data structures:
Ists, stacks, gueues

data structures

Data structures:

1. Organize data
2. Enable algorithms on that data
3. Provide book-keeping for algorithms on other data

lIsts

Doc

Dopy

Happy

Sneezy

Bashful

Sleepy

4

replace or access at index
iInsert, maintaining order
‘emove, maintaining order

array: replace

Dopey would like his name spelled correctly.

Doc Dopy Happy Sneezy Bashful Sleepy

0 1 2 3 4 5

1 wvar dwarves = ["Doc", "Dopy", "Happy", "Sneezy", "Bashful", "Sleepy"];
2 print(dwarves);

3 dwarves[1l] = "Dopey";

4 print(dwarves);

5

Doc,Dopy,Happy, Sneezy,Bashful,Sleepy
Doc,Dopey,Happy, Sneezy,Bashful,Sleepy

array: replace

Dopey would like his name spelled correctly.

Doc

Dopey

Happy

Sneezy

Bashful

Sleepy

i WN -

Doc,Dopy,Happy, Sneezy,Bashful ,Sleepy
Doc,Dopey,Happy, Sneezy,Bashful,Sleepy

4

var dwarves = ["Doc", "Dopy", "Happy", "Sneezy", "Bashful", "Sleepy"];
print(dwarves);
dwarves[1] = "Dopey";
print(dwarves);

Time cost: O(1)

array: insert

Grumpy gets in bed between Dopey and Happy

Doc Dopey Happy Sneezy Bashful Sleepy

0 1 2 3 4 5

1 wvar dwarves = ["Doc", "Dopey", "Happy", "Sneezy", "Bashful", "Sleepy"];
2 print(dwarves);

3 dwarves.splice(2, @, "Grumpy");

4 print(dwarves);

5

Doc,Dopey,Happy, Sneezy,Bashful,Sleepy
Doc,Dopey, Grumpy,Happy, Sneezy,Bashful ,Sleepy

array: insert

Extend the bed (array)

Doc Dopey Happy Sneezy Bashful Sleepy

0 1 2 3 4 5 6

1 wvar dwarves = ["Doc", "Dopey", "Happy", "Sneezy", "Bashful", "Sleepy"];
2 print(dwarves);

3 dwarves.splice(2, @, "Grumpy");

4 print(dwarves);

5

Doc,Dopey,Happy, Sneezy,Bashful,Sleepy
Doc,Dopey, Grumpy,Happy, Sneezy,Bashful ,Sleepy

array: insert

Slide items to the right

Doc Dopey Happy Sneezy Bashful Sleepy

0 1 2 3 4 5 6

1 wvar dwarves = ["Doc", "Dopey", "Happy", "Sneezy", "Bashful", "Sleepy"];
2 print(dwarves);

3 dwarves.splice(2, @, "Grumpy");

4 print(dwarves);

5

Doc,Dopey,Happy, Sneezy,Bashful,Sleepy
Doc,Dopey, Grumpy,Happy, Sneezy,Bashful ,Sleepy

Time cost: O(n)

array: insert

Copy in “Grumpy”

Doc Dopey Grumpy Happy Sneezy Bashful Sleepy

0 1 2 3 4 5 6

1 wvar dwarves = ["Doc", "Dopey", "Happy", "Sneezy", "Bashful", "Sleepy"];
2 print(dwarves);

3 dwarves.splice(2, @, "Grumpy");

4 print(dwarves);

5

Doc,Dopey,Happy, Sneezy,Bashful,Sleepy
Doc,Dopey, Grumpy,Happy, Sneezy,Bashful ,Sleepy

array: remove

Happy gets out of bed and goes to work

Doc Dopey Grumpy Happy Sneezy Bashful Sleepy

0 1 2 3 4 5 6

var dwarves = ["Doc", "Dopey", "Happy", "Sneezy", "Bashful", "Sleepy"];
print(dwarves);

dwarves.splice(2, 1);

print(dwarves);

ui W IN -

Doc,Dopey,Happy, Sneezy,Bashful,Sleepy
Doc,Dopey, Sneezy,Bashful ,Sleepy

array: remove

Happy gets out of bed and goes to work

Doc Dopey Grumpy Sneezy Bashful Sleepy

0 1 2 3 4 5 6

var dwarves = ["Doc", "Dopey", "Happy", "Sneezy", "Bashful", "Sleepy"];
print(dwarves);

dwarves.splice(2, 1);

print(dwarves);

ui W IN -

Doc,Dopey,Happy, Sneezy,Bashful,Sleepy
Doc,Dopey, Sneezy,Bashful ,Sleepy

array: remove

Happy gets out of bed and goes to work

Doc Dopey Grumpy Sneezy Bashful Sleepy

0 1 2 3 4 5 6

var dwarves = ["Doc", "Dopey", "Happy", "Sneezy", "Bashful", "Sleepy"];
print(dwarves);

dwarves.splice(2, 1);

print(dwarves);

ui W IN -

Doc,Dopey,Happy, Sneezy,Bashful,Sleepy
Doc,Dopey, Sneezy,Bashful ,Sleepy

array as list: time costs

Doc Dopy Happy Sneezy Bashful Sleepy

0 1 2 3 4 5

e replace or access at index: O(1)
® insert, maintaining order: O(n)
® remove, maintaining order: O(n)

linked lists

< prev < < P

< . < or rev
Sleepy
>

- oy prev
Doc Dopey Happy Bashful
n > nex > n >

ext —>» next

t

ext >

e replace or access at index: O(n)
® insert, maintaining order: O(1)
* remove, maintaining order: O(1)

linked lists: insert

< prev <t prev < prev <t prev < prev
Doc Dopey Happy Sneezy Bashful Sleepy
next > next > next > next > next >

(Student demo with name tags.)

linked lists: insert

Doc

prev
Dopey
>

<%

next

prev
Happy
> n

<

ext

prev
Bashful

<

ext

Sleepy
>

\

/

p

rev
Grumpy
next

1. Create a new node item, with prev and next
pointing to predecessor and follower.

Run-time: O(1)

linked lists: insert

Doc

prev

>

<%

Dopey

pr

Happy

<

ext

prev
Bashful

>

<

next

Sleepy
>

N\

/

pr

ev
Grumpy
next

2. Update next link of predecessor

Run-time: O(1)

linked lists: insert

Doc

prev
Bashful

>

<

next

Sleepy
>

3. Update prev link of follower

Run-time: O(1)

linked lists: creation

< prev <t prev <t prev <t prev < prev
Doc Dopey Happy Sneezy Bashful Sleepy

next > ext > next > next >

ext >

1 // create the first node, called the 'head' of the list:

2 var head = {data: "Doc", next: null, prev: null};
P

linked lists: creation

< prev
Sleepy
>

prev
Bashful
ext > next

Doc Dopey Happy
nex nex > n

ext >

// create the first node, called the 'head' of the list:
var head = {data: "Doc", next: null, prev: null};

// create the second node
var node = {data: "Dopey", next: null, prev: head}
head.next = node; // link the head node to the current node

IOV WN B

linked lists: creation

-~
Loo~NOTULH WN -

< prev <4 prev <4 prev <4 prev
Dopey Happy Sneezy

next > next > next > next >

Doc

Bashful

<

next

prev

Sleepy

// create the first node, called the 'head' of the list:
var head = {data: "Doc", next: null, prev: null};

// create the second node
var node = {data: "Dopey", next: null, prev: head}
head.next = node; // link the head node to the current node

// create the third node
node.next = {data: "Happy", next: null, prev: node}
node = node.next; // update node to point to the current node

// create the remaining nodes
node.next = {data: "Sneezy", next: null, prev: node}
node = node.next; // update node to point to the current node

node.next = {data: "Bashful"”, next: null, prev: node}
node = node.next; // update node to point to the current node

node.next = {data: "Sleepy", next: null, prev: node}

linked lists: looping over

Doc

next

prev

>

<%

Dopey

next

prev

>

<

Happy

next

prev
Sneezy

<4

)

next

prev

Bashful

>

<

next

prev

>

Sleepy

22 // create a variable with a nicer name to store the linked list Chead) 1in:
23 var dwarves = head;
24
25 // print the nodes
26 ~ var printlLinkedList = functionChead) {
27 var current = head;
& 28+ while(current != null) {
29 print(current.data);
30 current = current.next; // move to the next item in the list
31 }
32 1}
33
34 printlLinkedList(dwarves);
Doc
Dopey
Happy
Sneezy
Bashful
Sleepy

inked lists exercise: needle in a haystack

inked lists exercise: needle in a haystack

27 ~ var listFind = functionChead, needle) {

28 var current = head;
M 29~ whileCcurrent != null) {
30 ~ if(current.data === needle) {
31 return current;
32 }
33 current = current.next; // move to the next item in the list
34 }
35 return null;
36 };
37

38 print("Sneezy in list: " + listFind(dwarves, "Sneezy"));
39 print("Hapy in list: " + listFind(dwarves, "Hapy"));
Sneezy 1in list: [object Object]
Hapy in list: null

linked lists exercise at home: deletion

Can you write a function that deletes a node
from a linked list? (Start by finding the node
using the function you already wrote.)

What's the run-time?

linked lists: why do we care”

Time costs are ditferent, but both arrays and linked lists
provide the same operations:

® replace or access at iIndex
* insert, maintaining order
®* remove, maintaining order

1. Performance: Maybe you'd use a linked list to
represent buckets in a dictionary, or a genome
sequence. (Fast deletion or insertion, no indexing.)

2. Understanding: Linked list representation is similar to
representation of graphs and networks.

arrays vs linked lists: the list Abstract Data Type

Time costs are ditferent, but both arrays and linked lists
provide the same operations:

® replace or access at iIndex
* insert, maintaining order
®* remove, maintaining order

It we are describing some other algorithm that uses
a list for book-keeping, we don't want to get into the details.

A list Is an Abstract Data Type providing certain
operations on ordered data.

abstract data types

e ordered list: insert, delete wherever
e stack: insert at the end (top), remove from end
® gqueue: insert at end, remove from beginning

Stacks model Last-In-First-Out (LIFO) situations
Queues model First-In-First-Out (FIFO) situations

abstract data types

e ordered list: insert, delete wherever
e stack: insert at the end (top), remove from end
® gqueue: insert at end, remove from beginning

Stacks model Last-In-First-Out (LIFO) situations
Queues model First-In-First-Out (FIFO) situations

stack: student demo with name tags

stack: iImplementation

Methods:

e push(): add new item

e DOP(): remove most-recently-added item

Ooo~NO UL H WN B

You can just use
a Javascript array. ¢

16
17

var mystack = [];

mystack.push(l);
print("After pushing 1: " + mystack);

mystack.push(2);
print("After pushing 2: " + mystack);

mystack.push(50);
print("After pushing 50:

+ mystack);

var result = mystack.pop();
print("After popping: " + mystack +
" (pop result was " + result + ")");

mystack.push(5);
print("After pushing 5: " + mystack);

After pushing 1: 1

After pushing 2: 1,2

After pushing 50: 1,2,50

After popping: 1,2 (pop result was 50)
After pushing 5: 1,2,5

stack example algorithm: computing expressions

How would you write your own interpreter for a new
programming language, TuckScript?

One piece: handling expressions:

S5+4(3+2/4*(96/2))

1. Break it apart into symbols (parsing)
2. Apply operator symbols to value symbols
3. Use new values with operators

parentheses and order of operations

make it tricky!

stack example algorithm: computing expressions

reverse polish notation (RPN):

3427 +7

1. Remember 3

2. Remember 4

3. Remember 2

4. " multiply the last two numbers and replace
5. +: add last two numbers

We can implement “remember” by pushing onto a stack.
(Visualization by Daniel Shanker in notes.)

stack exercise: writing your own interpreter

1~ var rpn = function(expr) {

2 var stack = []; // empty stack to store numbers
3 var tokens = expr.split(" ");

4~ for(var 1 = @; 1 < tokens.length; i++) {

5 var symbol = Number(tokens[i]);

6

7~ if(! isNaN(symbol)) {

8 // it's a number, push to stack.

9 // YOU WRITE THIS PART

10 |

11~ } else {

12 // 1f it's not a number, it was an operator.
13 // grab two numbers from the stack:

14

15 var n2 = stack.pop();

16 var nl = stack.pop();

17

18 //Check which operator, compute, and push:
19 var operator = tokens[i];

20 ~ if(operator === "+") {

21 // YOU WRITE THIS PART

22 ~ } else if(operator === "-") {
23 // YOU WRITE THIS PART

24 ~ } else if(operator === "*") {
25 // YOU WRITE THIS PART

26 ~ } else if(operator === "/") {
27 // YOU WRITE THIS PART

28 }

29

30 }

31 }

32 return stack[@];

33

34 1

35

36 printCrpn("S 4 -")); // should print 1

37 print(rpn("S 13 1 - 4 / + 4 *")); // should print 32

stack: applications

* keeping track of running and suspended functions

e parsing code for compilers or interpreters (together
with function table)

* decision making algorithms (e.g. searching a maze
using hand-on-wall rule.)

queue

e ordered list: insert, delete wherever
e stack: insert at the end (top), remove at end
® queue: insert at end, remove from beginning

Stacks model Last-In-First-Out (LIFO) situations
Queues model First-In-First-Out (FIFO) situations

gueue: student demo with name tags

gueue: Implementation

1. Use javascript array, with push() and shift()?
e theoretical runtime bad
e | used for assignment 4
2. Linked list
» theoretically better run-time
e probably very slow in javascript, not built-in

gueue: applications

Swapping between processes running on CPU
Handling server requests in order

Graphs and graph-search algorithms for ordered
exploration and decision making.

packet handling: ethernet, internet, multi-core

: - L Ga >3 o
‘é CUTIE LENE
\‘r 0’ % 0 w" ‘ A: Mo - \ \ .
~ i 4
f BSTER A
“S‘ ITTAGE \"
..3' . r.“;a . .
-, STREET
Bseny
“~
o o
1 DRery
FARCALD
WRE S5(
LIBRAR
- “' “u b AR Ml
OWE R
o
BERRY
o CHASE
= ‘ -
'] A BAXER LIBRARY ’
- " o0 L [ey
MURDOUGH CENTE g .
o " o 0 weten e
} COOK, AUDIT ORIUM 0 GOLD COAST CLUSTER a;‘"b
-
¢ @l

o
Elements Console Sources Network Performance Memory Application Security Audits Adblock Plus
) top v Filter

Info v
Searching for path from Tuck to Sudikoff.

Found goal!

DocC

Dopey

Grumpy

Happy

Sneezy

Bashtul

Sleepy

