
data structures:
lists, stacks, queues

data structures

Data structures:

1. Organize data
2. Enable algorithms on that data
3. Provide book-keeping for algorithms on other data

SleepyHappyDopyDoc BashfulSneezy

0 1 2 3 4 5

lists

• replace or access at index
• insert, maintaining order
• remove, maintaining order

SleepyHappyDopeyDoc BashfulSneezy

0 1 2 3 4 5

array: replace

Dopey would like his name spelled correctly.

SleepyHappyDopyDoc BashfulSneezy

0 1 2 3 4 5

SleepyHappyDopeyDoc BashfulSneezy

0 1 2 3 4 5

array: replace

Dopey would like his name spelled correctly.

Time cost: O(1)

SleepyHappyDopeyDoc BashfulSneezy

0 1 2 3 4 5

array: insert

Grumpy gets in bed between Dopey and Happy

SleepyHappyDopeyDoc BashfulSneezy

0 1 2 3 4 5 6

array: insert

Extend the bed (array)

SleepyHappyDopeyDoc BashfulSneezy

0 1 2 3 4 5 6

array: insert

Slide items to the right

Time cost: O(n)

SleepyHappyDopeyDoc BashfulSneezy

0 1 2 3 4 5 6

Grumpy

array: insert

Copy in “Grumpy”

SleepyHappyDopeyDoc BashfulSneezy

0 1 2 3 4 5 6

Grumpy

array: remove

Happy gets out of bed and goes to work

SleepyHappyDopeyDoc BashfulSneezy

0 1 2 3 4 5 6

Grumpy

array: remove

Happy gets out of bed and goes to work

SleepyDopeyDoc BashfulSneezy

0 1 2 3 4 5 6

Grumpy

SleepyHappyDopeyDoc BashfulSneezy

0 1 2 3 4 5 6

Grumpy

array: remove

Happy gets out of bed and goes to work

SleepyDopeyDoc BashfulSneezy

0 1 2 3 4 5 6

Grumpy SleepyDopeyDoc BashfulSneezy

0 1 2 3 4 5 6

Grumpy

SleepyHappyDopyDoc BashfulSneezy

0 1 2 3 4 5

array as list: time costs

• replace or access at index: O(1)
• insert, maintaining order: O(n)
• remove, maintaining order: O(n)

linked lists

• replace or access at index: O(n)
• insert, maintaining order: O(1)
• remove, maintaining order: O(1)

SleepyHappyDopeyDoc BashfulSneezy
next

prev

next next next next

prev prev prev prev

linked lists: insert

SleepyHappyDopeyDoc BashfulSneezy
next

prev

next next next next

prev prev prev prev

(Student demo with name tags.)

linked lists: insert

SleepyHappyDopeyDoc BashfulSneezy
next

prev

next next next next

prev prev prev prev

SleepyHappyDopeyDoc BashfulSneezy
next

prev

next next next next

prev prev prev prev

Grumpy
next

next

prev

1. Create a new node item, with prev and next
pointing to predecessor and follower.

Run-time: O(1)

SleepyHappyDopeyDoc BashfulSneezy
next

prev

next next next next

prev prev prev prev

Grumpy
next

next

prev

linked lists: insert

2. Update next link of predecessor

Run-time: O(1)

SleepyHappyDopeyDoc BashfulSneezy
next

prev

next next next next

prev prev prev prev

Grumpy
next

next

prev

linked lists: insert

3. Update prev link of follower

Run-time: O(1)

linked lists: creation

SleepyHappyDopeyDoc BashfulSneezy
next

prev

next next next next

prev prev prev prev

linked lists: creation

SleepyHappyDopeyDoc BashfulSneezy
next

prev

next next next next

prev prev prev prev

linked lists: creation

SleepyHappyDopeyDoc BashfulSneezy
next

prev

next next next next

prev prev prev prev

linked lists: looping over

SleepyHappyDopeyDoc BashfulSneezy
next

prev

next next next next

prev prev prev prev

linked lists exercise: needle in a haystack

linked lists exercise: needle in a haystack

linked lists exercise at home: deletion

Can you write a function that deletes a node
from a linked list? (Start by finding the node
using the function you already wrote.)

What’s the run-time?

linked lists: why do we care?

Time costs are different, but both arrays and linked lists
provide the same operations:

• replace or access at index
• insert, maintaining order
• remove, maintaining order

1. Performance: Maybe you’d use a linked list to
represent buckets in a dictionary, or a genome
sequence. (Fast deletion or insertion, no indexing.)

2. Understanding: Linked list representation is similar to
representation of graphs and networks.

arrays vs linked lists: the list Abstract Data Type

Time costs are different, but both arrays and linked lists
provide the same operations:

• replace or access at index
• insert, maintaining order
• remove, maintaining order

If we are describing some other algorithm that uses
a list for book-keeping, we don’t want to get into the details.

A list is an Abstract Data Type providing certain
operations on ordered data.

abstract data types

• ordered list: insert, delete wherever
• stack: insert at the end (top), remove from end
• queue: insert at end, remove from beginning

Stacks model Last-In-First-Out (LIFO) situations
Queues model First-In-First-Out (FIFO) situations

abstract data types

• ordered list: insert, delete wherever
• stack: insert at the end (top), remove from end
• queue: insert at end, remove from beginning

Stacks model Last-In-First-Out (LIFO) situations
Queues model First-In-First-Out (FIFO) situations

stack: student demo with name tags

stack: implementation

You can just use
 a Javascript array.

• push(): add new item
• pop(): remove most-recently-added item

Methods:

stack example algorithm: computing expressions

How would you write your own interpreter for a new
programming language, TuckScript?

One piece: handling expressions:

“5 + 4 (3 + 2 / 4 * (96 / 2))”

1. Break it apart into symbols (parsing)
2. Apply operator symbols to value symbols
3. Use new values with operators

parentheses and order of operations
make it tricky!

stack example algorithm: computing expressions

reverse polish notation (RPN):

“3 4 2 * +”

1. Remember 3
2. Remember 4
3. Remember 2
4. *: multiply the last two numbers and replace
5. +: add last two numbers

We can implement “remember” by pushing onto a stack.
(Visualization by Daniel Shanker in notes.)

stack exercise: writing your own interpreter

stack: applications

• keeping track of running and suspended functions
• parsing code for compilers or interpreters (together

with function table)
• decision making algorithms (e.g. searching a maze

using hand-on-wall rule.)

queue

• ordered list: insert, delete wherever
• stack: insert at the end (top), remove at end
• queue: insert at end, remove from beginning

Stacks model Last-In-First-Out (LIFO) situations
Queues model First-In-First-Out (FIFO) situations

queue: student demo with name tags

queue: implementation

1. Use javascript array, with push() and shift()?
• theoretical runtime bad
• I used for assignment 4

2. Linked list
• theoretically better run-time
• probably very slow in javascript, not built-in

queue: applications

• Swapping between processes running on CPU
• Handling server requests in order
• Graphs and graph-search algorithms for ordered

exploration and decision making.
• packet handling: ethernet, internet, multi-core

Doc

Dopey

Grumpy

Happy

Sneezy

Bashful

Sleepy

