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I. Introduction
Many network services may be improved or enabled

by successful predictions of users’ future mobility.

The success of predictions depend on howmuch accu-

racy can be achieved on real data and on the sensitivity

of particular applications to this achievable accuracy.

We investigate these issues for the case of advanced

bandwidth reservation using real WLAN traces col-

lected on the Dartmouth College campus [1].

In our system model, we envision a wireless net-

work in which users associate with one access point

(AP) at a time, and can change their associations from

one AP to another as needed to remain connected.

Such reassociation can be caused by a roaming user

or the changes in connection quality. This sequence

of handoffs for each user, indicating the time and

AP of each move (or “OFF” when the user leaves

the network), is their movement history. We assume

that there is a centralized or distributed mechanism

in place for (i) collecting the history, (ii) performing

online predictions, and (iii) distributing prediction re-

sults to relevant application agents.

In the case study, we focus on VoIP as the appli-

cation of interest; we evaluate mobility predictors for

advanced bandwidth reservation to maintain VoIP ser-

vice quality after handoffs. We measure the perfor-

mance using application-specific call drop rate and

call block rate metrics. The results show that intel-

ligent prediction can lead to significant reductions in

the rate at which active calls are dropped due to hand-

offs with marginal increments in the rate at which new

calls are blocked.

II. Predictors
We designed a CDF time predictor that produces the

probability that the time of the next move is less than

a given value. It computes the observed cumulative

distribution function (CDF) of the historic values, and

using the CDF to measure the probability of a given

value appearing in the distribution.

Consider a historyH of values v1, v2, · · · , vn. Sup-

pose V is the random variate, which outputs the actual

values in H , and P is its distribution. The CDF pre-

dictor computes the observed CDF function P̂ of V

from the histogram, P̂ (V < v) = 1
n

∑n
i=1 I(vi < v) ,

where I is the indicator function. In a similar fash-
ion, we can compute the probability of values oc-

curring in range a ≤ V < b, by simply computing
P̂ (a ≤ V < b) ≈ (P̂ (V < b)− P̂ (V < a)).
We combine the CDF time predictor with loca-

tion predictors from our previous work [3] for inte-

grated location and time predictions; we call it the

MarkovCDF Predictor. This integrated predictor out-

puts a vector of probabilities, one for each AP that

the user will move to within a certain time thresh-

old. Therefore, we can make reservations according

to the probabilities of predicted locations and times.

These predictors build their internal tables on per-

user basis, but it is equally possible to build aggre-

gate tables from all users’ movement histories. We

name them the MarkovCDF Individual predictor and

the MarkovCDF Aggregate predictor, respectively.

We introduce a simple “straw-man” predictor, the

Neighbor Graph Predictor, to compare with our

MarkovCDF predictor. Using users’ current neighbor

locations as the prediction is an obvious way to predict

future locations. Mishra et al. [2] present an algorithm

to dynamically build a user’s neighbor graph to cache

context for fast handoffs.

III. Case study
In our Case Study, we simulate a wireless network

that is capable of supporting roaming telephone users.

When a user has an ongoing call and moves from one

access point to another, we refer to that call as a hand-

off call. When a user initiates a call, we refer to that

call as a new call. All calls require dedicated band-

width at their current AP. If the AP lacks the band-

width for a new or handoff call, the call fails: a failed

handoff call is a “call drop” and a failed new call

is a “call block”. The literature often assumes that

call drops are much more frustrating to users than call

blocks, so the goal of mobility prediction in this par-

ticular application is to reserve bandwidth, in advance

of handoffs, to reduce call drops at the expense of a

small increase in call blocks. Specifically, we define

the drop rate DR = N(dropped calls)
N(attempted call handoffs)
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Figure 1: The ratio (BaseDR/ReservedDR) for all the

predictors with training. Higher ratio is better.

and the block rate BR = N(blocked calls)
N(attempted calls)

, where

N(x) is the number of x.
We evaluated the three predictors described above

using two months real mobility traces collected on

our campus-wide wireless network; these include 545

APs and 6,181 users. We use the first months traces to

train our MarkovCDF predictors and build the neigh-

bor graph for the Neighbor Graph predictor. We also

used exponentially distributed call duration and inter-

call time to simulate the voice calls.

We implemented four reservation schemes:

All probabilities, non-normalized: We reserve

bandwidth proportional to the probabilities returned.

The sum of the probabilities is not necessarily 1 for
the MarkovCDF predictors.

All probabilities, normalized: We reserve band-

width proportional to the normalized probabilities re-

turned by the predictor. The normalization makes the

sum of the probabilities to be 1.
Top-3 normalized probabilities: We make reser-

vations at the three most probable APs, proportional

to the normalized probabilities returned by the predic-

tor. The three normalized probabilities sum to 1.
Top-3 probabilities, 1BU: We make reservations

of 1 bandwidth unit (BU) at each of the three most

probable APs.

Figure 1 shows the ratios of Base DR and Reserved

DR, where the Base DR is the drop-rate without using

any reservation scheme, and the Reserved DR is the

drop-rate with reservations. Figure 2 shows the ratios

of Reserved BR and Base BR, where the Base BR is the

block-rate without using any reservation scheme, and

the Reserved BR is the block-rate with reservations.

The Neighbor Graph Predictor reduces the drop-
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Figure 2: The ratio (Reserved BR/Base BR) for all the

predictors with training. Lower ratio is better.

rate the most, while it increases the call block-rate

the most. Although the low drop-rate of the Neigh-

bor Graph Predictor is desirable, it does so by wasting

valuable bandwidth resources.

We observe that using the “Top-3 normalized prob-

abilities” scheme is the best of the four resource reser-

vation schemes for the MarkovCDF predictor, be-

cause it concentrates resources at the top three APs

that the user is most likely to roam to. The “Top-

3 probabilities with 1 BU” scheme reserves exces-

sive resources and causes an increase in the block

rate. In the case of the MarkovCDF Individual pre-

dictor, the “all probabilities normalized” reservation

scheme performs similar to the “Top-3 normalized”

scheme because, it is likely that the sum of the top

three probabilities is equal to or close to 1. In case of
the MarkovCDF predictors, the “all probabilities non-

normalized” scheme does not improve the DR greatly

neither does it worsen the BR greatly, because the

probabilities returned by the predictor are low.
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