
data structures: 
lists, stacks, queues



data structures

Data structures:

1. Organize data 
2. Enable algorithms on that data 
3. Provide book-keeping for algorithms on other data 
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lists

• replace or access at index 
• insert, maintaining order 
• remove, maintaining order
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array: replace

Dopey would like his name spelled correctly.
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array: replace

Dopey would like his name spelled correctly.

Time cost: O(1)
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array: insert

Grumpy gets in bed between Dopey and Happy
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array: insert

Extend the bed (array)
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array: insert

Slide items to the right

Time cost: O(n)
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Grumpy

array: insert

Copy in “Grumpy” 
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Grumpy

array: remove

Happy gets out of bed and goes to work
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Grumpy

array: remove

Happy gets out of bed and goes to work

SleepyDopeyDoc BashfulSneezy

0 1 2 3 4 5 6

Grumpy



SleepyHappyDopeyDoc BashfulSneezy

0 1 2 3 4 5 6

Grumpy

array: remove

Happy gets out of bed and goes to work
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Grumpy
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array as list: time costs

• replace or access at index: O(1) 
• insert, maintaining order: O(n) 
• remove, maintaining order: O(n)



linked lists

• replace or access at index: O(n) 
• insert, maintaining order: O(1) 
• remove, maintaining order: O(1)
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linked lists: insert
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(Student demo with name tags.)



linked lists: insert
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1. Create a new node item, with prev and next  
pointing to predecessor and follower.

Run-time: O(1)
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linked lists: insert

2. Update next link of predecessor

Run-time: O(1)
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linked lists: insert

3. Update prev link of follower

Run-time: O(1)



linked lists: creation
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linked lists: creation
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linked lists: creation
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linked lists: looping over
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linked lists exercise: needle in a haystack



linked lists exercise: needle in a haystack



linked lists exercise at home: deletion

Can you write a function that deletes a node 
from a linked list? (Start by finding the node 
using the function you already wrote.) 

What’s the run-time?



linked lists: why do we care?

Time costs are different, but both arrays and linked lists 
provide the same operations: 

• replace or access at index 
• insert, maintaining order 
• remove, maintaining order

1. Performance: Maybe you’d use a linked list to 
represent buckets in a dictionary, or a genome 
sequence. (Fast deletion or insertion, no indexing.) 

2. Understanding: Linked list representation is similar to 
representation of graphs and networks.



arrays vs linked lists: the list Abstract Data Type

Time costs are different, but both arrays and linked lists 
provide the same operations: 

• replace or access at index 
• insert, maintaining order 
• remove, maintaining order

If we are describing some other algorithm that uses 
a list for book-keeping, we don’t want to get into the details. 

A list is an Abstract Data Type providing certain  
operations on ordered data.



abstract data types

• ordered list: insert, delete wherever 
• stack: insert at the end (top), remove from end 
• queue: insert at end, remove from beginning

Stacks model Last-In-First-Out (LIFO) situations 
Queues model First-In-First-Out (FIFO) situations



abstract data types

• ordered list: insert, delete wherever 
• stack: insert at the end (top), remove from end 
• queue: insert at end, remove from beginning

Stacks model Last-In-First-Out (LIFO) situations 
Queues model First-In-First-Out (FIFO) situations



stack: student demo with name tags



stack: implementation

You can just use 
 a Javascript array. 

• push(): add new item 
• pop(): remove most-recently-added item

Methods:



stack example algorithm: computing expressions

How would you write your own interpreter for a new 
programming language, TuckScript? 

One piece: handling expressions:

“5 + 4 (3 + 2 / 4 * (96 / 2))”

1. Break it apart into symbols (parsing) 
2. Apply operator symbols to value symbols 
3. Use new values with operators

parentheses and order of operations 
make it tricky!



stack example algorithm: computing expressions

reverse polish notation (RPN):

“3 4 2 * +”

1. Remember 3  
2. Remember 4 
3. Remember 2 
4. *: multiply the last two numbers and replace 
5. +: add last two numbers

We can implement “remember” by pushing onto a stack. 
(Visualization by Daniel Shanker in notes.)



stack exercise: writing your own interpreter



stack: applications

• keeping track of running and suspended functions 
• parsing code for compilers or interpreters (together 

with function table) 
• decision making algorithms (e.g. searching a maze 

using hand-on-wall rule.)



queue

• ordered list: insert, delete wherever 
• stack: insert at the end (top), remove at end 
• queue: insert at end, remove from beginning

Stacks model Last-In-First-Out (LIFO) situations 
Queues model First-In-First-Out (FIFO) situations



queue: student demo with name tags



queue: implementation

1. Use javascript array, with push() and shift()? 
• theoretical runtime bad 
• I used for assignment 4 

2. Linked list 
•  theoretically better run-time 
• probably very slow in javascript, not built-in



queue: applications

• Swapping between processes running on CPU 
• Handling server requests in order 
• Graphs and graph-search algorithms for ordered 

exploration and decision making. 
• packet handling: ethernet, internet, multi-core
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