introduced. Resource preallocation has to be balanced in order to allow unused resources

also to be used by other ParClients.

parity logging see RAID

parity stripe see RAID-I

ParServer see ParFiSys (Parallel File System)
ParSet (Parallel Set) sece SHORE

ParSet Sever (PSS) see SHORE

PARTI (Parallel Automated Runtime Toolkit at ICASE)

abstract:
PARTI is a subset of the CHAOS library [120] and specially considers irregular
problems that can be divided into a sequence of concurrent computational phases. The
primitives enable the distribution and retrieval of globally indexed, but irregularly
distributed data sets over the numerous local processor memories. What is more, it

should efficiently execute unstructured and block structured problems on distributed



memory parallel machines [139]. The PARTI primitives can be used by parallizing
compilers to generate parallel code from programs written in data parallel languages
[43].

aims:
Ease the implementation of computational problems on parallel architectures by reliev-
ing the user low-level machine specific issues [139].

implementation platform:
Much work was done for the Intel Touchstone Delta, but also for the Intel :PSC/860
hypercube.

data access strategies:
PARTT uses the means of communications offered at Intel, namely Intel forced mes-
sage types. Non-blocking receive calls (Intel irecv), which are posted before data is
sent, are used. Synchronization messages check the consistency of posted messages.

related work:
Fortran D, HPF, Vienna Fortran

application:
An application was chosen from the domain of computational fluid dynamics (CFD). A
serial code developed at the NASA Research Center was devoted to solve the thin-layer
Navier-Stokes equation.

people:
Alan Sussman, Joel Saltz, Raja Das, Mustafa Uysal, Yuan-Shin Hwang, S Gupta,
Dimitri Mavriplis, Ravi Ponnusamy
{als, saltz, raja, uysal, shin}@cs.umd.edu

institution:
Department of Computer Science, University of Maryland, College Park, MD 20742,
USA
http://www.cs.umd.edu/projects/hpsl.html

key words:

irregular problems, distributed memory



details:

Each element in a distributed array is assigned to a particular processor. If another pro-
cessor wants to access these data, it has to know the processor. A translation table stores
the processor on which the data resides, its local address and the processor’s memory. A dis-
tributed translation table turned out not to be sufficient enough, so PARTT uses a paged
translation table. In brief, the translation table is decomposed into fixed-sized pages,
and each page lists the home processor and offsets. Each processor maintains such a page
table. This enables to access globally indexed distributed arrays that are mapped onto

processors in an irregular manner [43].

Since it is not possible in irregular patterns to predict at compile time what data must be
prefetched, the original sequential loop is transformed into two constructs, namely the in-
spector and the executor [139]. The inspector loop examines the data references (made
by a processor) and calculates what off-processor data needs to be fetched. The executor

loop uses this information to implement the actual computation.

Each inspector produces a set of schedules, which specify the communication calls needed to
either obtain copies of stored data or modify the contents of specified off-processor locations
or accumulate values to specified off-processor memory locations. Hash tables are used to

generate communication calls that transmit only a single copy of each processor datum.

Software caching can be used to reduce the volume of communication between processors.
All data that is needed by a set of irregular references is prefetched. The same off-processor
data may be accessed repeatedly, but only a single copy of that data must be fetched from
off-processor. During the schedule generation process each processor sends the list of data it
needs from all other processors, and it receives the list of data it must send to other proces-
sors [45]. Software Caching is further divided into Simple Software Caching and Incremental

Software Caching [43].

PARTT also uses data reuse and communication coalescing. Communication coa-



lescing collects many data items for the same processor into a single message to reduce
the number of message startups. PARTI defines three types of communication coalesc-
ing [43]: Simple communication aggregation, where all data each pair of processors needs to

exchange is packed into a single message; communication vectorization and schedule merging.

Partial Redundancy Elimination (PRE)

abstract:
PRE is a technique for optimizing code by suppressing partially redundant compu-
tations, and is used in optimizing compilers for performing common subexpression
eliminiation and strength reduction [2]. [2] describes an Interprocedural Partial
Redundancy Elimination algorithm (IPRE) which is used for optimizing place-
ment of communication statements and communication preprocessing statements in
distributed memory compilations. In this environment the communication overhead
can be decreased by message aggregation. In other words, each processor requests a
small number of large amounts of data. The optimization is obtained by placing a pre-
processing statement to determine the communicated data. The information is stored
in a communication-schedule. The developed IPRE algorithms is applicable on
arbitrary recursive programs [2].

aims:
code opimization

implementation platform:
Intel iPSC/860 hypercube

portability:
PRE uses a Fortran D compiler

related work:
other flow-sensitive interprocedural problems: concept of Super Graph [2]; FIAT for
interprocedural analysis

application:

Euler Solver



people:
Gagan Agrawal, Joel Saltz, Raja Das
{gagan, saltz, raja}@cs.umd.edu
institution:
Department of Computer Science, and UMIACS, University of Maryland, College Park,
MD 20742, USA
http://www.cs.umd.edu/projects/hpsl.html
key words:

code optimization, distributed memory

Partitioned In-core Model (PIM)

This is one of the three basic models of PASSION for accessing out-of-core arrays. It is
a variation of the Global Placement Model. An array is stored in a single global file and
is logically divided into a number of partitions, each of which can fit in the main memory of
all processors combined [143]. Hence, the computation problem is rather an in-core problem

than an out-of-core one.

PASSION (Parallel And Scalable Software for Input-Output)

abstract:
PASSION is a runtime library that supports a loosely synchronous SPMD pro-
gramming model of parallel computing [33]. It assumes a set of disks and I/O nodes
which can either be dedicated processors or some of the compute nodes can also serve
as I/O nodes. Each of these processors may either share the set of disks or have its
local disk. What is more, PASSION considers the I/O problem from a language and
compiler point of view. Data parallel languages like HPF and pC++ allow writing
parallel programs independently of the underlying architecture. Such languages can
only be used for Grand Challenge Applications if the compiler can automatically
translate out-of-core (OOC) data parallel programs. In PASSION, an OOC HPF
program can be translated to a message passing node program with explicit parallel

1/0.



aims:
software support for high performance parallel I/O at the compiler, run-time and file
system levels [33]
implementation platform:
Intel Delta, IBM SP2
related work:
Choudhary and Bordawekar also deal with OOC stencil problems in [13]
Panda: chunking for performance improvement, PIOUS, MPI-10, Vesta, PARTI,
CHOAS, Vienna Fortran, HPF, Bridge File System, disk-directed I/0
data access strategies:
Two-Phase Method
people:
Alok Choudhary, chaudhar@ece.nwu.edu
Rajesh Bordawekar, Rakesh Krishnaiyer, Micheal Harry, Ravi Ponnusamy, Tarvinder
Pal Singh, Rajeev Thakur, Juan Miguel del Rosario, Sachin More, K. Sivaram, A.
Dalia, Bhaven Avalani
{rajeh, rakesh,mharry,ravi,tpsingh,thakur,mrosario}@cat.sys.edu J. Ramanu-
jam, jxr@gate.ee.lsu.edu

Ian Foster

institution:
ECE Department, Syracuse University, NY 13244, USA
ECE department, Luisiana State University, Baton Rouge, LA 70803, USA
A NL Northwest Pacific Architecture Center, 3-201 CST, Syracuse University
Northwestern University, USA
http://ece.nwu.edu/ chaudhar/passion
key words:
I/0O library, distributed memory, out-of-core computation, SPMD, compiler, Two-

Phase Method

details:
PASSION uses an interface above the existing parallel file system and improves abstrac-

tions to the underlying file system. The library can either be used directly by the application
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programmer or by node programs translated by a compiler (see Figure 2.18).

1 Out-of-core Model

PASSION distinguishes between an in-core and an out-of-core program. Whereas in an
in-core program the entire amount of data (e.g. elements of a distributed array in a dis-
tributed memory machine) fits in the local main memory of a processor, large programs
and large data do not fit entirely in the main memory and have to be stored on disk. Such data
arrays are referred to as Out-of-core Local Array (OCLA) [141]. Unfortunately, many
massively parallel machines such as CM-5, Intel iPSC/860, Intel Touchstone Delta
or nCUBE-2 do not support virtual memory otherwise the OCLA can be swapped in
and out of disk automatically, and the HPF compiler could also be used for OOC programs.

The portion of a local array which is in main memory is called In-Core Local Array
(ICLA) and all computations are performed there. Additionally, this part is stored in a
separate file called Local Array File (LAF). During computation parts of the LAF are
fetched into the ICLA, new values are computed and the ICLA is stored back into appropri-

ate locations in the LAF. The size is specified at compile time and depends on the available.



The larger the ICLA the better, as it reduces the number of disk accesses [141].

2 Compiler Design
OOC compilation techniques also require knowledge of in-core compilation, thus, in-core

compilation is presented firstly.

2.1 In-core Compzilation
An array assignment statement (see sample program High Performance Fortran) is

translated using the following steps [141]:
1. The distribution pattern is analyzed.
2. The type of required communication is detected.

3. Data partitioning is performed, and the lower and upper bound for each participating

processor is calculated.

4. Temporary arrays are used if the same array is used in both RHS and LHS of the array

expression.
5. The sequential F77 code is generated.
6. Calls to runtime libraries are added to perform collective communication.

Communication between the processors is established in a SPMD (loosely synchronous)
style where all processors have to synchronize before communication. It is also referred to as

a collective communication [11].

2.2 Out-of-core Compzilation

Here many factors have to be considered: data distribution and disks, number of disks,
prefetching and caching techniques. However, some techniques from in-core compilation
can also be employed (e.g. stripmining where loop iterations are partitioned so that data
of fixed size can be operated on in each iteration [141]). The LAF of a processor is divided

into slabs whose sizes are equal to the ICLA. This means that data partitioning consists of
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two levels (see Figure 2.19).

Data is first partitioned among processors and then data within a processor is partitioned
into slabs which fit in the processor’s main memory. A sample array assignment can look as

follows:

A(i, j) = (B(-1,j) + B(i+1, j) + B(4, j-1) + B(i, j+1)) / 4

Since processors need data from neighboring processors in order to compute overlapping
arrays, a form of communication between the processors is required, either an Qut-of-core

Communication Method or an In-core Communication Method.



e OOC Communication Method: The compiler has to determine what off-processor
data is required for the entire OOC local array. Hence, no communication is required
during the computation on each slab. After the computation, the slab is written back
to disk. Communication is separated from computation. The communication stage also

requires accessing data from other processors, and PASSION provides two options:

1. Direct File Access: Any processor can directly access any disk. The processor
directly reads data from the LAF of other processors. Drawbacks are greater disk

contention and high granularity of data transfer.

2. Explicit Communication: Each processor accesses only its own LAF. Data
is read into memory and sent to other processors. Since the data to be com-

muncatited has to be read from disk, there is no contention.

e In-core Communication Method: The compiler analyses each slab instead of the
entire OQOC array. Communication is not performed collectively but interleaved with
computation on the ICLA. A special data structure called Qut-of-core Array De-
scriptor (OCAD) is employed to store such information as array size, distribution

or storage patterns.

3 Data Structures
PASSION provides support for reading/writing entire arrays as well as arrays stored in files.

Following data structures are available [33]:

e Out-of-core Array Descriptor (OCAD)
e Parallel File Pointer (PFILE)

e Prefetch Descriptor (see data prefetching)
e Reuse Descriptor (see data reuse)

e Access Descriptor

4 Compiler Support
A compiler for programs with arrays that are too large to fit in main memory has to perform

following two main tasks [32]:



e Generate run-time calls to perform read/write of the arrays.

e Perform automatic program transformation to improve 1/O performance.

An OOC program is compiled in two phases:

e Phase I: Global Program Preprocessing

e Phase II: Local Program Preprocessing

1.

Work Distribution
Loop Optimizations
Local Dataflow Analysis

Communication Optimizations

. I/O Optimizations

Inter and Intra File Organizations

pC++ (parallel C++) see CHAOS

PDS (PIOUS Data Server) see PIOUS

PE (processing element) see SIMD
peer-to-peer see Agent T'cl, SHORE, TOPs

permutation

Permutation is important where data resides on disk, and it is central to the theory of I/O

complexity. [41] examines the class of bit-matrix-multiply /complement (BMMC) permuta-

tions for parallel disk systems.

PFS (Parallel File System)

PFS is the file system for Intel Paragon’s operating system OSF/1. In general, OSF /1

provides two forms of parallel I/O [74]:

e PFS gives high-speed access to a large amount of disk storage, and is optimized for

simultaneous access by multiple nodes. Files can be accessed with parallel and non-

parallel calls.



e Special I/O system calls, called parallel I/O calls, give applications better performance
and more control over parallel file I/O. These calls are compatible with the Concur-

rent File System (CFS) for Intel iPSC/860 hypercube.

OSF/1 can be executed with or without PFS. PFS internally consists of one or more stripe
directories, which are the mount points for separate UFSs (UNIX File Systems). More-
over, several file systems are collected together into a unit that behaves like a single large file

system. File names and path names work in the same way as in UFS.

PFS performs I/O in parallel whenever possible, even if the user does not use parallel I/O

calls. Parallelism can be obtained in two forms [74]:

e Different stripe units can be dealt with in parallel if a single node performs I/O on a

block that is larger than one stripe unit.

e If two nodes read/write different file systems at the same time, the disk operation can

proceed in parallel as well.

physical data locality see ViPIOS
Physical Layer Storage Object (PSO) see HFS
PIM see Partitioned In-core Model

PIOFS (IBM AIX Parallel File System)

abstract:
PIOFS is a parallel file system for the IBM SP2. It uses UNIX like read /write and
logical partitioning of files. Furthermore, logical views can be specified (subfiles). PI-
OFS is capable of scaling I/O performance as the underlying machine scales in compute
performance [74]. What is more, applications can be parallized in two different ways:
logically or physically [74]. Physically means that a file’s data is spread across multiple
server nodes whereas logically refers to the partitioning of a file into subfiles. Other
features: faster job performance, scalability, portability and application support, and

file checkpointing.



aims:
acessing data without overhead of maintaining multiple data files
implementation platform:

IBM SP2

data access strategies:
A file can both be treated as a normal file or it can be partitioned into subfiles where
each subfile can be processed in parallel by a separate task [74].

portability:
PIOFS can coexist with other AIX Virtual File Systems in both storage and compute
nodes, and it complements existing file systems [74]. C and Fortran programs can use
the parallelism.

related work:

Vesta

institution:
IBM Coperation, Department of PDQA, RS/6000 Division, Sommers, NY 10589, USA
key words:

file system, views, checkpointing

PIOUS (Parallel Input-OUtput System)

abstract:
Since in metacomputing environments 1/O facilities are not sufficient for a good
performance, the virtual, parallel file system PIOUS was designed to incorporate
true parallel I/O into existing metacomputing environments [107] without requiring
modification to the target environment, i.e. PIOUS executes on top of a metacom-
puting environment. What is more, parallel applications become clients of the PIOUS
task-parallel application via library routines. In other words, PIOUS supports parallel
applications by providing coordinated access to file objects with guaranteed consistency
semantics [109].

aims:

incorporate true parallel I/O into metacomputing environments



implementation platform:
Sun SS2 IPC workstations with SunOS 5.3, SunOS4.1.3/5.3-4, IRIX 4.0.5/5.3, OSF /1
2.1, HP-UX, AIX

data access strategies:
PIOUS allows three logical views of a file object: global, independent and segmented
[107].

1. global: A file appears as a linear sequence of data bytes, and all processes in a

group share a single file pointer .

2. independent: A file appears as a linear sequence of data bytes (local file pointers

for each process).

3. A file appears in the natural segmented form (specified segments are accessed via

local file pointers)

Views only define the way a file is accessed, but do not alter the physical representation.
Moreover, all processes in a group have to open a file with the same view [107]. Between
groups, a form of file locking has to be considered (see also MPI-TI0). However, PIOUS
allows accessing a multi-segemented file, which could lead to some problems concerning
the EOF (end-of-file).

portability:
Version 1 of PIOUS is implemented for the PVM metacomputing environment,
hence, PIOUS is supposed to be installed effortlessly on any machine that PV M has
been built on, provided that the system has a UNIX style interface (see I/0 inter-
faces) [109]. In general, PIOUS should be independent of the underlying hardware
and software systems.

related work:
Hi:DIOS, Bridge File System, CFS, nCUBEFE’s parallel file system, Vesta

people:
Steven A. Moyer, V.S. Sunderam

{moyer,vss}@mathcs.emory.edu



institution:
Department of Mathematics and Computer Science, Emory University, Atlanta, GA
30322, USA
http://www.mathcs.emory.edu/Research/PIOUS.html
key words:
file system, distributed memory
example:
The following example in C from [109] accesses two files, one on the default set of data

server hosts and the other on the set of hosts specified in the program text.

#inlcude <piousl.h>

main ()
{
int fd;
char buf [4096];
struct pious_dsvec dsv[2];

/* access file on default set of data server hosts */

fd = pious_open ("filel.dat",
PIOUS_RDWR | PIOUS_CREAT | PIOUS_TRUNC,
PIOUS_IRUSR | PIOUS_IWUSR);
pious_write (fd, buf, (pious_sizet)4096);
pious_lseek (fd, (pious_offt)0, PIOUS_SEEK_SET);
pious_read (fd, buf, (pious_sizet)4096);
pious_close (fd);

/* access file on hosts marcie and patty */

dsv[0] .hname = "marcie";
dsv[0] .spath = "/users/moyer/piousfiles";
dsv[0] .1lpath = "/users/moyer/piouslogs";

dsv[1] .hname = "patty";
dsv[1] .spath = "/users/moyer/piousfiles";
dsv[1].1lpath = "/users/moyer/piouslogs";

fd = pious_sopen (dsv, 2,
"file2.dat",
PIOUS_RDWR | PIOQUS_CREAT | PIQUS_TRUNC,



PIOUS_IRUSR | PIOUS_IWUSR);
pious_write (fd, buf, (pious_sizet)4096);
pious_lseek (fd, (pious_offt)0, PIOUS_SEEK_SET);
pious_read (fd, buf, (pious_sizet)4096);
pious_close (fd);

details:
[107] defines some principles that are essential to develop a scalable, high-performance net-

work parallel file system.

1. Transport and Native File System Independence: PIOUS must be easily portable to
a variety of metacomputing environments implemented on different hardware plat-
forms. Basic message passing and a UNIX style file system are sufficient transport

and data access mechanisms.

2. Asynchronous Model of Operation: This model is used in order to achieve high perfor-
mance. Additionally, it is supposed to be free of inherent bottlenecks [107] and it is

facilitated by concurrency control.

3. Data Declustering (distribution of the file data): It allows accessing files in parallel,
which results in a potential increase in transfer rate proportional to the number of

devices.
4. Access Mechanism and Policy Independence

1 Software Architecture

An overview of the PIOUS software architecture is depicted in Figure 2.20. PIOUS con-
sists of a PIOUS service coordinator (PSC), a set of PIOUS data servers (PDS)
and library routines linked with client processes [107]. Messages between client processes and
components of the PIOUS architecture are exchanged by an underlying transport mechanism.
Furthermore, permanent storage is accessed by data servers via a native file system [107]. In

other words, a PDS corresponds to an I/O daemon [108].
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Figure 2.20: PIOUS Software Architecture

A single PSC initiates activities within the system and participates only in major system
events rather than in general file access. In particular, it manages file metadata and system

state. Thus, it does not represent the system bottleneck [107].

A PDS is located on each machine over which files are declustered. Moreover, PDSs are in-
dependent and do not communicate, i.e. each PDS accesses a file system local to the machine
on which it resides, and two PDSs can share a file system via a network file service [107].
Each PIOUS client process is linked with library routines that translate file operations into
PSC/PDS service requests [107]. Due to the independence of parallel data servers asyn-

chronous operations are emphasized.

2 Transactions in PIOUS
PIOUS uses stable and volatile transactions, and both guarantee serializability of access

(see also Strict Two-Phase Locking).

e stable: "traditional” transaction, two-phase commit, synchronous disk write operations,

guarantees that coherence is maintained (fault tolerance)

e volatile: ”light-weight”, does not guarantee fault tolerance, asynchronous (Read and

write operations are implemented as volatile transactions [108].)



8 File Model and Interface

The current interface is rather similar to UNIX. In detail, PIOUS tries to use similar func-
tion arguments and behavior, but it diverges from UNIX by implementing two-dimensional
file objects and sophisticated access coordination mechanisms [107]. Files are declustered by
placing each data segment on a single PDS within a logical file system. If the number of
data segments exceeds the maximum number of data servers, the segments are mapped in
a round-robin fashion. For example, if a file consists of four segments and the number of
PDS is 2, each of the PDSs gets two of the four file segments. PDS-0 receives segment 0
and 2 whereas PDS-1 is responsible for the segments 1 and 3.

PIOUS Data Server (PDS) see PIOUS
PIOUS Service Coordinator (PSC) see PIOUS
PN (processing node) see ParFiSys (Parallel File System)

point-to-point communication see MPI

Portable Parallel File System (PPFS)

abstract:
PPFS is a file system designed for experimenting with I/O performance of parallel sci-
entific applications that use a traditional UNIX file system or a vendor-specific parallel
file system [50]. PPFS is implemented as a user level I/O-library in order to obtain
more experimental flexibility. In particular, it is a library between the application and
a vendor’s basic system software. Furthermore, the correct usage of PPFS requires
some assumptions [51]: The underlying file system has to be a standard UNIX file sys-
tem, which allows the file system to be portable across a wide range of UNIX systems
without changing the kernel or the device drivers. Additionally, PPFS has to sit on
top of a distributed memory parallel machine. It is assumed that applications are
based on a distributed memory message passing model.

aims:

e identify the major issues for performance in parallel I/O (solve the I/O problem)

e A flexible API should serve as a tool for specifying access pattern hints and



controling the file system behavior.

e PPFS should be used for exploring data distribution, distributed caching and
prefetching techniques [71][73].

e exploration of distributed techniques for dynamically classifying file access pat-

terns

implementation platform:
Intel Paragon, network of UNIX workstations, Thinking Machines CM-5,

data access strategies:
PPF'S uses parallel files which consist of a sequence of records, which in turn is the unit
of access. Additionally, PPFS defines a set of access modes that have to be specified
when opening or creating a parallel file. Although a file can be accessed in parallel,
this does not imply that serializability can be dropped when using a shared file
pointer. Asynchronous calls allow PPFS applications to overlap computation with

I/O operations [71]. PPFS defines several parallel access patterns [72]:

e Direct Access: The data spread out over several disks may be accessed in parallel

by clients.

e Strided Access: A strided file can be read by clients record after record with a
stride s, i.e. the next record after i is i+s. This pattern can lead to a disjoint

access of the whole file.

e Synchronized Access: In the strided access each client is acting indepen-
dently. In contrast, the synchronized access requires a synchronization of the
clients. Problems like Producer-Consumer or barrier synchronization can be

dealt with.

e Ordered Access: The logical records of a parallel file do not necessarily corre-

spond to any logical order that implies any sequential access.

e Overlapping or Disjoint Access: The file access of clients may overlap or they

can access disjoint portions of a file.



portability:
portable across a number of parallel platforms [73] with the following requirements:
underlying UNIX file system and a typed message passing library
related work:
PIOUS, PASSION, CFS, Vesta, PFS, disk-directed 1/0
people:
Daniel A. Reed, Andrew A. Chien, Chris Elford, Chris Huszmaul, Jay Huber, Tara
Madhyastha, Daiv S. Blumenthal, James V. Huber Jr.
{reed, achien, elford}@cs.uiuc.edu
institution:
Department of Computer Science, University of Illinois, Urbana, IL 61801
http://www-pablo.cs.uiuc.edu/Projects/PPFS/ppfs.html
key words:
file system, client-server, caching, distributed memory, message passing
example:

The following program from [71] reads a file:

#define CACHE_SIZE 512%1024
#define CACHE_BINS 29
#define READ_SIZE 4096
#define READ_COUNT 16384

int readPtr, clientCount, lowClient;
char fileBuffer [READ_SIZE];

ppfs_client_cache (CACHE_SIZE, CACHE_BINS);

if (mynode () == ppfs_cient0())

{
readPtr = ppfs_open(Read.Example", pf_in);
clientCount = ppfs_clients();
lowClient = ppfs_client0Q);

for (i = lowClient; i < clientCount+lowClient; i++)
ppfs_send_file (readPtr, mytype O, 1i);
}
else
readPtr = ppfs_recv_file ();
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Figure 2.21: PPFS Design

for (recordNumber=0; recordNumber>READ_COUNT; recordNumber++)
read_logical (readPtr, fileBuffer, recordNumber, 1);

ppfs_close (readPtr);
ppfs_exit (0);

details:

The design is based on the client-server model. Figure 2.21 illustrates the objects (rectan-
gles) and the interactions in PPFS (dashed arrows represent system calls, and solid arrows
refer to interprocess communication or message passing [50]). I/O nodes (servers) man-
age I/O devices and handle requests from clients which are represented by application
processes. I/0O servers use standard UNIX files to store data, but they do not know any-
thing about the contents of the files they manage [51]. Additionally, requests can have a

priority argument in order to re-order the requests in the queue. Since prefetching is low



level, it can also be controlled by the application.

A user application is linked with a PPFS library and makes calls to this library in order to
perform I/O operations [72]. The usercode is transformed into a PPFS client, which con-
sists of user code, a client cache, a prefetch unit, bins for locating information or metadata,
messaging support, and client control routines. Each server program is executed by an I/O
node. Such a server consists of a cache, a prefetch unit, bins for holding open file meta-
data, server messaging support and an underlying UNIX file system. In addition to servers

and clients, PPF'S specifies intermediate objects: the meta-data server and a cache agent.

Clients have the task to access the file system and to maintain meta-data of a parallel
file. Meta-data contains additional information which is necessary for accessing distributed
files and how the file is organized (e.g. arrangement of file striping or location of the file).
Meta-data is analogous to UNIX i-nodes and open file pointers. A meta-data server

communicates with I/O servers to inform them about the status of the files.

Caching can occur at several levels within PPFS. Each I/O node (I/O server) maintains
a block cache of the data on its disk, and each client also has its own cache. What is more,
a caching agent that performs application level caching and prefetching is available. A
shared file can be treated as a producer /consumer resource. A read request for this shared

file will trigger an agent request. See also Agent Tcl.

POSIX see ParFiSys (Parallel File System), Cache Coherent File System (CCFS)
PRE see Partial Redundancy Elimination

prefetching see data prefetching

proactive disk and file buffer management see SPFS

processing element (PE) see SIMD

processing nodes (PN) see ParFiSys (Parallel File System)

producer/consumer see Portable Parallel File System (PPFS)

producer-driven see in-core communication



programming language E

E, a variant of C++, is a persistent programming language originally designed to ease the
implementation of data-intensive software systems, e.g. database management systems, re-
quiring access to huge amounts of persistent data [150]. E uses an interpreter called E
persistent Virtual Machine (EPVM). The interpreter is used to coordinate access to

persistent data that is stored using the EXODUS Storage Manager (ESM).

PSC (PIOUS Service Coordinator) see PIOUS
PSO (Physical layer Storage Object) see HF'S
PSS (ParSet Sever) see SHORE

public domain see Agent Tcl

PVM (Parallel Virtual Machine)
abstract:

PVM is a software tool allowing a heterogeneous collection of workstations and su-
percomputers to function as a single high-performance parallel machine [55], i.e. a
workstation cluster can be viewed as a single parallel machine (see also metacomput-
ing). PVM can be used in both parallel and distributed computing environments.
A message passing model is used to exploit distributed computing across the ar-
ray of processes or processors. Moreover, data conversion and task scheduling are also

handled across the network.

aims:
PVM should link computing resources. What is more, the parallel platform can also
consist of different computers on different locations (heterogeneity). PVM makes a
collection of computers appear as a large virtual machine [55]. The principles upon
which PVM is based are [55]: user-configured host pool, translucent access to hardware,
process-based computation, explicit message passing model, heterogeneity support

and multiprocessor support.
implementation platform:

PVM can be installed on workstation clusters as well as on highly parallel systems such



as Intel Paragon, Cray T3D and Thinking Machine CM-5. CRAY and DEC have
created PVM ports for their T3D and DEC 2100 shared memory multiprocessors
[55].

data access strategies:
PVM provides communication constructs for sending and receiving data, and high-level
primitives such as broadcast, barrier synchronization and global sum (as an example for
a reduction operation). Tasks can exchange messages with no limitation concerning the
size or the number of messages [55]. PVM supports asynchronous blocking send /receive
and nonblocking receive functions. A synchronous communication is possible as well.
The message order is guaranteed to be preserved. Unlike MPI sending of a message
comprises three steps. First, a buffer has to be initialized, second, the message has to
be packed and, finally, the message has to be sent. The communication is based on
TCP, UDP and UNIX-domain sockets.

portability:
PVM is portable and runs on a wide variety of platforms [55]. The libraries of PVM
are written in C. PIOUS is designed for PVM.

related work:
MPI, p4, Local File Server, Express

people:
Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, Vaidy

Sunderam

institution:
Oak Ridge National Laboratory (the prototype system PVM 1.0 was constructed there
by Vaidy Sunderam and Al Geist)
University of Tennesse (PVM 2.0 was written there)
Carnegie Mellon University
http://www.netlib.org/pvm3/book/pvm-book.html
key words:

I/0O interface, message passing, MIMD, virtual machine



example:

1 Master-Slave Approach

The technique to underly the first two code fragments is called master-slave and is
one example of data parallelism [136]. Thus, one master process prompts the slave
processes to handle the data which they receive. A master-slave program in PVM
consists of two separate programs, rather than a single one which is common in other
parallel programming languages, e.g. MPI. Before the data can be exchanged, the
master process has to spawn several slave processes. The following two code fragments

from [136] show the master and the slave code for adding two vectors:

Master process:

#include <stdio.h>
#include "pvm3.h"

main ()

{
int successfully_spawned,
tids[5],
i,j,
nproc,current_process,
x[5],y[5];

nproc=5;
// generate two vectors

// spawn nproc processes
successfully_spawned = pvm_spawn("vector_sum_s", (char*x)0, 0, "",
nproc, tids);

// check the spawning process
if (successfully_spawned<nproc)
{
// kill processes which were not successfully spawned
for( i=0 ; i<successfully_spawned ; i++ )
pvm_kill( tids[i] );

pvm_exit();
exit();



}

// send different values to different processes
for (i=0; i<nproc; i++)
{

pvm_initsend (PvmDataDefault) ;

pvm_pkint (&x[i],1,1);

pvm_pkint (&y[il,1,1);

pvm_send (tids[i],1);

// receive results from slave processes
printf ("\n\nThe processes computed following results:");
for (i=0; i<nproc; i++)
{
pvm_recv(-1,-1);
pvm_upkint (&current_process,1,1);
pvm_upkint (&s[i],1,1);
}

// print resulting vector

pvm_exit () ;
exit (0);

Slave process:

// receive data from master process
pvm_recv(-1,-1);

pvm_upkint (&x,1,1);

pvm_upkint (&y,1,1);

S=x+y;

printf("I’m a slave");

// send task id and computational result to master process
pvm_initsend (PvmDataDefault) ;

pvm_pkint (&mytid,1,1);

pvm_pkint (&s,1,1);

pvm_send(ptid, 1);

pvm_exit () ;
exit (0);



2 Single Program Multiple Data

PVM offers another possibility to write parallel programs and makes use of an SPMD
programming style. Unlike the master-slave programs, these are not split up into
two parts, but consist of only one single program code. In general, the communication
between different processes is organized in the same way. However, processes which

handle a mutual task are mostly grouped together.
n_proc=n_rows-1;

if( (my_gid = pvm_joingroup(MGROUP)) < 0 )
{
pvm_perror( "Could not join group \n" );
pvm_exit () ;
exit( -1 );
}

// if I’m the first group member then spawn other processes

if (my_gid == 0)
successfully_spawned=pvm_spawn("multiply_vector", (char**)O0,
PvmTaskDefault, (char*)0,n_proc,tids);

// sync on data receiving
pvm_barrier (MGROUP,n_proc+1);

// compute

// barrier after computation
pvm_barrier (MGROUP,n_proc+1);

// output after the multiplication procedure

pvm_barrier (MGROUP,n_proc+1);
pvm_lvgroup (MGROUP) ;
pvm_exit () ;

exit (0);

details:
1 PVM
PVM consists of two parts: the first part is a daemon, called pvmd, that resides on all com-

puters to make up the virtual machine. Once PVM is started, a pvimd runs on each host



of the virtual machine. Its tasks are message routing, process control and fault detection.
A form of master and slave pvimd can be created, where only one master pvmd is permitted
to configure the virtual machine such as adding and deleting hosts. However, if the master

pvmd crashes, the whole virtual machine crashes, too.

The second part of PVM is a library of PVM interface routines. A user can access PVM
resources in form of a collection of tasks, .i.e. an application has to consist of several co-
operating tasks. Such tasks can be initialized and terminated across the network. What
is more, the tasks can communicate with each other, can start or stop another task or
add/delete computers form the virtual machine [55]. Such tasks are identified by a task
identifier (TID) which has to be unique across the entire virtual machine and is involved in

the exchange of messages between tasks. The task id is similar to the UNIX process id (PID).

PVM supports group functions where several tasks can be joined to one group. In brief,
one task can join/leave a group at any time even without informing the other tasks of the

corresponding group.

The programming library can be regarded as the interface between tasks and pvmds. Thus,

functions for message handling and service requests can be performed.

2 Comparison of PVM and MPI
[136] discusses the differences between PVM and MPI. MPI is said to be faster on MPP
(Massively Parallel Processor) hosts than PVM [56].

PVM goes one step further in portability than MPI. Rather than running applications only
on various MPPs which can be regarded as a single architecture, PVM programs can be
compiled and executed on any set of different architectures at the time [56] so that a PVM
executable can communicate with all the other executables residing an different machines.
This is referred to as interoperability. The reason why MPI does not provide that feature is

that the destination address of every message must be checked in order to determine whether



it resides on the same host or on another one. Latter case could require data conversion
due to different architectures. Here is the major difference in the development of the two
approaches. The PVM project puts its emphasis on heterogenety which allows much more
flexibility whereas M PI focuses on performance and uses native hardware in order to make
message passing faster. However, even PVM uses native hardware for the communication
among hosts of the same architecture. The loss of performance in favor of flexibility is due
to the communication between hosts of different architectures where PVM uses the slower

standard network communication functions.

Besides this, PVM allows C programs to send messages to Fortran programs and vice versa.
Since C and Fortran support different language features, the M PI standard does not provide
this kind of language interoperability.

Another advantage of PVM over MPI is the concept of the virtual machine [56] which
allows process control and resource control. This means that tasks can be traced back such
as finding out which task is running on which platform. Moreover, the resource manager al-
lows dynamic configuration of the host pool which can either be done from the PVM console
or within the application programs. All those features of creating an arbitrary collection of
machines, which are treated as uniform computational nodes, are not supported by the MPI

standard.

A further important issue is fault tolerance. Since large scale computer applications some-
times run over a long period of time, a crash of the underlying system would waste many
hours of computation. Thus, PVM provides features for the notification of changes in the
virtual machine or task failures [56]. In short, if any task fails, all the other effected tasks
get a notify message instead of the expected one. If a new host is added to the virtual
machine, another notification message is sent which can be used for balancing the workload
among the new resources. Since tasks are considered to be static in MPI, mechanisms for

fault tolerance are not part of the standard.



However, an important feature makes the communication of MPI more flexible than that of
the counterpart, namely the concept of communicators. Although message tags and sender
ids can be used to distinguish messages for different purposes, this approach does not savely
enough distinguish between library messages and user messages. Thus, communicators are
a suitable feature for modular programming and information hiding by means of binding a
communication context to a group. Finally, one of the most cited advantages of MPI over

PVM is the non-blocking receive.

To sum it up, MPI is supposed to yield better performance on a single MPP due to its
richer set of communication functions. On the other hand, PVM’s power is the virtual ma-
chine which guarantees interoperabiltiy between different applications and fault tolerance

on clusters of workstations and MPPs.

pvmd (PVM daemon) see PVM
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RAID (Redundant Array of Inexpensive Disks)

abstract:
RAID (Redundant Array of Inexpensive Disks - due to the destructiveness of the term
"inexpensive”, RAID is also known as Redundant Array of Independent Disks) orga-
nizes multiple independent disks into a large, high-performance logical disk, stripes
data across multiple disks and accesses them in parallel to achieve high data transfer
and higher I/O rates. What is more, disk arrays increase secondary storage through-
put [58]. However, these large disk arrays have also a major drawback: they are highly
vulnerable to disk failures [29]. An array with x disks is x-times more likely to fail. A
solution to this problem is to employ a redundant disk array and error-correcting codes
to tolerate disk failures. Even this model has a disadvantage: all write operations have

to update the redundant information, which reduces the performance of writes in the



aims:

disk array.

Another drawback of a RAID system is that the throughput is decreased for small
writes. What is more, such small data requests are especially important for on-line
transaction processing (see also SPFS). Thus, a powerful technique called parity

logging is proposed by [137] for overcoming this problem.

striping to improve performance, and redundancy to improve reliability
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key words:
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details:

1 Basics of disk arrays

Two orthogonal concepts are employed: data striping for improved performance and re-

dundancy for improved reliability [29]. Data striping means distribution of data over



multiple disks to make them appear as a single fast, large disk. Moreover, it improves aggre-
gate I/O performance by servicing multiple I/O requests in parallel. In order to distinguish
the organization of RAIDs, one has to consider the granularity of data interleaving and the
method and pattern in which the redundant information is computed and distributed across
the disk array. Another two facts have to be kept in mind: What method to select for com-
puting the redundant information and what method to apply for distributing the redundant
information across the disks. Most RAIDs use parity, but some also use Hamming codes

or Reed-Solomon codes for calculating redundant information.

2 RAID levels

RAID appears in different levels which correspond to a specific technique of striping the data
and computing the redundant information. Normally, different levels of RAIDs have different
numbers (from 0 to 6), but also English names are used for their classification. Figure 2.22

illustrates the seven different RAID levels [29]:

e Non-Redundant (RAID Level 0)
Since this level does not employ any redundancy at all, it has the lowest cost of any
redundancy scheme. Thus, it offers the best write performance. However, the disad-
vantage of omitting redundancy is that any single disk failure will result in data-loss.
RAIDs 0 are applied in supercomputing environments where performance and capacity

are the primary concerns, rather than reliability.

e Mirrored (RAID Level 1)
This level is also called shadowing or mirroring and uses twice as many disks as a
non-redundant disk array. There are always two copies of the information, consequently,
whenever data is written to disk, a copy has to be sent to the redundant disk array. The
main advantage is that if data is lost, the second copy can be used. This is a typical
application of a database where availability and transaction rates are more important

than storage efficiency [29].

e Memory-Style ECC (RAID Level 2, Hamming-coded)

If memory systems fail, their recovery costs much less than mirroring by using Ham-
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Figure 2.22: RAID Levels



ming codes. The number of redundant disks is proportional to the log of the total
amount of disks, which results in an increase in the storage efficiency as the number of
data disks increases [29]. Although multiple redundant disks are required, only one is

needed to recover the lost information.

Bit-Interleaved Parity (RAID Level 3)

Here data is conceptually interleaved bit-wise over the data disks, and only one redun-
dant disk is added to tolerate single disk failures. Each read and each write request
accesses all disks. A write request also accesses the parity disk, i.e. only one request
can be serviced at a time. Level 3 is used for applications that require high bandwidth
rather than high I/O rates [29]. Moreover, their implementation is supposed to be

simple.

Block-Interleaved Parity (RAID Level 4)

This level is similar to the bit-interleaved one, except that data is interleaved across
disks of arbitrary size instead of bits. The size of these blocks is called striping unit,
which is important for the execution of requests. For instance, requests smaller than
the striping unit access only a single disk. There is only one parity disk which has to
be updated on all write operations. Thus, the parity disk is the possible bottleneck
in the RAID system [29]. Hence, the next level, block-interleaved distributed-parity is

preferred to this level 4 solution.

Block-Interleaved Distributed-Parity (RAID Level 5)

The bottleneck of level 4 is eliminated by distributing the parity over all the disks
available. Another advantage is that data is distributed over all disks rather than
just over all but one. Parity declustering is a variant that reduces the performance

degradations of on-line failure recovery [59].

P+Q Redundancy (RAID Level 6)
Parity can be considered as an error-correcting code that detects and corrects only
single bit errors. Since disks became larger, codes which can correct multiple-bit errors

are desirable, especially when applications require more reliability. P4+Q redundancy



uses Reed-Solomon codes to protect against up to two disk failures by using two

redundant disks [29].

3 Comparison of the different levels

The three most important features of a RAID are reliability, performance and cost, but relia-
bility is supposed to be the main reason for the popularity of disk arrays [29]. Reliability can
be measured in terms of mean-time-to-failure (MTTF). A system crash (power failure,
operator error, hardware breakdown or software crash) can interrupt such I/O operations as
writes, resulting in states where data is updated and parity not or vice versa. Although spe-
cial techniques like hardware or power supplies can decrease the frequency of such crashes, no
technique can prevent crashes 100%. In order to avoid the loss of parity by system crashes,

information has to be recovered by non-volatile storages.

4 Stale data
It is important that some piece of information indicating the validity of a disk is stored, i.e.
a variable has to indicate whether a redundant disk is valid or not. Some restrictions have

to be considered:

e The invalid sectors of a disk have to be marked as invalid before any request that would

normally access the failed disk can be serviced.

e On the other hand, a logically reconstructed sector has to be marked valid again before

any write request that would normally write to the failed disk can be served.

If the first condition is violated, it would be possible to read stale data that is considered
to have failed but works intermittently. A violation of the second condition would result in

write operations that would fail to update the newly reconstructed sector.

An Analytic Performance Model is described which is different from the previous one for
the reason that a closed queuing model with a fixed number of processes is used. Previous
models have used open queuing models with Poisson arrivals. The closed model is supposed

to model the synchronous I/O behavior of scientific, time-sharing and distributed systems



more accurately [101].

5 Parity

Parity bits can be computed in many ways, but some requirements have to be satisfied:

e Stripe units belonging to the same parity stripe should not map to the same column.
This is referred to as the ”orthogonal RAID” property and guarantees that the failure

of a single column does not result in data unavailability [102].

e In a RAID with n stripe units per parity stripe, the ith parity stripe unit should
correspond to logical stripe unit j such that j div n = i. This guarantees that the
parity for any write request that is aligned on a parity stripe, and a parity stripe
in size can be computed by using only the data being written without reading old

data [102].

The reason why small requests reduce the RAID performance stems from the disk access
which can be broken into three components: seek time, rotational position time, and data
transfer time. As for small writes, the time spent on seeking and positioning is greater than
the actual data transfer time. Parity logging is a modification to RAID level 5. To start
off, RAID level 4 is augmented with one additional disk, the log disk [137], which is initially
considered as empty. Parity updates are buffered until they can be written to a log effi-
ciently, i.e. the reintegration into a redundant disk array’s parity is delayed until there are
enough parity updates in the log. Since level 4 has a major disadvantage (see above), the
log as well as the parity disk information are distributed. Each disk is further divided into

manageable-sized regions.

RAID-I
abstract:

RAID-I ("RAID the First”) is a prototype RAID level 5 system. It was designed to
test workstation based-file servers concerning high bandwidth and high I/O rates. It
is based on Sun 4/280 workstations with 128 MB RAM and 28 5 1/4 inch SCSI disks
and four dual-string SCSI controllers [99]. The most serious reason why RAID-I was
ill-suited for high-bandwidth I/O was the memory contention.



institution:
Computer Science Division, Department of Electrical Engineering, University of Cali-
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details:

1 General Information

A logical to physical mapping as it is used in RAIDs is defined by a pair of functions:
the data-mapping-function and the parity-placement-function. The former is a one-to-one
function that maps a logical block address to a physical address whereas the latter is a many-

to-one function that maps a logical block address to a physical address [99].

RAIDs use some special terms for data mapping [99]:
e block: minimum unit of data transfer to or from a RAID device

e stripe unit: groups logically contiguous blocks that are placed consecutively on a

single disk before placing blocks on a different disk

e parity stripe: Normally, stripe refers to a parity stripe, whereas a data stripe refers

to a collection of logically contiguous units over which data is striped.
e row: minimal group of disks over which a parity stripe can be placed
e small request: fits entirely within a stripe unit (single disk)

e moderate request: spans multiple stripe units but does not use each disk more

than once
e large request: large enough to use several disks more than once

2 I/0 Request Servicing

Basically, the service of an I/O request is broken up into the following steps:

1. The I/O request is broken up into stripe requests, where each stripe is processed inde-

pendently.
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Figure 2.23: I/O Methods in RAID-I

2. The required stripes are locked in order to guarantee the consistency of the parity

information associated with each stripe.
3. For each stripe an appropriate I/O method is chosen.
4. The stripe is unlocked afterwards.

An I/O method can be one of the following five. See also Figure 2.23. Before an I/O method
can be selected, the validity of a chosen block has to be checked. This is done by consulting
the validity of a disk block.

e Read: This method reads requested blocks only if all the blocks that are required are

valid. If the physical request fails, the read method invokes the read-construct method.

o Read-Modify-Write: It is used if a relatively small portion of stripe is written. Here the
priority is updated incrementally by xoring the new data, old data and parity. This

is done in three steps:

1. Read old data and old parity.



2. Compute new parity.

3. Write new data and new parity.
A single physical request failure invokes the reconstruct-write method.

e Reconstruct-Write: This method is invoked if a relatively large amount of a stripe is
written. The three steps are similar to the one in read-modify-write except the data
is read from the rest of the stripe in the first step. Similarly, a single physical failure
causes the read-modify-write method to be invoked. More failures cause the stripe

request to fail.

e Reconstruct-Read: It is used if one of the requested blocks is invalid. The parity serves

to compute the contents of the invalid block.

e Nonredundant-Write: It is invoked if the blocks containing the parity are invalid. The
parity does not need to be updated, but writing the data again is sufficient [99].

RAID-II

abstract:
RAID-II ("RAID the second”) is a scalable high-bandwidth network file server and is
designed for heterogeneous computing environments of diskless computers, visualization
workstations, multimedia platforms and UNIX workstations [100]. It should support
the research and development of storage architectures and file systems. It is supposed to
run under LFS, the Log-Structured File System, developed by the Sprite operating
system group at Berkeley [100]. What is more, LFS is specially optimized to serve as
a high-bandwidth I/O and crash recovery file system.

institution:
Computer Science Division, Department of Electrical Engineering, University of Cali-

fornia, Berkeley, CA 94720, USA

details:
A high-bandwidth file service is provided by a mainframe computer, and workstations are
not likely to support high-bandwidth I/O in the near future [99]. RAID-II is different to

the conventional workstation-based network file servers (see Figure 2.24), since it uses the
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Figure 2.24: RAID-II Storage Architecture

network as the primary system backplane. It does not connect the high-bandwidth secondary
storage system to the high-bandwidth network via a low-bandwidth bus, but connects it
directly to the high-bandwidth network. Furthermore, the CPU is also connected to the
network. Consequently, RAID-II is supposed to be more scalable than conventional network

file servers [100].

RAID-II separates the storage system into storage servers and file servers. The storage
server corresponds to the secondary storage system of conventional network servers. This
concept has many advantages, e.g. if additional I/O bandwidth is required, it is possible to
simply add more storage servers without changing the number of file servers. On the
other hand, if file servers are overutilized, file servers can also be added. Another advan-
tage is that redundancy schemes can easier be implemented, since file and storage servers

are separated. However, the overhead to access the storage system is increased [100].

RAIDframe see SPFS

raidPerf
The RAID Performance Measurement Tool, raidPerf, developed at Berkeley (University of



California, USA) is a generic tool for measuring the performance of concurrent I/O systems
which can service multiple I/O requests simultaneously. The interface is similar to the one

used in raidSim [103].

raidSim
A RAID simulator, raidSim, developed at Berkeley (University of California, USA) is an
event-driven simulator for both modeling non-redundant and redundant disk arrays. It does

neither model the CPU, host disk controllers nor I/O busses, but only disks [103].

RAMA
RAMA is a parallel file system that is intended primarily as a cache or storage area for
data stored on tertiary storage. Furthermore, RAMA uses hashing algorithms to store and

retrieve blocks of a file [54]. See also SPIFFI.

range declustering see ViPIOS

RAPID (Read Ahead for Parallel-Independent Disks)

abstract:
RAPID is a fully parallel file system testbed that allows implementations of various
buffering and prefetching techniques to be evaluated [90]. The architectural model is
a medium to large scale MIMD shared memory multiprocessor with memory dis-
tributed among processor nodes. The results represented in [90] show that prefetching
often reduces the total execution time. As a matter of fact, the hit ratio is only a rough
indicator of overall performance of a caching system since it tends to be optimistic
and ignores prefetching overhead [90].

aims:
buffering, prefetching

implementation platform:
RAPID runs on the Butterfly Plus multiprocessors (nonuniform memory access time

(NUMA) architecture)



data access strategies:
prefetching, caching
related work:
disk-directed 1/0
people:
David Kotz, Carla Schatter Ellis
{dfk, carla}cs.dartmouth.edu
institution:
Department of Computer Science, Duke University, Durham, NC 27706, USA
http://www.cs.duke.edu/ carla/pario.html
key words:

file system testbed, operating system, disk caching, file system, MIMD

re-redistribution see array distribution

reactive disk and file buffer management see SPFS

read ahead

Communication between clients and servers (or in distributed systems in general) is one of
the main overheads in a file system [27]. Hence, I/O requests are packaged, and level locks
and resources are managed in groups. Read ahead reads new blocks in advance when a
minimum threshold is reached. Flush ahead is the opposite of read ahead and frees clean

blocks in order to satisfy write requests as soon as possible.

e read ahead: While waiting for client requests, blocks from the servers to the local caches
are prefetched in a client. A possible delay time of answers to user request has to be
avoided. Hence, prefetching is executed asynchronously to the user requests. The
amount of prefetched data is computed after each read request, and if the number is
lower than a determinate value, a thread is used for prefetching. An Infinite Block
Lookahead (IBL) predictor is used to compute the number of blocks to be read in

advance.

e Write Before Full (flush ahead) is the opposite of read ahead and flushes dirty
blocks to the I/O devices before free blocks may be required in the cache. After the



execution of a request, the number of dirty blocks is calculated. Only if this number is
greater than a fixed threshold, a flush operation is executed asynchronously. The write
performance can be increased in this way, but the preflush size has to be considered

carefully, because it could cause a delay of the next user request.

redistribution see array distribution

Redundant Array of Independent Disks see RAID
Reed-Solomon codes see RAID

registered objects see SHORE

Remote Memory Access (RMA) see MPI-2

Remote Memory Servers

The memory server model extends the memory hierarchy of multicomputers by introducing
a remote memory layer whose latency lies somewhere between local memory and disk [10].
A memory server is a multicomputer node whose memory is used for fast backing storage

and logically lies between the local physical memory and fast stable storage such as disks.

Remote Procedure Call (RPC) see Agent Tecl, CCFS, SHORE
request thread see SPIFFI
RMA (Remote Memory Access) see MPI-2

roll-away error recovery see SPFS

ROMIO

abstract:
ROMIO is a high-performance, portable implementation of MPI-I0O. A key feature
component is an internal abstract I/O device layer called ADIO. The features of
ROMIO are described in Chaper 9 of [104], but ROMIO does not support yet: shared
file pointer functions, split collective data access routines, support for file interoper-
ability, I/O error handling, and I/O error classes [145].

aims:

see MPI-10, MPI-2



data access strategies:
see MPI-10, MPI-2
implementation platform:
IBM SP, Intel Paragon, HP/Convex Exemplar, SGI Origin 2000, Power Challenge
and networks of workstations (Sun4, Solaris, IBM, DEC, SGI, HP, FreeBSD and Linux)
portability:
PIOFS, PFS, NFS and UNIX file systems (UFS)
related work:
ADIO, MPI-I10, MPI-2
people:
Rajeev Thakur, Ewing Lusk, William Gropp
{thakur, lusk, gropp, romio-maint}@mcs.anl.gov
institution:
Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S.
Cass Avenue, Argonne, IL 60439, USA
http://www.mcs.anl.gov/home/thakur/romio/
key words:

see MPI-10, MPI-2

round-robin see PIOUS, ParFiSys (Parallel File System), SPIFFI, Vesta
round-robin declustering see ViPIOS
RPC (Remote Procedure Call) see Agent Tcl

S

S-2PL see Strict Two-Phase Locking

scalability guidelines

The HF'S group presents some guidelines in [95] and [93]:



Preserving parallelism: A demand driven system must preserve the parallelism afforded
by the applications. A potential parallelism stems from the application, hence, inde-

pendent requests should be executed in parallel.

Bounded overhead: The overhead for each independent service request must be bounded
by constants. System-wide ordered queues cannot be used and objects must not be
located by linear searches if the queue lengths or search time increase with the size of

the system. As a result, this principle restricts growth to be no more than linear.

Preserving locality: A demand driven system must preserve the locality of the appli-
cation. Locality is important to reduce the average access time and can be increased
by:

1. properly choosing and placing data structures

2. directing requests from the application to nearby service points

3. enacting policies that increase locality in the application’s disk access and system

requests

Scalable I/0O Facility (SIOF)
abstract:

aims:

SIOF is a project to enable I/O performance to scale with the computing performance
of parallel computing systems and achieve terascale computing [134]. There are three

technologies to satisfy the requirements for scalable I/O:
e portable and parallel Application Programming Interfaces (A PI) - MPI-IO

e cost effective Network Attached Peripherals (NAPs)
e Network technology independence
HPSS (High-Performance Storage Systems) is an A PI that allows users to set up

transfers between multiple storage devices and multiple compute nodes in a shared

memory environment.

demonstration of a network-centered, scalable storage system that supports parallel

I/O across the computing environment [134]



implementation platform:
Meiko CS-2 parallel processors (computing nodes), IBM SP2 crosspoint-switched FC
fabric to connect the computing nodes
data access strategies:
data is stored and retrieved through the storage system by means of an MPI-I10 API
portability:
SIOF is implementing a separate API on top of HPSS for message passing archi-
tectures and follows the M PI-I0 standard.

institution:
Lawrence Livermore National Laboratory (LLNL), University of California, USA
http://www.1llnl.gov

key words:

message passing, scalable I/0, API

Scalable 1/O Initiative see ChemIO, ANL
scalability see CCFS, HiDIOS, Pablo, PIOFS, PVM, scalability guidelines, Vesta,
ViPIOS

Scotch Parallel Storage System (SPFS)

abstract:
Parallel storage systems are constructed as testbeds for the development of advanced
parallel storage subsystems and file systems for parallel storage. Scotch has been de-
veloping a portable, extensible framework, RAIDframe, applicable to simulation and
implementation of novel RAID design [59] in order to advance parallel storage sub-
systems. The key features are the separation of mapping, operation semantics, con-
currency control and error handling. The file system research is based on prefetch-
ing and caching techniques. Transparent Informed Prefetching (TIP) and the
Scotch Parallel File System (SPFS) are the results of the work. The benefit of TIP is
its ability to increase the I/O concurrency of a single-threaded application [117].

aims:
separated, mechanized, simple, and robust error-handling that does not degrade the

performance of error free operations [59] (automated error recovery)



implementation platform:

(experimental testbed)

Scotch-1 (used for the prefetching file systems): 25 MHz Decstations 5000/200
with a turbo channel system bus (100MB/s) running the Mach 3.0 operating
system; equipped with two SCSI buses and four 300 MB IBM 0661 ”Lightning”
drives [59]

Scotch-2 (larger and faster version of Scotch-1; used for the RAID architecture
and implementation and for second generation prefetching file system experi-
ments): 150 MHz DEC 3000/500 (Alpha) workstations running the OSF/1
operating system equipped with six fast SCSI bus controllers; each bus has five

HP 2247 drives with a total capacity of 30 GB

Scotch-3 (used for parallel applications, parallel programming tools and multi-
computer operation system experiments): 30 DEC 3000 (Alpha) workstations
and 8 IBM RS6000 workstations. Scotch-3 serves as a storage component in a

heterogeneous multicomputer.

data access strategies:

portability:

SPFS supports concurrent read-write sharing within a parallel application

does not provide synchronization primitives such as barriers or locks

SPFS anticipates file-sharing and implements a form of weakly consistent shared
memory [59] by exporting the two primitives ”propagate” and ”expunge”. They
are analogous to acquire and release in entry consistency, but lack the synchro-

nization semantics [59].

SPFS is supposed to complement programming tools such as PVM or DSM.

related work:

RAID

”advise” system calls in Sun Microsystems’ operating system

object-oriented file system called ELFS
disk-directed I/0



application:
[118] discusses experiments including text visualization, database join, speech recogni-
tion, object linking and computational physics. The tests were executed on Scotch-3.

people:
Garth A. Gibson, Daniel Stodolsky, Fay W. Chang, William V. Courtright II, Chris G
Demetriou, Eka Ginting, Mark Holland,Qingming Ma, LeAnn Neal, R. Hugo Patter-
son, Jiawen Su, Rachard Youssef, Jim Zelenka, Daniel Stodolsky, M Satyanarayanan,
David F. Nagle, Eugene M. Feinberg, Howard Gobioff, Chen Lee, Erik Riedel, Daiv
Rochenberg
{garth, danners}cs.cmu.edu

institution:
Parallel Data Lab at School of Computer Science and Department of Electrical Engi-
neering, Carnegie Mellon University, Pitsburgh, Pensilvania, USA
http://www.pdl.cs.cmu.edu/

key words:
disclosed hints, prefetching, caching, file system, I/O management, shared mem-
ory, distributed file system, RAID

example:
[59] presents an example of an SPFS program where all processes read arbitrary sections
of a file and each process writes to a private section of the file.

spfs_file_handle sfh;
int my_start = 2000 * process_number();

loop forever

spfs_read (sfh, ...);
computation

spfs_read (sfh, ...);
computation

BARRIER; /*write a disjoint section*/

spfs_write (sfh, ...);
computation
spfs_write (sfh, ...);

computation



spfs_propagate (sfh, my_start, 2000);

BARRIER;

spfs_expunge (sfh, entire_file);
endloop

details:

1 RAID

[42] proposes a graphical programming abstraction for use in standard RAID development.
Roll-away error recovery is used in order to eliminate the need for architecture-specific
error recovery code. In particular, RAID operations are represented as Directed Acyclic
Graphs (DAC). RAIDframe is supposed to allow new array architectures to be imple-

mented.

[42] deals with a fast, on-line recovery failure technique in RAID level 5. This is espe-
cially important for huge on-line applications such as an airline reservation system. The
performance-effect of this algorithm comes from a more efficient utilization of the array’s

excess disk bandwidth. In RAID, parity logging is explained.

[155] introduces some ideas concerning RAID for mobile computers. The driving force for
this is the limited amount of electrical power in mobile computers, i.e. they highly depend

on battery supply. A power-optimized caching is a means to overcome the power problem.

2 TIP

Since the traditional reactive disk and file buffer management does not meet the needs
sufficiently, a proactive disk and buffer management is proposed which is based on
application-disclosed hints called Transparent Informed Prefetching (TIP). TIP offers
commands like tipio_seq for sequential reading or tipio_seg [117]. There are three driving

factors for a proactive approach [118]:
e underutilization of storage parallelism

e growing importance of file-access performance



e ability of I/O-intensive applications to offer hints about their future I/O demands
TIP exposes the concurrency in the I/O workload [119] and is able to:

e service multiple I/O requests concurrently

e overlap I/O with computation or "user think time”

e optimize I/O accesses over a large number of outstanding requests

The predictability of an application’s access pattern could be used to inform the file system
of future demands on it rather than initiating asynchronous I/O. 'Disclosure’ is in contrast
to ’advice’ where a programmer’s knowledge is exploited to recommend how resources should

be managed [118]. Disclosing hints are issued through an I/O-control (ioctl) system call.

[116] outlines the difference between disclosure and advice by some examples:

Hints that disclose: "I will read file F sequentially with stride S”
”T will read these 50 files serially and sequentially”
Hints that advise:  ”cache file F”

”reserve B buffers and do not read-ahead”

The main reasons for not applying advice are that users are not qualified to give advice, and

an advice is not portable.

TIP2 uses a cost-benefit-analysis to allocate global resources among multiple processes [146].
In particular, decisions can be made by weighing the benefits of providing resources to a cos-
tumer against the cost of taking them from a supplier [146]. An algorithm called TIPTOE
quantifies the costs and benefits of deeper prefetching.

3 SPFS
SPFS is based on a client-server model where the client processes interface directly with
servers through a portable library. SPFS also uses TIP for aggressive data prefetching.

The level of fault-protection can also be chosen by the application due to a redundancy on a



per-file basis, i.e. redundancy computation can be dis- and enabled to minimize the perfor-

mance cost of short bursts of rapid changes [59].

4 Network-attached Storage

[57] describes the usage of a network-attached storage which provides high performance by
directly attaching storage to the network, avoiding file server store-and-forward operations
and allowing data transfer to be stripped over storage and switched-network links. In brief,
a command interface reduces the number of client-storage interactions that must be relayed
through the file manager, offloading more of the file manager’s work without integrating file

system policy into the disk [57].

scripting language see Agent Tcl

SDL (SHORE Data Language) see SHORE

SDDF (Pablo Self-Describing Data Format) see Pablo
sequential 1/O interface see I/0 interfaces

serializability see PIOUS, PPFS

server-directed I/O see Panda (Parallel AND Arrays)
SGFP (synchronous-global file pointer) see SPIFFI

SGl see ChemIO, HFS, ROMIO

shadowing see RAID

Shared File Model see CHANNEL

shared file pointer

A shared file pointer is much more powerful than a traditional private or local UNIX file
pointer since it can simplify the coding and increase the performance of parallel applica-
tions [54]. As for a shared file pointer, it is ensured that a file is read sequentially even if
many processes share the same file. Additionally, it reduces the number of disk seeks and

increases the effectiveness of prefetching [54].

shared memory see Cray C90, Fujitsu AP1000, Global Arrays, HFS, I1/0 in-



terfaces, Intel Paragon, Kenal Square, MIMD, Multipol, p4, PVM, RAPID,
Scalable 1/0 Facility, Scotch Paralle File System, Shared Virtual Memory
shared nothing see SHORE

Shared Virtual Memory

Shared Virtual Memory implements coherent shared memory on a multicomputer without
physically shared memory [10]. The shared memory system presents all processors with
a large coherent shared memory address space. Any processor can access any memory lo-

cation at any time. See also GPM.

SHORE (Scalable Heterogeneous Object REpository)

abstract:
SHORE is a persistent object system (under development) that represents a merger of
object-oriented database (OODB) and file system technologies [21]. The work is
based on EXODUS, an earlier object-oriented data base effort, but it differs in the

following points [21]:

e A storage object contains a pointer to a type object that defines its structure and

interface.

e architecture: SHORE has a symmetric peer-to-peer structure, and it supports

the notion of a value added [21] server.

e SHORE is much more a complete system than an EXODUS storage manager
(ESM).

The ParSet facility of SHORE provides a means of adding data parallel executions
to OODBMS applications [48].

aims:
provide a system that addresses OODB issues and enabling ”holdout” applications to
finally move their data out of files into persistent storage objects

implementation platform:

shared-nothing multiprocessor



portability:
PV M is used for interprocess communication
related work:

EXODUS

application:
Pointer swizzling can improve the performance of OODBMSs while accessing persis-
tent objects that have been cached in main memory [150]. In particular, the perfor-
mance increase stems from converting pointers from their disk format to an in-memory
format when objects are faulted into memory by the OODBMS. SHORE was also used
to design Paradise, a database system for handling GIS (Geographical Information
System) applications.

people:
Michael J. Carey, David J. DeWitt, Michael J. Franklin, Nancy E. Hall, Mark L.
McAuliffe, Jeffrey F. Naughton, Daniel T. Schuh, Marvin H. Solomon, C. K. Tan,
Odysseas G. Tsatalos, Set J. White, Michael J. Zwilling
{shore, paradise}@cs.wisc.edu

institution:
Computer Science Department, University of Wisconsin, Madison, WI 53706, USA
http://www.cs.wisc.edu/shore/

key words:
persistent object system, shared-nothing, object-orientated DB, file system

example:
[21] demonstrates how an SDL file (see below) is transferred into a C++ class.

007.SDL:

Module oo7{
const long TypeSize = 10;
enum BechmarkQOP {Travl, Trav2, Trav3, etc};

//forward declarations
interface Connection;

interface CompositePart;

interface AtomicPart {



public:
attribute char ptypel[TypeSize]l;
attribute long x,y;
relationship set<Connection> to inverse from;
relationship set<Connection> from inverse to;
relationship ref<CompositePart> part0Of inverse parts;
void swapXYQ);
long traverse (in BechmarkOp op, inout PartIdSet visitedIds) const;
void init( in long ptId, in ref<CompositePart> cp);l};

C—++ class generated from 007.SDL

class AtomicPart {

public:
char ptype[109];
long x, y;

Set<Connection> to;
Set<Connection> from;
Ref<CompositePart> partOf;
virtual long traverse (BenchmarkOp op, PartIdSet &visitedIds) const;
virtual void init (long ptId, Ref<CompositePart> cp);
+;

Information about an atomic part could be printed by a C+-+ function as follows:

void printPart (Ref<AtomicPart> p {
cout << "Type" << p->ptype << part at (" << p—>x ",
<< p=>y << )\n";

details:

1 Basic Concepts

SHORE is a collection of cooperating data servers, and a UNIX-like namespace is provided.
In contrast to UNIX, each object can be accessed by a globally unique Object Identifier

(OID). What is more, there are also a few new features of objects like types and pools.



Like in a database object model, the SHORE object model consists of objects and values. In
order to obtain flexibility of dynamic data structures, SHORE allows objects to be extended
with a variable-sized heap. The two main services of the file system are object naming and
space management. The namespace also allows the usage of anonymous objects, which do
not have path names, but can be accessed by OID like any other objects. UNIX-like objects

are called registered objects.

SHORE types are defined in the SHORE Data Language (SDL). Moreover, a database
built in one language should be accessed and manipulated by applications in other OO

languages. An application can be created as follows [21] - C++ bindings are operational:
e write a description of the types in SDL
e use the SDL compiler to create type objects corresponding to the new types

e use a language specific tool to derive a set of class declarations and special-purpose

function definitions from the type objects

Other services provided by SHORE are concurrency control, crash recovery, optimized
object queries and a flexible, user controllable notion of sticky objects to permit users to

cluster related objects.

2 Architecture
SHORE executes as a group of communicating processes called SHORE servers [21]. Each

of these servers has several capabilities [21]:
e It is a page-cache manager.

e It acts as an agent for local application processes. In particular, an RPC call is
sent requesting to the local server, which fetches the necessary page(s) and returns the

object.

e [t is responsible for concurrency control and recovery.



The basic parallel construct is ParSet (Parallel Set) which can adopt the data parallel
approach to object-oriented programming. ParSet is a set of objects of the same type and
uses SDL as the type language for ParSet objects. Additionally, primary and secondary
ParSets can be distinguished. The master-slave model is expanded, and one node runs on

an additional ParSet Server (PSS) [48].

SHORE Data Language (SDL) see SHORE

SIMD (Single Program Multiple Data)
SPMD is a model for large-scale scientific and engineering applications. The same program

is executed an each processor, but the input data to each of the programs may be different [16].

The most widely used classification is the one where the von Neumann model is viewed as
a Single Stream of Instructions controlling a Single Stream of Data (SISD). One instruc-
tion produces one result and, hence, there is a Single Instruction Stream and a Single Data
Stream. One step towards parallelism leads to the SIMD model, another step ends up with
Multiple Instruction Streams (MIMD). In the classical example of a parallel SIMD model,
a number of identical processing elements receive the same instruction broadcast by a
higher instance. Each processing element performs the instruction on its own data item.
In other words, a SIMD instruction means that a Single Instruction causes the execution of
identical operations on Multiple pairs of Data [3]. Furthermore, this is the simplest concep-
tual model for a vector computer. The synchronization can be obtained by using a broadcast
command that keeps the processes in a lockstep, and the processes need to talk to each other
for synchronization purpose. Additionally, they need not store their own programs, which

results in a smaller design and a bigger amount of processes.

A SIMD machine contains many data processors operating synchronously, each executing the
same instruction and using a common program counter [81]. Furthermore, each processor
(processing element, PE) is a fully functional ALU (Arithmetic Logical Unit). Many

PEs are called PE array, which can be treated as a linear array or as an array of higher



dimensions. Moreover, each PE has an execution flag indicating whether the PE should
execute the current instruction. A front end (FE) processor has to drive the PE array
by broadcasting instructions and related data to all PEs. Additionally, it has to perform all
scalar computations and control flow operations, and the FE is the system interface to the
external environment. What is more, all PEs are connected by an interprocessor communi-

cation network, which allows the PEs to access data stored within the memories of other PEs.

SIMD machines offer impressive cost/performance ratios, and are well suited for a large body

of engineering and scientific applications [81].

simple-strided access see disk-directed 1/0

SIOF see Scalable I/0 Facility

SISD see SIMD

slab see PASSION, data sieving, data prefetching
small request see RAID-I

SMP Digital Alpha see CHAOS

space preallocation see ParFiSys (Parallel File System)
SPARC see ChemlIO, Fujitsu AP1000, OPT++, TPIE
SPFS see Scotch Parallel File System

SPIFFI (Scalable Parallel File System)
abstract:

SPIFFI is a high-performance parallel file system that stripes files across multiple
disks.

aims:

intended for the use of extremely I/O intensive applications
implementation platform:

SPIFFTI is the parallel file system for the Intel Paragon

data access strategies:
SPIFFI provides applications with a high-level flexible interface including one individual

and three shared file pointers.



portability:
A library of C functions can be used to access SPIFFT files.
related work:
RAID, RAID-II, disk-directed I/0, PFS, Vesta, CMMD I/0 system, RAMA,
Bridge parallel file system
people:
Craig S. Freedman, Josef Burger, David J. DeWitt
{freedom, bolo, dewitt}@cs.wisc.edu
institution:
Computer Science Department, University of Wisconsin, Madison, WI 53706, USA
http://www.cs.wisc.edu/shore/
key words:

file system, distributed memory

details:

A file is partitioned across disks horizontally in a round-robin fashion. When a user creates
a file, the a set of disks and the stripping granularity have to be stated. The portion of a file
stored at one disk is called file fragment. Moreover, each disk node has a file system which
is responsible for mapping local file blocks to physical file blocks and for recording each frag-

ment’s size. In addition, each node also caches a copy of the meta-data for each file to open.

The local file pointer (LFP) is a single process and allows reading or writing an en-
tire file sequentially or accessing random portions of it [54]. It is comparable to PFS’s
M_UNIX I/O mode. The three shared file pointers are called global file pointer (GFP),
synchronized-global file pointer (SGFP) and distributed file pointer (DFP). The
GFP is shared among a group of processes which access the same file. It enables a collective
read or write. The file pointer can be compared to PFS’s M_.LOG I/O mode. Processes that
share a SGFP (comparable to M_SYNC in PFS) are assigned a fixed cyclical ordering and

may only access the file pointer in that order. DFP is intended for I/O intensive applications.



Process 0 Process 1 Process 2 Process 3 Process 4

MPI_Init MPI_Init MPI_Init MPI_Init MPI_Init

MPI_Comm_rank| | MPI_Comm_rank| | MPI_Comm_rank| | MPI_Comm_rank | | MPI_Comm_rank
MPI_Comm_size | | MPI_Comm_size | | MPI_Comm_size | | MPI_Comm_size | | MPI_Comm_size time
printf printf printf printf printf

MPI_Finalize MPI_Finalize MPI_Finalize MPI_Finalize MPI_Finalize

Figure 2.25: SPMD programming model

SPIFFI also employs three types of threads. Each disk runs a request thread, a control
thread and a GFP thread. The request thread is responsible for receiving read and write
requests, the control thread manages file operand close requests, and the GFP thread
provides atomic read and write update operations. What is more, each buffer pool is allo-

cated at each disk node to improve application performance [54].

split-phase interface see Multipol

SPMD (Single Program Multiple Data)
In MPI only one program is written which is executed on each of the processes that compete
in the calculation. In the example (see MPI), five copies of the program are run at the same

time on five different processes (see Figure 2.25).

Process 0 executes its program as well as processes 1, 2, 3 and 4. Each process has its own
program and works independently of the other ones. It does not even have to know that there
are other processes as well that execute the same program. A process executes its program
in a sequential way and produces an output which indicates its process id. On the screen,
the final result of five calculations can be seen. As in a real parallel computation model, the
order in which the output appears is not defined. MPI does not specify how such a parallel
computation is started and, therefore, such programs are non-deterministic. For instance,
process 4 could execute the print instruction before process 2 or vice versa. The correct

output cannot be determined before the execution of the program [135].



STARFISH
STARFISH is a parallel file system simulator (developed at Dartmouth College, USA) which
ran on top of the Proteus parallel architecture simulator, which in turn ran on a DEC-5000

workstation [88]. See also disk-directed 1/0.

storage node see Vesta
storage object see Hurricane File System (HFS)
storage server see RAID-I1

Strict Two-Phase Locking (S-2PL)

abstract:
The most common form of a scheduler is based on strict two-phase locking (S-2PL) [110].
Under S-2PL, before an I/O daemon can perform a data access, a read or write lock
must be obtained. If the data is currently locked and the lock types will conflict,
then the data access must be delayed until the lock can be obtained. Two locks on the
same data item conflict if issued by different transactions and one or both is a write

lock. S-2PL results in a serializable schedule.

details:

S-2PL is also well known in the data base world. There a transaction is a finite sequence
of data access operations that translates the database from one consistent state to another
one. Transactions have to be executed in a form so that the effect is as if transactions are
performed in a serial or sequential order. Transactions that satisfy these conditions are said

to be serializable.

When an application executes a read or a write library function call, a unique transaction
identifier is generated for tagging all messages to be sent. It is then determined which I/O
nodes contain the file data to be accessed. Messages are sent to the appropriate I/O dae-
mons requesting that data to be read or written. Independently, each I/O daemon satisfies
each request, after obtaining the necessary lock, and replies with the result. Write requests

must be performed so that the initial values can be stored if the transactions fail (check-



pointing). All results are collected and, if they all indicate success, a commit message is
then sent to each participating I/O daemon; abort otherwise. Thereafter, control is re-
turned to the caller. Having received a commit message, an I/O daemon makes permanent

any write access and frees all locks held on its behalf.

The disadvantage of S-2PL is that deadlocks are possible when a circular wait condition
develops. A simple way to solve this problem is that each daemon has to time-out a request

that has been delayed too long on a lock [110]. See also PIOUS.

strided access see disk-directed I/0, Portable Parallel File System (PPFS)
strided segment see disk-directed 1/0

stripe unit see PPFS, RAID, RAID-I1

stripmining see PASSION

striping unit see design of parallel 1/0 software, RAID

Sun 4/280 see RAID-I

supercomputing applications

Supercomputing applications are generating more and more data, but 1/O systems cannot
keep abreast, i.e. they become less able to cope with the amount of information in a sensible
amount of time. The solution requires correct matching of bandwidth capability to applica-
tion bandwidth requirements, and using of buffering to reduce the peak bandwidth that I/O

systems have to handle.

Conventional file systems use caching for reducing 1/O bandwidth requirements. Thus, the
number of requests can be decreased, and the system performance is increased. Another
method of reducing I/O is the usage of delayed writes. A write-behind cache policy
is required, which allows a program to continue executing after writing data to the cache

without waiting for the data to be written to the disk.

The environment of a supercomputer (e.g. Cray Y-MP 8/832) is different from a con-



ventional one. It is characterized by a few large processes that consume huge amounts of
memory and CPU time. Jobs are not interactive, but submitted in batch and run whenever

the scheduler can find enough resources.

Supercomputers are ideal for applications that require the manipulation of large arrays of
data. They are especially applied in fields like fluid dynamics, structural dynamics or seis-

mology [106].

[18] presents six types of I/O that can be identified with typical computational science ap-
plications: input, output, accessing out-of-core structures, debugging, scratch files and

checkpoint /restart.

Synchronized Access see Portable Parallel File System (PPFS)
synchronous-global file pointer (SGFP) see SPIFFI

T

T800 see ParFiSys (Parallel File System)
T9000 see ParFiSys (Parallel File System)

task parallel program
A task parallel program consists of a set of (potentially dissimilar) parallel tasks that per-
form explicit communication and synchronization [4]. Fortran M (FM) and CC++ are

examples of such a language.

Tcl see Agent Tcl, TIAS
TCP/IP see TIAS

TIAS (Transportable Intelligent Agent System)



abstract:
Transportable agents fall in the intersection between the fields of intelligent agents
and the field of remote computation [65]. What is more, it can transport itself as well
as communicate with other agents. The system is layered to enhance modularity.
aims:
find abstract methods of manipulating on-line data that serve the needs of end users
efficently and use network resoucres intelligently [65]
implementation platform:
DEC MIPS / Ultrix DEC Alpha / OSF/1
related work:
Agent Tcl
portability:
relatively portable to UNIX platforms
application:
e calendar manager: A mobile-agent script travels from calendar to calendar, re-
questing availability information and attempts to secure a reservation for a certain

time.
e daily newspaper

e monitoring: stock trading agents can handle a portfolio; monitoring WWW doc-
uments for changes
people:
Kenneth E. Harker
iago@cs.drtmouth.edu
institution:
Department of Computer Science, Dartmouth College, Hanover, HN 03755-3510, USA
key words:

transportable agent

details:

The TIAS implementation can be divided into three layers of code:



1. The transportation layer is at the base and is responsible for moving an agent. TCP /IP

and sockets are used to transport an agent from one machine to another.

2. The interpreter layer interprets the agent script which is written in C. This allows the

programmer to add special routines and services which T'cl cannot perform.
3. The script layer is written in Tcl and is the actual 'agent’.

Agents are separated into three distinct types: host, resource-managing and mobile agents.
The host agent should receive 'register’ and ’unregister’ messages from mobile agents and
record the identifiers of the agents on the system at that point in time. Resource-managing
agents have access to certain information that they might choose to share with other agents

or might choose to allow other agents to modify.

TIP (Transparent Informed Prefetching) see SPFS
TIP2 see SPFS
TIPTOE see SPFS

TOPs (The Tower of Pizzas)
abstract:
TOPs is a portable software system providing fast parallel I/O and buffering ser-
vices [140].
aims:
provide parallel access to data striped across nodes/workstations
exploit caching and prefetching to diminish latency

be efficient and portable

implementation platform:

IBM SP2

related work:
Zebra (client-server architecture, using a log structured file system)

SPIFFI implements global shared file pointers of varying flavors



Jovian, ADOPT, RAID-IT

people:
Michael Tan, Nick Roussopoulos, Steve Kelley
{mdtanx, nick, skelly}cs.umd.edu
institution:
Institute for Advanced Computer Studies (UMIACS), Computer Science Department,
University of Maryland, College Park, MD 20742, USA
key words:

parallel software

details:

The system architecture is a collection of nodes connected by a fast network. Furthermore,
each of these nodes has a CPU, large memory and one or more large disks. A collection of
workstations on a fast network as well as a multiprocessor machine can fulfill the needs. A
peer-to-peer architecture similar to a distributed file system is used [140]. A TOPs process
runs on each node and is responsible for servicing requests, striping over the network, and
managing several local resources. What is more, the system can be logically partitioned into

a client-server architecture.

TPIE (Transparent Parallel /0 Environment)

abstract:
TPIE is designed to allow programmers to write high performance I/O-efficient pro-
grams for a variety of platforms [149]. The work on TPIE is still in progress. More-
over, TPIE has three main components: Access Method Interface (AMI), Block
Transfer Engine (BTE) and Memory Manager (MM).

aims:
support the implementation of high performace I/O-efficient programs

implementation platform:

The following combinations have been tested:

e Sun SPARCstation - SunOS 4.x



Sun SPARCstation - Solaris 5.x

DEC Alpha - OSF/1 1.x and 2.x

HP 9000 - HP-UX

Intel Pentium - Linux 1.x

people:
Darren Eric Vengroff

institution:
three institutions take part in the TPIE project:
Department of Computer Science, Duke University, USA
Department of Electrical Engineering, University of Delware, USA
Center for Geometric Computation, Duke University, USA

key words:

I/O environment

details:

The three components can be seen as three different layers (see Figure 2.26). The AMI im-
plements fundamental access methods (scanning, permutation routing, merging, sorting,
distribution, and batch filtering). Furthermore, it provides an OO interface to application
programs. The MM has to manage main memory, including memory distributed across
multiple machines, i.e. it manages random access memory on behalf of TPIE [149]. The
BTE is the interface between the I/O hardware and the rest of the system. In particular, it

is responsible for moving blocks of data from physical disks to main memory and back.

TPIE programs work with streams of data stored on disks [149]. The creation of a stream
of objects is similar to creating an object in C++. A simple example illustrates the creation

of an integer stream:

AMI_STREAM<int> my_stream;
AMI_STREAM<int> *my_stream = new AMI_STREAM<int>;

The program fragment also demonstrates the usage of the AMI.



application program

AMI (Access Method Interface)

MM (Memory Manager)

BTE (Block Transfer Engine)

Figure 2.26: TPIE

translation table see PARTI
Transputer see ParFiSys (Parallel File System)

tuple space see Local File Server

Two-Phase Method (TPM)
abstract:

PASSTON introduces a Two-Phase Method which consists of the following two phases:

e READ DATA (processes cooperate to read data in large chunks)

e DISTRIBUTE DATA (interprocess communication is used so that each processor
gets the data it requested)

details:

1 TPM for In-core Arrays

I/O performance is better when processors make a small number of high granularity requests,
instead of a large number of low granularity requests. PASSTON performs collective-1/0
using this TPM [33]. The advantage is that it results in high granularity data transfer between

processors and disk, and it makes higher bandwidth of the processor interconnection network.

2 Extended TPM (ETPM) for OOC arrays
It can be used for accessing data in both Global Placement Model and Partitioned In-

core Model. This method performs I/O for OOC arrays efficiently by combining several



I/O requests into fewer larger requests, eliminating multiple disk accesses for the same data,

and allows the access of arbitrary sections of out-of-core arrays [143].

The collective-I/0 interface says that all processors must take part in the communication
process (must call the ETPM read/write routine) even if they do not need data (request
for 0 bytes). The advantage of this concept is that all processors can cooperate to perform

certain optimizations since all processors are participating.

ETPM assigns ownership to portions of the file called File Domain (FD), and a processor

directly accesses only the portions of the file it owns.

The two phases are:

1. All processors exchange their own access information with all other processors so that
each processor knows the access requests of all other nodes. This information is stored in
a data structure called File Access Descriptor (FAD) and contains exactly the same
information on all nodes. A File Domain Access Table (FDAT) of all processors
contains information about which section of its FD have been requested by other

Processors.

2. Communicating the data that has been read in the first phase to the respective proces-
sors. The information in the FDAT is sufficient for each processor to know what data

to be sent to which processor.
The whole ETPM algorithm looks like follows [143]:
1. Exchange access information with other processors and fill in the FAD.
2. Compute intersections of FD and this processor’s FD and fill in the FDAT.

3. Calculate the minimum of the lower-bounds and the maximum of the upper-bounds
of all sections in the FDAT to determine the smallest section containing all the data

needed from the FD.



4. Read this section using data steving.
5. Communicate the data to the requesting processors.

Advantage: If, for example, each processor needs to read exactly the same section of the
array, it will be read only once from the file and then broadcast to other processors over the
interconnecting network. The algorithm for writing sections in OOC arrays is essentially

the reverse of the algorithms described above.

type map see MPI

U

UFS (UNIX File System) see PFS, ROMIO
UnCVL see CVL

UNIX 1/O

The UNIX I/O facility can be applied in a uniform way to a large variety of I/O services,
including disk files, terminals, pipes, networking interfaces and other low-level devices. Many
application programs use higher-level facilities, because they have more specified features.
An example is the standard I/O library stdio for C, which is an application-level facility
(see I/0 interfaces). The functions correspond to the UNIX functions.

V

Vesta

abstract:
Vesta is a parallel file system providing parallel file access to application programs

running on multicomputers with parallel I/O subsystems [36]. A file can be divided



into partitions (multiple disjoint sequences). Furthermore, Vesta allows a direct access
from a compute node to the I/O node without referencing any centralized metadata.
Consequently, Vesta is based on a client-server model, which allows libraries to be
implemented on top of Vesta [37].

aims:
The main goal is to provide high performance for I/O intensive scientific applications
on massively parallel multicomputers.

implementation platform:
Vulecan multicomputer at the IBM T. J. Watson Research Center
implementation on an IBM SP1
applications on top of IBM RS/6000
workstations [8] a message passing library MPX (closely related to MPL) is also
installed [8]

data access strategies:
switch between concurrency control and no concurrency control
synchronous/asynchronous read/write
prefetching data in advance
blocking/non-blocking I/O commands (overlapping computation and 1/0)

related work:
partitioning of files (see below) is also provided by the nCUBE file system, but Vesta
is supposed to be more flexible [37]; Vesta is the basis for the PIOF'S parallel I/0O file
system.

application:
four applications are studied in [8]: matrix, sorting, seismic migration and video server
applications

people:
Peter F. Corbett, Jean-Pierre Prost, Sandra Johnson Baylor, Tony Bolmarcich, Dror
Feitelson

corbett, jppost, sandyjf@watson.ibm.com
JPP Y]



institution:
IBM T. J. Research Center, Yorktown Heights, NY 10579, USA
http://www.research.ibm.com/people/c/corbett/vesta.html

key words:
client-server, distributed memory, MIMD, file system, views

example:
Vesta uses a model for partitioning of files. This can be easily adapted to matrix
multiplication where a whole row or a whole column can be referred to as a partition
unit. Obviously, this makes matrix multiplication easier and can be done similar to
vector operations. The following example from [37] multiplies two matrices A and B

and stores the result in C:

pdim = sqrt (PROC_NUM);
blk_size = MAT_SIZE / pdim;
float A[MAT_SIZE][blk_size],
B[blk_size] [MAT_SIZE],
Clblk_size] [blk_size];
Vgs = blk_size; Vi = pdim;
Hgs = MAT_SIZE; Hi = 1;
fda = Vesta_Open ("A", Vgs, Hgs, Hi, me / pdim);
Vgs = MAT_SIZE; Vi 1;
Hgs = blk_size; Hi = pdim;
fdb = Vesta_Open ("B", Vgs, Vi, Hgs, Hi, me % pdim);
Vgs = blk_size; Vi = pdim;
Hgs = blk_size; Hi = pdim;
fdc = Vesta_Open ("C", Vgs, Vi, Hgs, Hi, me);
Vesta_Read (fda, A, MAT_SIZE * blk_size);
Vesta_Read (fdb, B, MAT_SIZE * blk_size);
for (1 = 0; i < blk_size; i++)

{
for (j = 0; j < blk_size; j++)
{
C[il[j1 = 0;
for (k = 0; k < MAT_SIZE; k++)
CL[il[j]1 += A[k][j1 * B[il[k];
}
}

Vesta_Write (fdc, c, blk_sizexblk_size);



details:

[36] and [37] present some design guidelines for parallel file systems:

e Parallelism: This is most important for high performance and can be achieved by
providing a parallel interface to eliminate any points where access is serialized. In
particular, multiple compute nodes access multiple I/O nodes at the same time and

independently from each other.
e Scalability

e Layering, Reliability: Vesta is based on a layered model (see Figure 2.27) and establishes
the middle layer between applications and disk [36], i.e. high level components have to
be implemented on top of Vesta (e.g. Vesta has no support for collective-I/O - this has
to be implemented by a library on top of Vesta). On the other hand, Vesta is reliable
to the underlying lower layers that have to provide services such as message passing
and error checking/correction (RAID). However, it provides additional features like

checkpointing of files and allows files to be exported for safekeeping elsewhere.

e Rich features: Vesta provides services such as a hierarchical structure of directories,
permission bits for each file owner and suchlike, but they are not fully compatible with

existing systems.
e MIMD style

Vesta is implemented in two sub-units: On the one hand, there is a client library linked with
applications running on the compute nodes, on the other hand, there is a server running
on the I/O nodes. The file meta-data is distributed across all I/O nodes. In contrast to
UNIX, Vesta hashes the file name in order to obtain the meta-data rather than consulting
directory entries and the corresponding i-nodes. This meta-data is only accessed when the
file is attached to the application [36]. Another difference to existing systems is that data is

not cached on compute nodes. Instead, memory buffers are used in the storage nodes [37].

The parallel structure of a file is defined at two levels by the interface: the normal, physical

view (how many storage nodes are used) and the logical view of a file. Vesta does not stick
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Figure 2.27: Vesta’s place in the layered system

to the physical layer of a traditional file system, but uses a 2-D structure [37] where a file
is composed of a certain number of physical partitions, each of which is a linear sequence
of records. This number can correspond to the number of storage nodes. If the number
exceeds the amount of storage nodes, the partitions are distributed across the storage
nodes in a round robin fashion. A physical partition is also referred to as cell (especially
in more recent papers on Vesta). In particular, a cell can be seen as a container where data

can be deposited or as a virtual I/O node [36].

The logical view is independent of the physical view and allows the file to be viewed at
differently without changing the physical structure. Such a logical view is set when the
file is opened. Moreover, a view is based on a 2-D template, and all records falling un-
der a specific template belong to a distinct logical partition of the file [37]. Consequently,

the data in a file has no unique sequence. What is more, each cell can have a different depth.

In UNIX the system call open can be used for opening existing files as well as for creating
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Figure 2.28: Structure of the 64-bit internal ID of Vesta objects

new files. Vesta provides equivalent operations, but not with a single instruction: opening a
file is always done together with appending a file. Thus, Vesta provides three separate func-
tions Vesta_create, Vesta_open and Vesta_attatch. Data access functions can be used in a
CAUTIONS or a RECKLESS way, which corresponds to a flag that is issued when using file
access functions. In a CAUTIONS access, concurrency control is guaranteed. However,
this can lead to performance cost. Hence, Vesta allows to neglect an atomically execution of
file access operations, especially in cases where accesses are sure to be non-conflicting [37].

PIOUS applies a similar concept by using stable and volatile transactions.

Although Vesta has directories, a file name is hashed into a 48-bit value in order to get the
meta-data of the file. This 48-bit value is important for the 64-bit internal ID. 16 of the 48
bits are hashed to obtain the I/O node that serves as a master node for the file. The next
16 bits define the object table on the master node. To sum up, the 64-bit ID contains a
unique ID, the file name, its owner ID, group, and access permissions, creation, access, and
last modification times, the number of cells, the number or units within the cell, and the
current file status [36]. The last 8 bits (called level) number the cells of a file on a given I/O

node (see Figure 2.28).

The directory mentioned above is only useful for the user to organize the files in sublists,
but is not required by the file system for file meta-data. However, [36] also adds some

drawbacks concerning the use of hash tables:
e no control over access using directory permission bits

e 1o links



e renaming is a time consuming process

VFCS (Vienna Fortran Compilation System) see Vienna Fortran, ViPIOS

ViC* (Virtual-Memory C*)

abstract:
ViC* initially was a compiler-like preprocessor for out-of-core C* but [35] refers to it
as a compiler. The input is a data parallel C* program with parallel variables and
certain shapes, and the output is a standard C* program [39]. ViC* analyzes program
data flow and performs program transformation to reduce I/O demands [39], calculates
the amount of in-core data to make full use of the available memory, and fuses in-core
sectioning loops to avoid repeated transfers of the same data.

aims:
exploit existing languages and software as much as possible
C* has been chosen, because the data parallel language is used at several sites [39]
ViC* is expected to be a testbed for parallel I/O research

related work:
HPF, Vienna Fortran, Fortran D

people:
Thomas H. Cormen, Alex Colvin
thc@cs.dartmouth.edu, alex.colvin@dartmouth.edu

institution:
Department of Computer Science, Dartmouth College, Hanover, NH, 03755-3510, USA
http://www.cs.dartmouth.edu/ thc/vic.html

key words:
out-of-core, precompiler, C*, data parallelism, virtual memory

example:
[39] presents the following ViC* example which computes a truncated harmonic series

and normalizes it.

#define N (1L<<40)



outofcore shape [N]series;
float:series mnormal;

void main ()

{
float:series harmonic;
float sum;
int:series k;
with (series)
{
k = pcoor(0);
where (k>0)
{
harmonic = 1.0 / k;
sum= += harmonic;
normal = harmonic * (1.0 / sum);
[.-1]normal = normal;
}
}
}

Vienna Fortran (VF)
Vienna Fortran is a data parallel language which supports the SPMD model of computa-
tion. Furthermore, it provides explicit expressions for data mapping [12]. The corresponding

compiler is called Vienna Fortran Compilation Systems (VFCS).
Five major steps are required to transform a Vienna Fortran out-of-core program into a
out-of-core SPMD program [19]:

1. destribution of each out-of-core array among the processors

2. distribution of the computation among the processors

3. splitting execution sets into tiles

4. insertion of I/O and communication statements

5. generation of a Section Access Graph (SAG)



Vienna Fortran Compilation System (VFCS) see Vienna Fortran, ViPIOS

VIP-FS (Vlrtual Parallel File System)

abstract:
VIP-FS is a straight-forward interface to parallel I/O [46]. It is virtual because it is
implemented using multiple individual standard file systems integrated by a message
passing system. VIP-FS makes use of message passing libraries to provide a par-
allel and distributed file system which can execute over multiprocessor machines or
heterogeneous network environments.

aims:
Portability is a very important objective in VIP-FS, because it must be portable across
different libraries. Hence, features of the most common message passing libraries
must be employed. What is more, it has to be able to operate in heterogeneous dis-
tributed systems.

implementation platform:

Ethernet on the IBM SP1

data access strategies:

VIP-FS employs three strategies:

e Direct Access: Every I/O request is translated into requests to the appropriate

I/O device.
e Two-Phase Access (see TPM)

e Assumed Requests
portability:
an MPI compatible interface is being planned
people:
Juan Miguel des Rosario, Michael Harry, Alok Choudhary
{mrosario, mharry, chaudhar}@npac.syr.edu
institution:
Northeast Parallel Architecture Center, 111 College Place, RM 3-210, Syracuse Uni-
versity, USA



key words:
file system, data distribution, parallel architecture, message passing, distributed
computing

example:
The following fragment illustrates code segments [46] for data decomposition and par-

allel file mapping specification:

mapinfo_T info;
fd = pvfs_open ("testfile", O_CREATE|O_WRONLY|O_TRUNC, 0666) ;

info.globilize[0] = 2048;

info.globalize[1] = 2048;

info.discode[0] = 0; // row-block
info.distcode[1] = 1; // column is distributed
info.blocksize[0] = 0;

info.blocksize[1] = 0;

info.nprocs[0] = 1; // proces per row

info.nprocs[1] = 4; // procs per column

// load data distribution

info.status = pvfs_ioctl (fd, IOCTL_LOADADT, &info);

info.globilize[0] = 2048;

info.globalize[1] = 2048;

info.discode[0] = 0; // row-block
info.distcode[1] = 1; // column is distributed
info.blocksize[0] = 0;

info.blocksize[1] = 0;

info.nprocs[0] = 0; // proces per row

info.nprocs[1] = 1; // procs per column

// load strip-file distribution

info.status = pvfs_ioctl (fd, IOCTL_LOADFDT, &info);

details:

VIP-PF has three functional layers:
e Interface layer: provides a variety of file accesses

e virtual parallel file layer (VPF): defines and maintains a unified global view of

all file system components
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Figure 2.29: VIP-FS Functional Organization

e I/0 device drive layer (IDD): built upon and communicates with the local host’s file
system. It manages each file as an independent non-parallel file and provides a stateless
abstraction to the VPF layer. Furthermore, the IDD layer acts as a mediator between

the local host file system and the VPF layer (see Figure 2.29).

A configuration file has to include a list of participating hosts, the number of processes to
create on each host, some additional path information indicating where the executable file is
to be found as well as the file system configuration. The organization of VIP-FS has also a

disadvantage. The interprocess communication is increased.

VIiPIOS (Vienna Parallel Input-Output System)

abstract:
The ViPIOS represents a mass-storage sub-system for highly I/O intensive scientific
applications on massively parallel supercomputers [126]. The ViPIOS is based on a
client-server approach combining the advantages of parallel I/O runtime libraries and
parallel file systems [18]. I/O bandwidth is maximized by exploiting the concept of
data locality, by optimizing the data layout on disk and, thus, allowing efficient parallel
read /write accesses. What is more, the ViPIOS is influenced by the concepts of parallel

database technology [20].



aims:
The main goal is to provide performance for file I/O requests. The ViPIOS has the

following characteristics [126]:

e parallelism (processors access multiple disks in parallel)
e independence (executing in parallel to the applications)
e scalability

e abstract I/O model (data independent views)

e modularized interfaces

e portability
implementation platform:
Cluster architectures, MPP, message passing systems
data access strategies:
Keeping the principle of data locality, ”owner stores” rule, by choosing an appropriate
data layout on disk.
portability:
Providing a runtime I/O module for HPF (Vienna Fortran Compiler VFC), an MPI-
I0 interface, and a propriatory ViPIOS interface.
related work:
Galley, Vesta, PIOUS, PASSION, Jovian, Panda
people:
Erich Schikuta (principal investigator), Thomas A. Miick, Peter Brezany, Thomas
Fiirle, Oliver Jorns, Heinz & Kurt Stockinger, Helmut Wanek
{schiki, mueck}@ifs.univie.ac.at, brezany@par.univie.ac.at
{fuerle, jorns, heinz, kurt, wanek}@vipios.pri.univie.ac.at
institution:
Institute for Applied Computer Science and Information Systems, Department of Data
Engineering, University of Vienna, Rathausstr. 19/4, A-1010 Vienna, Austria

http://vipios.pri.univie.ac.at/



key words:
high performance mass storage system, high performance language, compilation tech-

niques, data administration

details:

The ViPIOS chooses the file layout as close as possible to the problem specification in focus
to reach data local accesses. It is not guaranteed that the physical distribution is equal to
the problem distribution. Thus, the physical data layout is transparent to the application
processes and provided by different view layers (represented by file pointers accordingly) to
the application programmer. A prototype implementation is ready; the performance analysis

shows promising results.

The ViPIOS distinguishes between application processes and ViPIOS servers, which are
similar to data server processes in a database system [19]. Additionally, a ViPIOS supervi-
sor server administrates all other ViPIOS processes. For each application process there
is exactly one ViPIOS server, but one ViPIOS server can serve a number of application

processes. The ViPIOS organizes data according to the information provided by VFCS.

Data locality is another principle of the ViPIOS, which means that data requested by an
application process should be read/written from/to the best-suited disk [19]. Data lo-
cality can further be divided into physical and logical data locality. Whereas logical
data locality refers to the best-suited ViPIOS server, the physical data locality deter-
mines the best disk set. The process model is illustrated in Figure 2.30 where VI is the
ViPIOS Interface, and AP is an application process handling the communication with the

assigned ViPIOS server and linked with the VL.

Data administration is executed using a Two-Phase Method. The first phase is a prepara-
tion phase and the second an administration phase. The preparation phase chooses the best
suited data layout according to compile time infomation of the application processes and
redistributes the data if necessary before the application executes. The administration phase

performs the data requests of the application (read and write operations) during execution
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Figure 2.30: Process model of application processes and ViPIOS servers

of the application. The ViPIOS also considers software-controlled prefetching by using the
compile-time knowledge about loops and OOC parts and representing it by a graph struc-
ture called I/O Requirement Graph (IORG). The IORG is denoted by a triple G=(N,
E, s) where (N, E) is a directed graph and s is the start node.

virtual machine see PVM
virtual memory see design of parallel I/0 software, OODB, PASSION
Virtual Parallel File Layer (VPF) see Virtual Parallel File System

Vulcan multicomputer
This computer located at the IBM T. J. Watson Research Center is a distributed mem-
ory, message passing machine, with nodes connected by a multistage packet-switched

network [36]. The nodes include compute nodes as well as storage nodes. See also Vesta.



W

work distributor see irregular problems
Write Before Full see read ahead

write-behind cache policy see supercomputing algorithms

X

xoring see RAID-I



Appendix A

Overview of different parallel I/0

products

The aim of this chapter is to compare different approaches and solutions of the various
research teams listed in the dictionary part. (A detailed list of reserach teams is illustrated
in Table A.2. Annotation: (et. al.) means that the specific product was produced by more

than one institution.) The I/O products can be splitted into three different groups:
e file systems (see Figure A.1)
e 1/0 libraries (see Figure A.2)

e others, i.e. products that are neither file systems nor I/O libraries (see Figures A.3 and

A4)

The platforms which are used by the various approaches are listed in Table A.1.
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name institution = A 7 5 Sl g5 % S| 58158 -g g new ideas
CCFS University of Madrid DM | +/+|-/-/+ _ _ + + + + + _ + + + UNIX,24,25 IBL, group operations, automatic preallocation of resources
CFS Intel DM | +/ 18 four I/O modes
ELFS University of Virginia DM + [+ 00, ease-of-use
Galley Dartmouth College DM | +/+|+/-1+|+ |- |+ |+ + |- |- |- |- |- [15 UNIX 3d structure of a file
HFS UIliVBI'Sity of Toronto SM 13’ 21 hierarchical clustering, ASF, storage objects
HiDIOS Australian Nat. University DM + + 11 disk level parallelism
OSF/1 Intel DM 17
ParFlSys University of Madrid DM | +/+|-/-/+1|- + + + + + + _ + + + [UNIX, 15,2425 IBL, group operations, automatic preallocation of resources
PFS Intel DM 17 I/O in parallel wherever possible
PIOFS IBM DM 13,15
PIOUS Emory University DM | +/+|+/4+/4- |+ |+ |+ |+ |- |+ |- |+ |+ 23 I/O for metacomputing environment
PPFS University of Illinois DM | +/+ + + [+ |+ |+ |+ 3,17,23
SPES Carnegie Mellon University | SM 7,10
SPIFFI University of Wisconsin DM | +/ + [+ |+ 17 three types of threads
Vesta IBM DM |+/+| / /+ + |+ + |+ |- |+ |+ 12,14
VIP-FS University of Syracuse DM + + | 14 three layers

Annotation: + ... "is supported"

- ... "is not supported"
DM ... distributed memory
SM ... shared memory

Numbers listed at "implementation platform" represent machines stated at Table A.1.
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ADIO Dartmouth College +/H -+ - - - - 15,17 strategies for implementing APIs
CVL Dartmouth College I+ 6 vector operations
DDLY University of Malaga /+/ + + VDS, IDS
Jovian University of Maryland +/ |+/ / + + + + | 14,17 global, distributed view
MPI MPI Forum +/ 4|+ + ]+ + + + derived data types, communicators
MPI-2 MPI Forum +/+|+/+ 4+ + + |+ + 1/O for MPI
MPI-IO MPI-IO Committee +/ |+ 4+ + + 1/0 for MPI
Multipol | University of California +/+ - 3,14, 17 PD, distributed data structures
Panda University of Illinois +/ |+ -+ |- |+ |+ + + (- |+ |- |15,16,17 server-directed I/0, chunking, data compression
PASSION | University of Syracuse +/ | +/ / + |+ + |+ |+ 15, 18 TPM, irregular problems
Oak Ridge National Laboratory, University of .
PVM Tortonss Camonis Mol Unieraite > 1+ 1+ #1471+ + |+ + Master-slave, metacomputing
ROMIO | Darmouth College +/+|+/-1+ ]+ |+ |+ |- |+ |- |- |+]|- |+ |+ |UNKX portable implementation of MPI-IO
TPIE Duke Uni., Uni. of Delware 8,23
ViPIOS University of Vienna S I A I S I I S I I I I + |15 influence from DB technology

Annotation: + ... "is supported"

- ... "is not supported"

Numbers listed at "implementation platform" represent machines stated at Table A.1.
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name institution description new ideas
ADOPT Syracuse University prefetching scheme
Agent Tcl Dartmouth College transportable agent transportable agent, migration
CHANNEL Syracuse Universiy communication, synchronization channls for communiction
CHAOS University of Maryland coupling multiple data-parallel programs mapping between data structures
ChemIO Scalable I/0 Initiative

guidelines for language features, compiler, system support
services, high performance network software

disk-directed I/O

Dartmouth College

prefetching scheme

caching, prefetching, collective I/0

EXODUS University of Wisconsin 0O database OODB (basis for SHORE)
Global Arrays Parcific Nortwest Laboratory interface (combination of DM and SM features) access of logical blocks on physically distributed machines
Fortran D Rice University programming language based on Fortran77 data decomposition

OPT++ University of Wisconsin OO tool for DB query optimization

Pablo University of Illinois performance analysis tool SDDF

Paradise University of Wisconsin OODB approach of EXODUS

PARTI University of Maryland subset of CHAOS; toolkit irregular problems

PRE University of Maryland code optimization IPRE (redundancy)

RAPID Duke University file system testbed testbed: buffering and prefetching
Scotch Carnegie Mellon University testbed DAC, TIP, disclosure

SHORE University of Wisconsin persistent object system SDL

TIAS Dartmouth College transportable agent agent, migration

TOPs University of Maryland portable software for fast parallel I/O

ViC* Dartmouth College C vectory library; compiler for out-of-core C*

optimizes via loop transformations; includes library of
optimal algorithms for the Parallel Disk Model
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CHANNEL +/? +
CHAOS 2/ + + |+ + 22
disk-directed /O | +/- | +/-/- |+ |p |+ |+ [+ |+ |+ |+ |- |- |-
EXODUS +
Global Arrays +/+[ 2/ + + + + 14,17, 18, 19
Fortran D +/?/? + UNIX
OPT++ 23
Pablo 16
Paradise 17
PARTI + + 16, 18
PRE 16
RAPID +/- /-1 |+ |- |- |- |+ |+ |- |- 1|-1]-]|1
Scotch -/- + 7,10
SHORE + +
TIAS + |- 8,9
TOPs + 15
ViC* +/-|+/-/-|+ |+ |+ |- |- |- |+ |+]|- |- |-

Annotation: + ... "is supported"”
- ... "is not supported"
p -.- possible

Numbers listed at "implementation platform" represent machines stated at Table A.1.

Figure A.4: Parallel I/O products: others (2)



No. | name (usage) amount of usage
1 | Butterfly Plus (RAPID) 1
2 | CM-2 0
3 | CM-5 (Multipol, PPFS) 2
4 | Cray C90 0
5 | Cray Y-MP 0
6 | DEC 12000/Sx 2000 (CVL) 1
7 | DEC 3000/500 (SPFS) 1
8 | DEC Alpha (TIAS) 1
9 | DEC MIPS (TIAS) 1

10 | DEC-5000 (STARFISH, SPFS) 2
11 | Fujitsu AP1000 (HiDIOS) 1
12 | IBM R6000/350 (HFS, Vesta) 2
13 | IBM RS/6000 (PIOFS) 1
14 | IBM SP1 (GA, Jovian, Multipol, ROMIO, Vesta, VIP-FS,

ViPIOS) 7
15 | IBM SP2 (ADIO, DRA, Galley, Panda, PASSION, ParFiSys,

PIOFS, ROMIO, SIOF, TOPs, ViPIOS) 1
16 | Intel iPSC/860 hypercube (CHARISMA, Pablo, Panda,

PARTI, PRE) 5
17 | Intel Paragon (ADIO, DRA, GA, Multipol, OSF/1, Panda,

Paradise, PFS, PPFS, ROMIO, SPIFFT) 11
18 | Intel Touchstone Delta (CFS, GA, PARTI, PASSION) 4
19 | Kendal Square KSR-2 (GA) 1
20 | MasPar MP-2 0
21 | SGI (HFS) 1
22 | SMP Digital Alpha (CHAOS) 1
23 | SPARC (OPT++, PIOUS, TPIE) 3
24 | T800 (ParFiSys) 1
25 | T9000 (ParFiSys) 1

Table A.1: The usage of hardware platforms.




Institution Product
Argonne National Laboratories ADIO, ROMIO
Australian National University HiDIOS

Carnegie Mellon University
Dartmouth College

Duke University

Emory University

IBM

Intel

Message Passing Interface Forum
MPI-IO Committee

Oak Ridge National Laboratory
Parcific Northwest Lab.

Rice University

Scalable I/O Initiative
University of California

University of Delware
University of Illinois
University of Madrid
University of Malaga
University of Maryland

University of Syracuse

University of Tennessee
University of Toronto
University of Vienna
University of Virginia
University of Wisconsin

PVM (et. al.), Scotch
Agent Tcl, CHARISMA, CVL
disk-directed 1/0O,
Galley, RAPID, TIAS, ViC*
TPIE

PIOUS, PVM (et. al.)
PIOFS, Vesta

OFS/1, CFS, PFS

MPI, MPI-2

MPI-10O

PVM (et. al.)

Global Arrays

Fortran D

ChemlO

Mulipol, RAID,
raidPerf, raidSim,

SIOF

TPIE (et. al.)

Pablo, Panda, PPFS
CCFS, ParFiSys

DDLY

CHAOS,

Jovian, PARTI,

PRE, TOPs

ADOPT, CHANNEL,
PASSION,

Two-Phase Method,
VIP-FS

PVM (et. al.)

HFS, Hector

Vienna Fortran, ViPIOS
ELFS

EXODUS, OPT++, Paradise,
SHORE, SPIFFI

Table A.2: Research teams and their products.




Appendix B

Parallel Computer Architectures

Since there appear so many different machines in this dictionary, this part of the appendix
shall give an overview of parallel architectures in general. Furthermore, some of the machines

mentioned in the dictionary part will be explained explicitly and in more detail.

In general, there are two main architectures for parallel machines, SIMD and MIMD archi-
tectures. SIMD machines are supposed to be the cheapest ones, and the architecture is not
as complex as in MIMD machines. In particular, all the processing elements have to execute
the same instructions whereas in MIMD machines many programs can be executed at the
same time. Hence, they are said to be the "real” parallel machines [69]. A major difference
between the two types is the interconnecting network. In a SIMD architecture this network
is a static one while MIMD machines have different ones depending on the organization of
the address space. This also results in two different communication mechanisms for MIMD
machines: message passing systems (also called distributed memory machines) and virtual
shared memory systems (NUMA: nonuniform memory access). Massively parallel machines

apply UMA architectures that are based on special crossbar interconnecting networks.

SIMD Machines

These machines are supposed to be ”out of date” [69], but they are still in use.



e Connection Machines CM-200
This machine was built by the Thinking Machines Corporation. CM-200 is the most
modern edition of version 2 (CM-2). The machine consists of 4096 to 65535 micropro-
cessors with a one-bit word length. Moreover, the bit-architecture of each processing
element enables to define different instructions. In comparison, CM-5 is a MIMD ma-

chine.

e MasPar-2
This machine was built by MasPar, an affiliate company from DEC. MasPar-2 consists
of up to 16K 32-bit micro processors. Although float comma operations are micro
coded, the performance for float comma operations of CM-200 is better. Furthermore,

the front-end computer is a DECstation 5000.

Distributed Memory MIMD Machines

One processor can only directly access its own memory while the memories of other proces-

sors have to be accessed via message passing.

MIMD machines have some different topologies like hypercube or grid. The interconnectivity
depends on the amount of links and whether they can be used concurrently. Systems with a
flat topology need four links in order to establish a 2-dimensional grid (Intel Paragon) whereas
systems with 3-d grids need six links. Hypercubes need most links, and each processing node

has a links to neighboring nodes.

e Hypercube Systems

— Intel iPSC/860: 60 MFLOPS (60 MHz)
— nCUBE-2S: 15 MIPS, 4 MFLOPS

— nCUBE-3: 50 MIPS, 50 MFLOPS (floating point), 100 MFLOPS (”multiply-
add”)



e 2-dimensional Topologies

— INMOS Transputer T805: 5 MIPS, 1,5 MFLOPS
— Intel Paragon XP/S: (max. 300 GFLOPS) 50 MHz i860XP: 40 MIPS, 75
MFLOPS
e 3-dimensional Topologies
— Parsytec GC (based on an INMOS T9000 processor): 25 MFLOPS

e Multilevel Interconnecting Network

— Thinking Machines CM-5
The principles of CM-2/CM-200 and the MIMD principle are combined in the
CM-5, and the processors are normal SPARC micro processors. 4*32 MFLOPS

per node

— IBM SP2
The SP2 consists of RS/6000 processors. 125 MFLOPS (thin nodes), 266 MFLOPS

(wide nodes)

Shared Memory MIMD Machines

In contrast to a Cray Y-MP where a uniform memory access is used, in shared memory
machines the amount of processors is much bigger and, hence, non-uniform memory access
is applied.

e Ring Topologies

— Kendal Square Research KSR-2 AllCache: 80 MIPS, 80 MFLOPS Convex
Exemplar SPP1000: 200 MFLOPS

e 3-dimensional Topologies

— CRAY T3D
This is a massive parallel machine with up to 2048 processors. 150 MFLOPS



e Multilevel Interconnecting Network

— MANNA
MANNA is a massively parallel machine for numeric and non-numeric applica-

tions. 50 MHz, 50 MIPS, 100 MFLOPS (32 bit), 50 MFLOPS (64 bit)

— Meiko CS-2
Fujitsu vector multiprocessor: 100 MFLOPS, SPARC RISC processor: 40 MFLOPS

4 Crossbar switch

— Fujitsu VPP500
This machine is supposed to be one of the most powerful massively parallel sys-

tems. 1,6 GFLOPS (vectors), 300 MIPS and 200 MFLOPS (scalars)
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