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Abstract. Mobile-agent systems allow applications to distribute their resource
consumption across the network. By prioritizing applications and publishing the
cost of actions, it is possible for applications to achieve faster performance than in
an environment where resources are evenly shared. We enforce the costs of actions
through markets where user applications bid for computation from host machines.

We represent applications as collections of mobile agents and introduce a dis-
tributed mechanism for allocating general computational priority to mobile agents.
‘We derive a bidding strategy for an agent that plans expenditures given a budget and
a series of tasks to complete. We also show that a unique Nash equilibrium exists
between the agents under our allocation policy. We present simulation results to
show that the use of our resource-allocation mechanism and expenditure-planning
algorithm results in shorter mean job completion times compared to traditional
mobile-agent resource allocation. We also observe that our resource-allocation policy
adapts favorably to allocate overloaded resources to higher priority agents, and that
agents are able to effectively plan expenditures even when faced with network delay
and job-size estimation error.

Keywords: mobile agents, market-based control, resource allocation

1. Introduction

We develop self-regulating frameworks for networked applications where
users may have conflicting interests and differing priorities. In particu-
lar, we are interested in market-based structures where software agents
compete for computational resources. In our system, local auctions
prioritize agents in a distributed environment where communication
costs may be high. We observe that the cost of our prioritization is
small and that the algorithms that drive an agent’s bidding strategy
are robust to errors the agent’s job requirements.

1.1. COMPUTATIONAL-RESOURCE MARKETS

We use a currency-based resource-allocation policy where agents buy
access to computational resources. The policy has a straightforward
ideal: the cost of resource access is proportional to the quantity al-
located. Our allocation policy partitions each resource independently
to satisfy the demand of all interested agents such that no agent could
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benefit from altering its bid. We propose a mechanism to collect agents’
bids as functions and derive a bidding strategy that minimizes the
computational latency in an agent’s execution.

More specifically, we present a model that captures the priority of
the various tasks in a network. The model uses an allocation policy
that respects priorities and requires that each agent need only know its
own preferences regarding task completion.

Ideas from economics provide solutions to many of the issues re-
lated to coordinating access to resources in distributed applications.
Market-based resource allocation has been used in various distributed
resource-allocation problems including computing resources, network
bandwidth, and manufacturing systems (Clearwater, 1996). For ex-
ample, auction mechanisms have been used to allocate computer re-
sources (Gagliano et al., 1995), and microeconomic approaches can
distributedly allocate resources (Kurose and Simha, 1989). There are
many models where servers sell resources to agents. The price of a re-
source reflects congestion and serves as a load-balancing mechanism (Wald-
spurger et al., 1992; Chavez et al., 1997).

Computational markets rely on some form of currency exchange.
Currency represents an agent’s potential to act in the network. It is
possible for agents to exchange electronic legal tender implemented
through cryptographic verification (Glassman et al., 1995; Poutanene
et al., 1998). In this paper, however, we consider operation within a
closed environment where the system administrator uses currency to
compute a fair allocation among the users.

1.2. MOTIVATIONAL APPLICATIONS

To study how effective are computational markets techniques for self-
regulation we focus on applications that require careful latency man-
agement. This is a timely area of investigation, as the proliferation of
small-scale computing devices has lead to large-scale wired and wireless
networks, yet progress to reduce network latency has not kept pace with
the developments of high-performance computing and the improvement
of network bandwidth. As computers have become more economical
and standardized, computation is no longer the constraining factor
in distributed-application performance. Increasingly, communication
costs of data access comprise the bulk of an application’s execution
time. The disparity between the advances in computation and com-
munication latency is exaggerated by the greater use of wireless and
intermittently connected networks. A technique that reduces an appli-
cation’s end-to-end latency is to move computation closer to scarcer
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resources. This reorganization can avoid latency incurred in network
communication.

A mobile agent is a user program with the ability to autonomously
move from one host to resume execution at another. A mobile-agent
system provides the mechanisms for decentralizing resource allocation
by relocating computation represented by mobile agents. By moving
the computation (a mobile agent) to the data, bandwidth usage and
completion time are optimized. Rapidly evolving networks, where nodes
and features may be added or removed often, are easily implemented
using mobile-agent systems. A challenge involved in implementing ap-
plications within a mobile-agent system is implementing a structure
that incorporates the idea that different tasks in a system possess
different priorities. The amount and quality of the resources allocated
to an agent should reflect the agent’s priority. Computational markets,
and especially auctions are thus naturally suited for controlling resource
access in applications implemented with mobile-agent systems.

1.3. MOBILITY BENEFITS

Mobile-agent systems provide a decentralized flexible architecture on
which to base network management applications (Bieszczad et al., 1998)
and handle user preferences (Kotz and Gray, 1999). Mobile agents have
been used to improve fault tolerance by applying knowledge of the loads
on various resources and resubmitting tasks to alternate sites (Mohin-
dra et al., 2000; Shehory et al., 1998). Other applications for mobile
agents are to enhance video-conferencing performance (Baldi et al.,
1998); to allow users to more efficiently operate on remote distributed
data on an unreliable network (Johansen, 1998); and as an alternative
to client-server networking (Muldner, 1998).

Mobile agents eliminate much of the need for static protocols and al-
low networks to grow and change seamlessly. The acceptance of Java on
many platforms and the current efforts to standardize mobile agents (Ob-
ject Management Group, 1998) lead us to believe that a standard for
mobile agents will emerge, facilitating their use on almost any type of
network.

1.4. ALLOCATION SCENARIO

In this paper we address an economic system where the players are
mobile agents and resource contention drives a hierarchy of distributed
resource-allocation decisions. The mobile agents implement distributed
applications. We restrict our attention to systems such as military and
corporate intranets where users have already passed a higher-level ad-
mission procedure. Each user has task sequences to execute. To carry
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Figure 1. An example mobile-agent itinerary. The agent must visit one host from
each group and choose at what priority to execute at each visited host.

out a task sequence, the user creates a mobile agent and allocates some
endowment to it, which the agent cannot return to the user. The agent’s
job is to select the set of resources required for execution of its tasks,
and to budget its endowment to negotiate priority for each resource.
Its goal is to minimize the time to complete all of its tasks.

For example, consider the scenario where the network is a subnet of
computers at a research lab, and resources are CPUs at nodes through-
out the network. Figure 1 illustrates an example task sequence for a
mobile agent. The agent can relocate to one of several hosts to retrieve
an image from a database or device, then jump to another host to
process the image, and finally move to another host to render and
display the results.

The agent must decide which hosts to visit as well as execution
priority at each host. The focus of this paper is how an agent can budget
its endowment over a sequence of tasks. For evaluation of our allocation
policy, we provide methods to estimate cost and performance and an
algorithm to choose an agent’s path. Budget construction requires that
each agent negotiates with other agents at the site for access. To this
end, we establish a mechanism that allows each agent to prioritize
its execution to minimize its own completion time, that respects the
relative priority of other agents. Each resource is indifferent to how it
is partitioned among the agents as long as it is fully utilized. An agent
receives exclusive access for an idle resource. When multiple agents
simultaneously access a resource, agents participate in a bidding process
to divide the resource among themselves.
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1.5. PAPER ORGANIZATION

The bidding and allocation mechanisms are described in Section 2. In
Section 3 we derive a response to our mechanism that optimizes an
agent’s execution time in the absence of market response to the agent’s
demand. We extend the strategy in Section 4 to show how to compute
an allocation that satisfies all agents’ response functions for a single
resource. The resulting allocation is a Nash equilibrium among the
agents that request access. In Section 5, we prove the uniqueness of
the equilibrium. The price that results from the allocation serves as an
indicator for congestion, or demand, that prospective consumer agents
use to budget their expenditures.

In Section 6, we discuss how our allocation mechanism would be
implemented in a network. In Section 7, we show simulation results that
demonstrate that systems that use our allocation policy exhibit higher
throughput than ones that use a traditional mobile-agent computation-
allocation policy. We also compare our policy with one that optimizes
throughput to show that the cost of prioritizing agents is small. Finally,
we observe that our allocation and planning algorithms are insensitive
to agents’ errors in job-size estimation and are no more sensitive to
network delay than are traditional policies.

We describe some related work in Section 8. In Section 9, we discuss
our results and identify directions for future research. We provide two
appendices. One proves the concavity of the agents’ bid function and
the other is a table of notation used in the paper.

2. System Model

We study an environment where prioritized agents each have a sequence
of computational tasks. In this section we describe task requirements
and how a user prioritizes her agents. We also define the interface that
agents use to negotiate access priority when there is contention among
multiple agents.

2.1. ITINERARY DESCRIPTION

A user creates an agent to complete a task sequence as quickly as pos-
sible. Each task requires access to only one resource, which is possibly
replicated at several sites in the network. We denote the size of the
k-th task in the i-th agent’s itinerary as q};. For the image retrieval
example in Section 1, task size is the expected number of CPU clock
cycles required to complete the task.
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An agent chooses a resource immediately prior to execution of the
corresponding task. Resource capacity and the agent’s resource-congestion
estimates for all prospective resources influence selection. In our anal-
ysis, we assume that network delay between resource locations is fixed.

Once the agent selects a resource, the agent commits to use the
resource to finish the current task. Let cfc denote the fixed capacity of
the resource used by the i-th agent’s k-th task. With respect to our
subnet example, c}’C is the clock speed of the CPU at the computer
where the ¢-th agent’s k-th computation is completed.

2.2. PRIORITY

The user expresses the priority of agent’s itinerary by endowing it with
electronic currency to compete for network resources. The i-th agent’s
endowment is e’ dollars and cannot be returned to the user. We assume
that the user determines e’ through a higher-level optimization problem
based on knowledge of previous job completion times given various
endowments. We take ei as a given in this paper. If the i-th agent has
K* tasks and ¢ = EkK:ZI q};, then p! = ¢’ /qi, the dollars endowed per-
unit job, is a measure of the agent’s priority or more accurately, the
priority of the task sequence to its user.

A larger p' represents an ability to purchase larger portions of re-
sources for each job-unit to be completed and enables the agent to finish
more quickly. It could indicate that the particular task sequence is more
important (emergency messaging versus routine maintenance) or that
the user is of higher priority to the network and has more capital to
spend.

2.3. ALLOCATION PoLiCcYy

An agent receives exclusive access, without effect to its endowment,
to an uncontended resource. When multiple agents request a resource,
however, the resource decides how to partition its capacity. We assume
that access to a resource can be arbitrarily divided, without switching
overhead, among many agents. The resource recalculates the allocation
whenever an agent arrives at or departs.

The mechanism that we present follows the paradigm that all agents
that request access to a resource are charged the same rate per-unit of
capacity allocated. Using our formalism, if the i-th agent pays u¢, dollars
per second and 6;, denotes the total amount that all agents currently
pay, then the i-th agent will receive service at a rate 'u,ic given by:

UV =¢C - = |, 1
k k U+ 07 (1)
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where 9,? := 0 —ul, represents the sum of payment rates from all agents
except the ¢-th agent. For example, if a resource accommodates three
agents that pay one, two, and three dollars per second, respectively,
the agents will receive access to one sixth, one third, and one half of
the resource capacity.

If the i-th agent receives service at rate v,ic, the time required to
execute the k-th task is:

_ g+ 05)

- q_;c B
7 2 ,,0
Vg CpUg

th ; (2)

and the cost of completing the k-th task is:

V2 7 —1
mi, = upth = G0 )
Ck

Ultimately, the i-th agent expresses its request to the k-th resource
through a bid that is a function that returns u}, the amount an agent
will pay, conditioned on 8, the aggregate amount that all agents pay for
access. The class of functions that ensure that an allocation is feasible
and unique is described in Section 5.

The resource owner calculates a price, represented by 6, that satis-
fies all agents’ bid functions every time an agent expresses new interest
in or relinquishes access to the resource. Each interested agent submits
a new bid with updated cost and performance estimates of resources
the agent plans to use in the future. The resource ignores agents that
pay nothing in equilibrium until another chance to reallocate arises.

In Section 3, we calculate the optimal bidding function for one
agent under the condition that all other agents’ payments are fixed
throughout the network. In Section 4, we show that there exists a
Nash equilibrium among agents using bidding functions in the form
of the optimal response and in Section 5 we show that the equilibrium
is unique. Thus, we have an allocation policy that uniquely satisfies
local agents’ response functions.

3. Single-Agent Optimization

To determine how an agent should bid, we simplify the problem by
fixing the payments of all the other agents in the network and we
assume that the i-th agent has perfect information regarding 6, for
all hosts that it will visit. The agent’s objective is to minimize its
total execution time, and it is constrained by its endowment. Since

% is a strictly decreasing function of uz, we expect that the agent’s
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expenditure at the solution should be at the boundary of its constraint
region, i.e., it will minimize its completion time if it spends the entire
endowment.

We formulate the i-th agent’s problem as:

Ki Ki
min Z o st Z mi < ¢, (4)
k=1 k=1

which we solve with Lagrangian methods by defining the Lagrangian
as:

Kt K '
EzZt}C+>\<Zm}C—eZ>. (5)
k=1 k=1

Substituting for t}'c and m}c into Equation 5 and taking partial deriva-
tives with respect to uj, we arrive at:

oL —qi0;" q
a_i:%jm—f:o = A=k (6)
Uy, CrUg Ck Uy

Since we are dealing with the i-th agent’s decision, to simplify no-
tation, we drop 4 superscripts, except in 6,°, which we use to denote
the sum of competing agents’ bids at the k-th server agent ¢ visits.

Note that 6" > 0 implies A > 0 for all but the trivial case when
only one agent bids. Thus we have the following relationship between
any two bids, 7 and k:

The relationship states that as contention for one resource increases,
the agent spends more for that resource, but the increase is sub-linear
with respect to the contention. Combining the inequality constraint
and Equation 7, we get

oL _ K qr(ug + 91;1) _
AE—A<,§1T—6 = 0. (8)

Since A > 0, it follows that the inequality constraint must be sat-
isfied with equality, which shows that the total expenditure is on the
boundary of the constraint as we expected. Substituting for {uy}X , in
terms of w1 using the relationship in Equation 7, we have:
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q _ q k dk ,—
ci(u1+01+z ’2# +Z—k0’—e—0 (9)

k£l k#1 €
Solving the previous equation for u;, we get

_ kp—t _ q@p—i
e— Yy Ckek 6101
k£1

Uy = i (10)
@y ‘I3 k_l
“ lc%é:l 0
which yields the bid for the first job for the -th agent as a function
of 6" for k =1,..., K, assuming that e is large enough to make the

expression in Equation 10 positive. Thus, given any set of policies by
other agents in the network, the i-th agent optimizes its performance
by following the bidding strategy defined by Equation 10. The values
of 6, represent the total payments of other agents to the k-th resource
and serve as indicators for congestion or demand. We describe how an
agent generates O~ := [0, ... ,0%"], the vector of estimated values of
9,?, in Section 6 given that the agent may not have yet determined
which resources it will use.

We streamline Equation 10 by using place-holder variables and re-
install the 4 superscript for use in future sections:

Oéi _ ,81971
51 + 7

o

uj = fi(Ol_i,(:)_i) = (11)

where

o = ¢ —quﬂ (12)

k1 €
. qi
go= 4 (13)
1
. qz A
v o= é\/@kz. (14)
kA1

Intuitively, o* represents the estimate of the money available for the
current job. If of is less than zero, the agent cannot afford to purchase
service under the current state of the network. If o < 0, f; will return
a negative value, but we require that the bids be non-negative. Thus
the agent can only submit a bid if o' > 0. We also have 5° > 0,
0" > 0, and v* > 0 with equality only if the agent has one job. The
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function f;(67 g C:)_’) will return a positive value if and only if there is
a feasible solution. To capture the possibility that the i-th agent will
choose not to bid, under certain network conditions (which corresponds
to fi(07%,07%) < 0), we express the bidding strategy as follows:

ui = max{0, f;(6;*,0")} (15)

4. Multiple-Agent Solution

An agent’s bidding function in the form of Equation 15 returns the
agent’s optimal payment given the actions of the other agents in the
network. In this section we describe how to find an allocation that
satisfies each agents’ bidding strategy. Such an allocation defines a Nash
equilibrium among interested agents — an allocation from which no
agent can gain an advantage by unilaterally changing its actions (Bagar
and Olsder, 1999). We generate a set of bids, characterized by the
expression in Equation 15, that yields a Nash equilibrium with respect
to the policies of the N agents at a host:

{ui = max{0, f;(6;",0 )L, . (16)

We assume, without loss of generality, that the agents present are
all completing their first tasks. They may, however, have itineraries of
different lengths. Our analysis holds for the case when agents submit
positive real-valued triples, (o, 8%,v"), describing their bid functions in
the form of Equation 11, but easily generalizes to a broader class of bid
functions that we define in Section 5.

The server collects agents’ bidding functions and calculates the pay-
ments for each agent. To facilitate this computation, we translate each
agent’s bid function domain from 6] to a domain common to all agents,
61, to reduce our search space. Recall that we defined 0" := 6; — u!
and that 6; = ZZN u}. We modify the policies in Equation 16 to get an
implicit relation between u} and 6;:

{ui = max{0, fi(61 —u1, 07)}}L; . (17)

From Equation 17, we obtain an explicit function gi(01,(:)_i) 10 %
©~% — ul. The ratio of/f" represents agent i’s tolerance for competi-
tion for the resource. Qutside the range 61 € (0, a/8%), g;(61, ©~") takes
the value of 0. Figure 2 illustrates how f;(8; —u?, ©~%) shifts as 6 varies.
The intersection of the line with slope 1 and a curve f;(6; — ul, (:)_Z)
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Figure 2. Behavior of max(0, f; (61 — u}),©?) for a'/B = 4.

for a particular value of 6, * represents the only stable solution among
the set of agents for that level of congestion. _

We now derive g;(01,07%). Substituting 6; — u¢ for 7 in Equation
11, in the range, 8; € (0,a?/3"), we have:

Ui = o — (6 — Uzi)
1= ﬁz + v '

V01—uj
which leads to a quadratic equation in u}. Dropping the i superscript,
we have:

(18)

Y2u? + (o — 01)*u; — (a — 561)%6, = 0. (19)

Taking the positive root of the equation with respect to u;, we have

~

up = g(01,07") where

2 iy (o= B61)? 4420,
9(91,9 ) = T <—1 + 1 + m) (20)

when 6, € (0,a/f), and u; = 0 otherwise.
The function g is continuous and zero at §; = 0 and 6; = «/f.

A~

Thus, g(f1,©7%) is a continuous function of §;. We also note that on

01 € (0,a/B),

99 2B(a — pbh) n —2B(a — 61)” + 29°(a — 61) — 467%6:
00, 22 292/ (a — 861)? + 4926,

and when 0; = 0, we have

(21)
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Figure 3 displays the shape of g;(6;,©~%) and how the agent’s best
response changes as an agent becomes wealthier and as the agent’s
future task sizes increase. Increasing the agent’s endowment allows the
agent to submit a larger positive bid over a larger domain compared
with the agent’s initial bid. An agent with a greater future load, but
with the same initial endowment, participates in a smaller set of con-
gestion levels and makes smaller bids than under the original budget
when it does participate, since it must allocate more of its capital to
later jobs.

35

— initial g8, &™) .

- - increased endowment g(6,, ) .

e increafed future consumption g(el, o)
g(el, oh=8

w
T

1

N
5

-
.- ~

Bid: 9(6,,6™)
B w
A

[
T
-

o
3
A>
0
.
-

A

[y

he Yy
4 5

0 1 2 .
Congestion: 81

Figure 8. The comparison of g;(6;,0 %) for different conditions. We represent the
bid for the initial itinerary with a solid curve. The dashed curve represents a new
bid to complete the same set tasks, but with a larger endowment. It is scaled out
compared to the original bid. The dotted-dashed line represents a bid when the
itinerary has increased future consumption; the curvature is softened and the range
over which the agent participates is truncated.

Returning to the choice of an equilibrium bid for N agents, we seek
61 and {u}}N | to satisfy for all agents the definition 8; = "~ | u} and
Equation 17. An equivalent problem is to find a value of 8; such that

Noui— 0, =N, 0i(61,67%) — 6, =: hy(6;) = 0. From Equation 22,
we know that if N > 2, 0hy/00;]g,—o+ = —1 + XN ;1 > 0 and thus
hy is increasing to the right of zero and hi(0") > 0. We also know
that for the non-trivial case where at least two agents have o > 0,
hi(max;{a’/B'}) = —max;{a’/B'} < 0. Because hi is the sum of
continuous functions, h; is continuous as well and must be zero for
some value of ; € (0, max;{a’/B'}). We solve for this value by using
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Congestion: 61
Figure 4. Sample plot of Zf\;lg,-((h,(:)fi) versus 61 for 16 agents. Equilibrium

occurs at Efvzl gi(01,07%) =61 (i.e., h1(61) = 0), which we show at the intersection
of the dotted line and the plotted curve.

a bisection search of h; in the given range. We sketch a sample of
SN 9i(601,07%) versus 6, in Figure 4.

If an agent has only one job left to complete, u; = 6; for 6, €
(0,ec/q) is its optimal policy, which is equivalent to having v = 0. In
this case, g;(61, (:)_’) is discontinuous. By applying L'Hopital’s rule to
Equation 20, however, we see that

lim ¢ = lim % (a iellgglp (a— B61)°
70+ Y0+ 47\/1 + (a4_’72;911)2
= Jim,
\/1 ECEYNE
— 0,

If we require agents with only one job to submit bid functions with
v > 0, agents may approximate their optimal solutions to arbitrary
precision through specifying a small value for v and still preserve the
structure of g;(61,©%) to yield a solution. Since g;(6;, ©*) defines an
agent’s best response for all values of 81, we have a Nash equilibrium
allocation among agents bidding for a common resource under our

scheduling mechanism.
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5. Uniqueness

We now show that the equilibrium (i.e., h(61) = 0) in the previous
section is unique when there are more than two agents bidding at the
same host. Let O; = (0, a’/$*) be indexed such that O; D Oy D --+ D
On (ie., @'/t > a?/B? > --- > oV /BN) where N is the number of
agents at a server. We have already shown that a Nash equilibrium
characterized by hy(6;) = 0 has at least one solution on O = UN ,0; =
(0, max;{c’/B'}) = O1. We now further strengthen that result. Let us
define h''(60;) as follows:

B0 = gi(60,67) — 6. (29)
=1

THEOREM 1. There is ezactly one solution on O where hi¥ (6;) = 0.

To prove Theorem 1, we must first prove some other results. In Ap-
pendix A, we show that (8%g;/06%) < 0 on O;. From the definition of

T in Equation 23 and the definition of the indices, 7 and n, it can be
seen that

629' 82hn

895 <0on O; Vi = ae%l < 0on Oy (24)
dg; . Oh}

=1Vi=> — =n—-1, 25

06, 61=0% 00, 61=0% ( )

g:(0,07%) =0 Vi = h?(0) = 0. (26)

Also, A is a continuous function of 6.

LEMMA 1. If a function, h(zx), is twice continuously differentiable on
[r,s], (0%h/0x?) < 0 on (r,s), h(r) > 0, and h(s) < 0, then there exists
a unique point g € (r,s) s.t. h(zg) = 0.

Proof. We prove this lemma by contradiction. The Intermediate
Value Theorem states that there is at least one value zy € (r,s) s.t.
h(zo) = 0. Because (6%h/01?) < 0 on (r,s), we know that h is strictly
concave on (r,s), i.e.,

ah(z) + (1 — a)h(y) < h(az + (1 —a)y) (27)

for a € (0,1) and z,y € (r,s). Suppose there are two points that
satisfy h(z) = 0, say z1,z2 € (r,s) where 1 < x2. Again, using the
Intermediate Value Theorem, we can show that 3ry € (r,z1) C (r, s) s.t.
h(rg) > 0. Then, we have ah(rg)+(1—a)h(z2) < h(arg+(1—a)z2) which
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implies ah(ry) < h(arg + (1 — a)zy). If a = (z9 — x1/22 — 10) € (0,1),
then we have ah(rg) < h(z1) = 0, which is a contradiction since a > 0.
Thus, there can be at most one point where h(z) = 0. $

Proof of Theorem 1. Whenn = 1, (0h}/061)|g,—o+ = 0, and (8%h] /96?) <
0 on Oy, which implies that 2{(6;) < 0on O;. Whenn = 2, (0h%/801)|p,—o+ =
1 and h2(0) = 0, thus R?(07) > 0. Also, h%(a?/B?%) = hi(a?/8?) < 0
and (0?h?/067) < 0 on Oy. Applying Lemma 1, we find that there is
a unique point 6y s.t. h2(6y) = 0 on Oy. But, h2(0;) = hi(61) < 0 on
O1 N OS; thus 6 is a unique point where h?(fy) = 0 on O;.

We show uniqueness through an inductive argument. Assume that
there is a unique point 6y < o’/B" on O; where hi(6;) = 0. Also
assume (0?h%/06%) < 0 on O; and hi(6;) < 0 on O1 N Of. Along with
the continuity of h¢, the previous result implies the following:

' >0 01 < 6y
h}(61) { =0 01 =6y (28)
<0 01 > 6y

Rewriting Equation 23, we have hlﬁ'l = h% + gi11. There are two
cases to consider:
Case 1. If (a/*1/p"*1) < 6y, then Equation 28 is satisfied for hi™
because g;11(61) = 0 for 8; > 6y > (!+1/B+1) and gz+1(91) >0 for
6; < (a't'/B**1). Thus, there is a unique point y where hi(6) = 0
OD.()l.
Case 2. If 6 < (a'*1/B1*1) < (a?/B%), then by Equation 28,
R (af 1/ BH1) = Bi (aft1/B+1) < 0. We also know hT(0F) > 0, be-
cause hit1(0) = 0 and (OR}™/061)|s,—o+ =14 > 0. Since (82h} /967) <
0 on Ojt1, we can apply Lemma 1 and arrive at the result that there is
a unique point 6o on O;+1 where h”l(e ) =0. But since gl+1(01) =0
for 8; > (a/t1/B*t1), we have that on O;NO;, 1, KiT(8,) = hi(61) < 0.
Thus, we have a unique point 6y where hi*1(6y) = 0 on 0;.

We have shown that a unique Nash equilibrium exists when agents’
bidding functions are in the form of Equation 20, but we note that the
results hold for any set of functions g(f,©~%) where g(6,©~%) > 0 on
some set (0,b), and is zero elsewhere, and further, (8, ©~) is concave
and twice differentiable on [0, b].
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6. Implementation in a Network

In this section, we discuss several issues that concern calculation of
an agent’s bid. Implicit in the calculation are both the agent’s resource
choices and its forecast of network conditions. We explore the possibility
of other bidding strategies and conclude the section with a discussion
of the merits of our function-submission bidding allocation policy.

6.1. ESTIMATION

In our approach, a resource independently partitions itself as demand
changes. Every time an agent arrives at or finishes with a resource,
each agent that requires access submits an updated bidding function
characterized by the real-valued positive triple, («, 3,7). The parame-
ters o and ~y depend on 67, the agent’s beliefs about future demand
for resources on its itinerary. These estimates allow an agent to budget
expenditures for the current task.

Two issues that affect the estimations are the particular resources
that the agent chooses to access and the congestion of resources used
later in the itinerary. A greedy algorithm, which we present in Section 7,
chooses an agent’s next resource. The algorithm defers selection of
resources until execution of the corresponding task. The agent must
have an idea of the quality of future resources it will choose to budget
expenditures for the immediate task, however. For this purpose, an
agent in our model uses the mean of the alternative resources’ capacities
to estimate the capacity of the resource it will use.

Additionally, the budgeting algorithm requires congestion estimates.
The agent forecasts these through calculation of the mean total cash
spent by other agents at the resource alternatives over time. In Sec-
tion 7.2 we examine the effect of congestion estimation errors that stem
from network delay. We find that the effects on agents’ performance are
limited.

6.2. ALTERNATIVE BIDDING STRATEGIES

Once agents submit their bidding functions, the resource partitions
itself based on the Nash-equilibrium allocation. Thus, each agent will
be satisfied with the amount and cost of the resource that it receives,
as the Nash equilibrium ensures that the allocation represents a point
on the optimal response function of each agent for that resource at
that time given its current beliefs. Each agent continues under this
allocation until its job is complete or the resource state changes, i.e.,
another agent arrives or leaves the resource. Agents that pay nothing
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under the allocation are ignored until the state changes again. When an
agent completes its task at a resource, it moves to the next resource in
its itinerary and submits a new bidding function with updated demand
forecasts.

It is possible for an agent to “cheat” by submitting a bid that does
not represent its true beliefs. An agent might hope that an altered
equilibrium might expedite itinerary completion. In other applications,
agents can gain from such strategic optimization in double-auction (Hu
and Wellman, 1998). A difference between our allocation problem and
the double auction research is that in a double auction there are trade
opportunities while the market searches for equilibrium.

Trade in our system occurs only at equilibrium, so strategic gaming
is more difficult since an agent has only one chance to manipulate the
equilibrium. Because agents observe only the resulting equilibrium, as
opposed to the search for an equilibrium, there is less information to use
and fewer opportunities to steer the equilibrium in a favorable direc-
tion. There are other complications in optimization. One must consider
the feedback of one agent’s actions from its competition’s actions. The
effects of indirect interaction among agents on their beliefs and bidding
behavior is an interesting topic for future research.

Submitting functions as bids ensures an equilibrium allocation that
resource owner can compute quickly. An alternative solution might be
to iteratively collect bids and let each allocation drive the recalculation
of of the next iteration. This sequence does not guarantee a conver-
gence, however. Our policy allows an agent to calculate and express its
actions for every state and results in efficient trade even in the presence
of fluctuating demand.

7. Simulation

In this section, we present results of simulating our resource-allocation
policy from Section 4. We show that agent performance is highly cor-
related with endowment; that when our system is overloaded, poorer
agents are ignored to maintain higher priority agents’ performance; our
algorithm is robust to an agent’s errors in job-size estimation; and that
there is a empirical structure to bidding behavior that will aid us in
future research to predict server loads and guarantee service to agents.

We ran our simulations under the Swarm simulation system (Lang-
ton et al., 1999). We created agents at a Poisson rate, each with an
exponentially distributed number of jobs to complete. In our simu-
lations, we used two different distributions for job size: exponential
and Pareto. Both distributions are commonly used to model job sizes,
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with Pareto having the more sporadic distribution. Each agent’s start
location and task types were uniformly distributed. We modeled p,
an agent’s endowment size relative to the sum of its job sizes, as a
positive truncated Gaussian random variable. This parameter expresses
an agent’s owner’s preference that the agent completes tasks quickly.

All of our simulations used a network of 100 hosts where each host
offered one of eight computational services. The service that a host
offered was picked uniformly at simulation initialization. Host capacity
was determined by a positive truncated Gaussian random variable with
positive mean. We chose this distribution for no other reason than to
make the process of host selection more important and to show that our
expenditure planning process works with heterogeneous host capability.
In the simulation, each host published its fixed capacity and immediate
level of congestion, 6.

The hosts were connected with a network whose topology we gener-
ated with GT-ITM (Calvert and Zegura, 1996). In GT-ITM, a network
is built from a hierarchical system of transit domains connecting stub
domains. The user specifies the number and average size of domains
in nodes (hosts) and the probability that nodes are connected within
the domain. Our networks had two levels of transit domains connect-
ing another set of stub domains. The network delay incurred in an
agent moving between sites was chosen at system initialization. We
chose job sizes to be large enough so that network transfer did not
dominate an agent’s decision of which hosts to visit, since we were
interested in the effectiveness of our expenditure-planning algorithm
and resource-allocation policy.

Once created, an agent must formulate a route. In the simulation,
each agent chose their route incrementally by choosing a host for each
task after completing the previous task. For the purpose of expenditure
planning, for all but the next immediate host choice, agents planned
to visit hosts of average capacity ci, and average congestion 6, among
hosts offering the service required for the k-th task. Each agent chose
the next site to be the one that minimized the sum of network-transfer
and execution times for the next hop, assuming that the bidding level,
0,.', would not change. Thus, our routing algorithm was greedy and
naive. We sketch its operation in Algorithm 1.

In the simulation, an agent commits to finishing its current job at
the host to which it jumps. To finish its job, an agent submits a bid
function defined with parameters o, ’,7" defined in Equations 12-
14. The host uses bids from agents to form the bid-response function,
g(0,07%), and uses a bisection search to find the bidding level where
0= EZN:’H 9(0, (:)_“) This search is conducted every time an agent arrives
or departs the host. Algorithm 2 sketches the operation.
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Algorithm 1 Choose Next Site for Agent i
1: tyin = 00; nextHost :=
2: for all hosts j offering service next in itinerary do
t; :=[transferLatency to: j from: currentHost]
+39(0;,07)/(cj * (6" + 9(6;,6)))
4 if ¢, > t; then
5: tmin == tj; mnextHost :=j
6: end if
7
8

w

. end for
: return nextHost

Algorithm 2 Allocate Resources for Host k
1: while true do

2:  t:= time since last arrival/departure

3:  for all agents 7 do

4: deduct tg;(#,©~%) from agent i’s endowment
5:  end for
6

7

8

9

add arriving agent or remove departing agent
for all agents ¢ do .
query agent i for a, 8, and 7 to build g;(§, ©~%)
. end for
10:  search for = "N, ¢;(9,67%) in (0, max;(a;/5;))
11:  for all agents i do
12: vj- = ¢;g;(0,07%)/0
13:  end for
14: end while

We compared our game-theoretic resource-allocation method with
three other resource-allocation policies: equally-shared, first-come-first-
served (FCFS), and shortest-remaining-processing-time (SRPT). Un-
der the shared policy, all agents at a site compute at an equal rate.
The shared policy is similar to what is currently used in many ex-
isting mobile-agent systems, so it serves as a good comparison for
performance.

The FCFS policy allocates all of a host’s capacity to the earliest
arriving agent, while the SRPT policy services the agent with the short-
est computation remaining. We examined SRPT because it minimizes
the average agent job-completion time and serves as a lower bound
on the metric. The SRPT policy, however, has another side effect: it
prioritizes jobs by their size, so users have incentive to understate the
size of their jobs and the resulting allocation would resemble FCFS. In
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our simulations using SRPT, we assumed that agents’ job sizes were
known to the host.

An agent operating under the shared-allocation policy chose its next
host to be the one that minimized the sum of network-transfer and the
execution times of the next task given the computational share that
an additional agent would receive at the host. Under the FCFS and
SRPT policies, each agent chose its next site to be one that minimized
the sum of the network-transfer time to the host and the host’s ideal
job completion time weighted for the number of agents currently at the
host. For agents to plan their itineraries using each of the policies, sites
published the number of agents visiting them.

We measured an agent’s performance by comparing the actual time
taken by the agent with performance that it would have achieved in a
network with zero congestion. This idealized measurement is a shortest-
path computation from the start location that visits hosts that offer
the appropriate services. In the calculation, the distance between any
two hosts is the sum of the network-transfer time and gy /c, the time
an agent would take to complete a job at the second host without any
competition.

We ran three sets of experiments. First we verified that our game-
theoretic resource-allocation policy prioritizes agents by endowment.
We compared the performance agents achieved under the policy with
the mean performance achieved by agents under the other policies. We
also examined how over-constrained resources are allocated. Second,
each of the policies requires agents to compute routes based upon
network state, so we also investigated the effect of network delay on
an agent’s ability to plan its itinerary and budget. Finally, both the
SRPT and the game-theoretic allocation policies rely on agents having
knowledge of their job sizes. In reality, there will be some error in
an agent’s estimation of an agent’s computational requirements, so we
looked at the effect of job-size estimation error on agents’ performance.

7.1. EFFECTIVENESS

To test the effectiveness of the game-theoretic resource-allocation pol-
icy, we compared agents’ priorities, expressed by p’, with their perfor-
mance. After the network reached a steady state, we designated 7% of
the agents injected into the system as test agents. The test agents had
identical task-type sequences and a common start host, but they had
differing priorities, expressed by p*, spanning two standard deviations,
o, around the mean priority, u, and differing task sizes.

Figure 5 shows how endowment relative to task size affects agent
performance in one experiment and how agents performed in separate
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Figure 5. Priority versus ideal time relative to actual time. For the game-theoretic
(GT) approach, we plot the observed means in heavy block lines; standard deviations
with error bars for agents at each priority two standard deviations, ¢, around
the mean priority, p; and a linear fit of the observed means. We also plot the
mean performance of agents under the shared, SRPT, and FCF'S resource-allocation
policies.

simulations using the shared, FCFS, and SRPT policies. The data
labeled “GT” shows the performance of agents operating under our
game-theoretic allocation policy. We plot the mean and standard de-
viations of agents’ performance versus their priority. We also plot the
mean performance of all agents operating under the shared, SRPT, and
FCFS allocation policies in separate simulations. In the experiment,
agents’ job sizes had a Pareto distribution, but we achieved similar
results when agents’ job sizes were exponentially distributed.

We plot the mean of the ratios of the ideal non-congested itinerary
completion time and the actual itinerary completion time for agents. A
higher number indicates better performance. In the experiment, agents
with higher endowments performed better on average than those with
lower endowments. The mean performance of agents using the shared
policy was 0.33, while agents across all priorities under the game-
theoretic policy achieved a mean performance of 0.39 — an improvement
of 18%. There was a cost to prioritizing agents, however. Agents un-
der the FCFS policy performed slightly better (0.40) than under the
game-theoretic policy and the SRPT experiment showed that ideal
performance was 8% better than mean performance of agents across
all priorities operating under the game-theoretic policy. Neither the
SRPT nor the FCFS policies prioritize agents, however.
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Figure 6. Priority versus ideal time relative to actual time when agent requests
exceeded capacity. We plot observations two standard deviations, o, around the
mean priority, p.

One might associate high variance with market-based techniques,
but in the plotted simulations, agents using the game-theoretic policy
experienced about the same amount of performance variance as did
agents using the shared allocation policy. In the experiment plotted
in Figure 5, the mean standard deviation of test agents’ performance
across all priorities was 0.065, while agents using the shared resource-
allocation policy had a performance standard deviation of 0.068. Agents
operating under the FCFS policy experienced even higher variance.

The variance in performance in the game-theoretic simulations de-
pended on the level of congestion. As congestion increased, endowment
became a much stronger factor in determining an agent’s performance
and the variance of the performance measure increased.

Figure 6 shows how the system prioritized agents when requests ex-
ceeded system capacity. We observed that agents with lower than mean
priority were not able to complete their itineraries at all. The resulting
equilibrium allocation pushed prices beyond the range in which poorer
agents’ bids returned positive payments. Among agents with higher
than average priority, there was a strong correlation of intended priority
and performance. Again, we achieved similar results when agents had
either Pareto or exponentially distributed job sizes.

Using the other resource-allocation policies, it is not possible to reach
a steady state when agents’ requests exceed capacity. The requests that
are completed are completed more and more slowly as time progresses.
The lack of a steady state in the shared, FCFS, and SRPT policies
illuminates another feature of the game-theoretic policy: because agents
are prioritized, the system can decide which requests to postpone and
still provide reasonable service to higher priority requests. The SRPT
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Figure 7. We plot the effectiveness of prioritization of the allocation policy at dif-
ferent network delays and levels of endowment. We plot observations two standard
deviations, o, around the mean priority, .

policy prioritizes agents, but in an uncontrollable manner and one that
is not meaningful when the system is overloaded.

7.2. NETWORK DELAY

We also examined the importance of timely information to our ex-
penditure planning algorithm. We ran experiments varying the latency
incurred in agents jumping from one site to another. In the model,
agents have information on the immediate state of the world, but there
is a delay in acting on the information in the form of the time required
to move to another site. So by varying the agent-transport latency, we
effectively aged the agents’ load information.

Figure 7 shows the results of four experiments that used the game-
theoretic resource-allocation policy with intra-domain transfer times of
one, two, four, and eight time units. Inter-domain transfer times are
three, six, 12, and 24 time units. The experiments all used Pareto job-
size distributions and increased job sizes relative to server capacity to
increase the granularity of network transfer times. We saw that recent
information is valuable to agents and, as their load information aged,
ideal/actual performance ratio gradually decayed. The game-theoretic
allocation policy maintained priority stratification as network delay
increased.

The degradation of performance was not unique to the game-theoretic
policy, however. In Figure 8 we compare the mean performance of
agents at all priorities operating under the game-theoretic policy to
the mean performance of agents operating under the other resource-
allocation policies at different network delays. Under all of the policies,
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Figure 8. The mean performance of agents operating in various allocation policies
versus network delay.
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Figure 9. Agent performance versus the standard deviation of job-size error.

we observed that agents’ performance decayed gradually as they used
more dated information.

7.3. ESTIMATION ERROR

Both the game-theoretic and SRPT policies rely on each agent knowing
the number of instructions involved in its computation before the cal-
culation is commenced. In practice, the number of instructions will not
be known to agents ahead of time. Furthermore, in most architectures,
different instructions require varying amounts of time to complete. For
these two reasons, we investigated the effect of error in agents’ job-size
estimation.

We ran several experiments under the game-theoretic and SRPT
allocation policies and varied agents’ accuracy in predicting their job
sizes. We modeled an agent’s ability to estimate its job sizes as a trun-
cated Gaussian random variable with mean one. An agent’s estimation
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of its job size was the product of the random variable and the true job
size. The standard deviation of the random variable determined the
error in the estimation.

Figure 9 shows how agents’ performance changed as we varied all
agents’ job-size estimation error from perfectly accurate to situations
where the standard deviation of agents’ job-size estimates was five times
job size. Within each experiment, all agents used a common error dis-
tribution function to generate an imperfect job size measurement. We
observed a modest reduction in agents’ performance as error increases.
Agents experienced approximately a 3% decrease in performance for
every additional multiple in the standard deviation of their job-size
estimation error.

7.4. BIDDING PATTERNS

Information concerning the behavior of bid totals, 6, will be useful
for more sophisticated planning algorithms. We plot histograms of the
logarithm of positive bid totals with their best-fit log-normal distri-
butions in Figures 10 and 11 for experiments that used exponentially
and Pareto distributed job sizes, respectively. Both experiments gave
similar results. The bids in the Pareto data were close to log-normally
distributed. The observed cumulative distribution function deviated
from the corresponding log-normal cumulative distribution by no more
than than 0.03. The experiment that used exponentially distributed
job sizes produced a bid total distribution that visually resembles a
log-normal distribution, but it was skewed away from the origin and
produced a poor fit.

The ability to fit bid totals to a known distribution will aid in
constructing predictors for server loads that will allow us to relax
assumptions on agents’ knowledge of the state of the network, aid in
constructing better expenditure planners, and give hosts insight that
allow them to issue efficient resource-consumption reservations.

8. Related Work

Our earlier work relies on agents submitting demand functions derived
to optimize Cobb-Douglas utility functions subject to their budget con-
straints (Bredin et al., 1998). Sellers compute equilibrium prices given
their preferences for consuming their own computational resources and
buyers’ demand functions. More recently, we investigated seller-driven
markets where servers supply price curves increasing with rates of com-
putation from which agents choose their rates of service (Maheswaran
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Figure 10. A histogram of bid sum on a log scale, In(6), observed at a resource
where agents arrived with exponentially distributed job sizes. For comparison, we
plot the best-fit log-normal distribution.
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Figure 11. A histogram of bid sum on a log scale, In(), observed at a server where
agents arrived with Pareto distributed job sizes. For comparison, we plot the best-fit
log-normal distribution.

et al., 1999). Both works treat agents’ consumption habits as a lo-
cal problem. As such, expenditure planning is only indirectly handled
through agents’ preferences for savings and there is no guarantee of
agents’ ability to complete itineraries within preset time limits.

We are not the only group to promote the use of markets in mobile-
agent systems. The Geneva Messengers project (Tschudin, 1997) ap-
plies market ideas to allocate CPU usage and memory to visiting mes-
sengers, lightweight mobile programs implemented in a Postscript-like
language. Host sites heuristically set prices by examining the amount
of resources requested by the present messengers.
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Telescript (White, 1996) supports a fault-tolerance and security mea-
sure where agents carry “permits” to access specific resources. A per-
mit’s power diminishes over an agent’s lifetime, thus limiting the agent’s
lifetime. A permit for one resource is not easily converted to a permit
for another resource. A more general policy would be for hosts to issue
a common permit in the form of a verifiable electronic currency.

POPCORN (Regev and Nisan, 1998) is a distributed framework
where users submit “computelets” to a computational market that
assigns the computelets to anonymous hosts that charge computelets
for execution. The approach is intended for parallel programs where
interaction among threads is limited and computelets are single-hop
programs so no expenditure planning is necessary. Computation is the
sole resource regulated in POPCORN and computelets may not con-
sider any other information other than hosts’ prices and computational
capabilities in choosing sites. Our system allows mobile agents to choose
their hosts, so agents may weigh the value of hosts’ reputations or
network connections or the location of other agents.

The idea of using economics for computational-resource control dates
back as far as the 1960s (Sutherland, 1968). Spawn is perhaps the most
cited work dealing with computational economic systems (Waldspurger
et al., 1992). In Spawn, agents participate in auctions to buy processor
time to run computationally intensive jobs. The pricing system pairs
idle processors with jobs to improve utilization in distributed systems.
Double auctions have been used to allow agents to trade climate-control
resources within an office building (Clearwater et al., 1996). The result
is that climate control resources are more effectively allocated with
energy savings of up to 10%.

A similar approach uses sequential auctions (Boutilier et al., 1999).
The research overcomes incentive compatibility problems by having
each buyer express her preference to an agent identical to her competi-
tors’. The agent then participates in iterated auctions until an equi-
librium is found. The method can handle many traditionally difficult
assignment problems where goods may be complements or substitutes
to one another. The technique is centralized and more general than
what we model in that it makes no assumptions on resource values and
relations, but it is also computationally more expensive.

Tatonnement is resource-allocation method where buyers iteratively
adjust purchase amounts in response to sellers’ changing prices. The
WALRAS algorithm (Cheng and Wellman, 1998) is a system for find-
ing equilibrium among several markets. WALRAS assures equilibrium
convergence if participants have convex utility functions and there is
gross substitutability among goods (goods are not complements for one
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another), but the system frequently converges to a solution even when
gross substitutability is violated.

Our allocation policy makes no connections between markets. It
performs allocation on a resource-by-resource basis and allows for oper-
ation in disconnected environments or where the cost of communication
is high.

9. Summary

We describe a network where agents compete with each other for net-
work resources. We introduce a scheduling mechanism based on each
agent bidding for services and receiving a portion of the resource pro-
portional to its payment with respect to the sum of all payments for
that resource. We use an electronic market, in which agents are endowed
with finite capital to complete a sequence of tasks, and derive a bidding
policy as a function of the total sum of payments for the resource.
We show that when agents submit their optimal response functions
based on assuming fixed payments of other users, the resource can
make an allocation that forms a unique Nash equilibrium among the
agents. The equilibrium allocation is flexible and enforces the prior-
ities dictated by the endowments. When there is heavy competition
for a resource, agents with larger endowments receive larger portions
of network resources. Simulations show correlation between endow-
ment per-unit job and completion time. Our planning and allocation
algorithms are no more dependent on the timeliness of information
concerning host congestion than the other allocation policies that we
consider. Furthermore, our experiments show that the results are not
sensitive to the distribution of agents’ workloads and agents only suffer
modest reductions in performance stemming from similar errors in their
job-size estimations.

We compare our allocation policy with an allocation model used
in many mobile-agent system implementations, in addition to SRPT
and FCFS models. Simulations show that agents operating under our
policy complete their itineraries faster than agents operating under
a traditional shared-resource environment with no additional variance
incurred. Our policy is competitive with the FCFS policy. Compared to
SRPT, the policy that minimizes average completion time, our policy
provides a method of prioritizing jobs, and that prioritization typically
results in mean agent performance across all endowment levels that is
92-95% of what is achieved under SRPT.

There are several areas open for future investigation. One is the
user optimization problem: how to assign capital between various agent
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task sequences. The solution depends on the user having information
about the correlation between endowment and performance. Creating
tractable models that yield computable solutions to the endowment-
assignment problem and consideration of concurrently-used resources
are open challenges.

Another area for investigation is alternative utility functions for the
agents. In our model, agents only consider execution time and users
do not expect any part of the endowment to be returned. Another
option is to have the agent consider both the execution time and the
cost of computing in its utility function. Under such a model, the user
would have an expectation that some of the endowed cash would be
returned unless the network is congested. A comparison of costs and
performance of agents operating under each utility function might lead
to insight about the benefits of giving an agent greater latitude with
capital.

At a more general level, there is a need for the development of a
theory to describe the behavior of agents and network resources acting
in a decentralized manner, as accurate estimates of load fluctuations
and reactions to changes in market variables both depend on having
useful models that yield tractable results.
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Appendix
A. Proof of Concavity of g;(6;, 0~

THEOREM 2. An agent’s bidding function, g;(01, 61, is concave on
the interval (0, a*/B").

For the variables of, 3%,7* defined in Equations 12-14, we drop the
superscripts and consider the bidding function of only single agent. Let
w(z) be a function defined as:
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w(z) = —22 + V2t — bz3 + baz? (29)

where z € (0,a) and b= (44%/B).

N

Then, g1(01,07%) = (1/2y*)w(a — #6,) for §; € O and

6g1/00% = (62/297) (6%w/05?). (30)
To prove the concavity of g1 on Oq, it suffices to show that
(0%w/0z?) < 0 for z € (0, ). We have
Pw/da” = (2p(2)p" (@) — p'(2)’ — 8p(2)? /Ap(a)?) (31

where p(z) = z* — bz® + baz?. Since p(z) > 0 for z € (0,a), it is
sufficient to show

(V1S

v(z) = 2p()p" (z) — p'(z)* - 8p(z)? < 0. (32)

After substituting for p(x) and simplifying, we get

v(b,z) = —dab’z3 + 12abz* + 3b%2* + 826

33
—12bz5 — 8(z* — ba® + baxZ)% (33)

We note that v(0,z) = 0 Vz. Taking the partial derivative of v(x)
with respect to b, we get

(Ov/0b) = —(a — z)[6bz® + 1222%¢ (x)] — 2baz®
¢(z) =zt +b2%(a — z) — 2°

(34)

hence 0v/0b is negative for = € (0,a) and b > 0.
v(b,z) < 0 for all b > 0 for z € (0,), which implies (8*w/dz?) < 0
for z € (0, ), and thus (8%g;/96?) < 0 on O;.
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B. Notation

=€ =Y z—{Ok_z, simplifies expression for an agent’s bid.

i

i}
V)

51

= Ykt gﬁ:,/e,;i, simplifies expression for an agent’s bid.
The computational capacity of the k-th host that the i-th agent visits.

simplifies expression for an agent’s bid.

The i-th agent’s endowment.

The i-th agent’s optimal bid conditioned on all other agents’ bids at
the j-th host sum to 6", 0;1 € (0,a*/B%), and the estimate of future
congestion 6.

The i-th agent’s bid conditioned on all agents’ bids at the j-th host sum
to 8;, 0, € (0,a%/B%), and the forecast of future congestion.

The difference of §; and the sum of ¢;(0;,0 *), where the sum is over
the k agents with the largest positive bidding domains.

The number of tasks in the i-th agent’s itinerary.

The i-th agent’s expenditure at the k-th host that it visits.

The size of the i-th agent’s k-th job.

= et/ Zsz’l q,ic. The i-th agent’s endowment relative to its task sizes.
The time taken to complete the i-th agent’s k-th task.

The vector of the estimates of the values of 9? for each task in the
agent’s itinerary.

The sum of the bids of all other agents visiting the k-th host that the
i-th agent visits.

The sum of the bids of all agents visiting the k-th host.

The amount that the i-th agent bids at the j-th site it visits.

The rate at which the i-th agent computes its k-th job.
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