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Abstract comp” applications must be aware of the context in which
they run R9]. Thesecontext-awareapplications can re-
Many “ubiquitous computing” applications need a corttuce user distraction by dynamically adjusting their be-
stant flow of information about their environment to braviors to the current context, that is, the current state of
able to adapt to their changing context. To support thethe user, the current computational environment, and the
“context-aware” applications we propose a graph-basegirent physical environmens(].
abstraction for collecting, aggregating, and disseminat-Context information is derived from an array of diverse
ing context information. The abstraction models contexiformation sources, such as location sensors, weather or
information asevents produced bysourcesand flowing traffic sensors, computer-network monitors, and the sta-
through a directed acyclic graph of event-processipg tus of computational or human services. A fundamental
eratorsand delivered to subscribing applications. Appliehallenge in ubiquitous computing, then, iscllectraw
cations describe their desired event stream as a tree of@gta from thousands of diverse sensgrecessthe data
erators that aggregate low-level context information puipito context information, andisseminatéhe information
lished by existing sources into the high-level context ifle hundreds of diverse applications running on thousands
formation needed by the application. The operator graphdevices, whilescalingto large numbers of sources, ap-
is thus the dynamic combination of all applications’ sulplications, and usersecuringcontext information from
scription trees. unauthorized uses, and respecting individuglstacy.

In this paper, we motivate and describe our graph db-this paper we address this fundamental challenge by
straction, and discuss a variety of critical design issugsoposing a graph abstraction for context information col-
We also sketch our Solar system, an implementation tedtion, aggregation, and dissemination, and show how it
represents one point in the design space for our graph aleets the flexibility and scalability challenges. Its secu-

straction. rity and privacy features are beyond the scope of this pa-
per.
. We discuss the motivation and justification of the graph
1 Introduction abstraction in Sectio®. In Section3 we describe the

specifics of the graph abstraction. Sectibdiscusses the
In a ubiquitous computing environment (sometimes call@gany design decisions involved in realizing the graph ab-
pervasive computing), in which a user may interact witktraction, and Sectiof gives overview about the specific
dozens or hundreds of computationally enhanced deviagisoices we made in our prototype “Solar system”. We
user attentiorbecomes a scarce resource. It is unreasenention related work in Sectighand summarize in Sec-
able to expect a user to configure and manage thesetitgy 7.
vices, particularly when the devices and their interactions
change as the environment changes around them. “Ubi- ] ]
Motivation

This research has been supported by DARPA contract F30602-98-
2-0107, by DoD MURI contract F49620-97-1-03821, by Microsoft Re- . . . .
search, by the Cisco Systems University Research Program, and b;\M% arrived at our graph abstraction by considering the
USENIX Scholars Program. structure of applications that consume context informa-
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tion, the proper location for processing sensor data irgource data into context information is on servers in the
context information, and structures that can encourage metwork, not on application platforms. The decomposed
use of code and of derived context information. The strugraph structure improves flexibility, compared to a mono-
ture must be flexible and extensible to meet the fundaméititic context service, and improves scalability, by avoid-
tal challenge of diversity. The structure must also be scalg a centralized context service, avoiding the transmis-
able. Figurel sketches an evolution of alternative strucsion of unnecessary data to application platforms, and by
tures. sharing context processing across applications wherever
A context-aware application attempts to adapt to ip®ssible.
changing context by monitoring a variety of sensors. Fig-
ure la depicts an application receiving sensor data from .
three sources. The application runs on one platform, com- 1 e abstraction
monly a mobile or embedded host. The sensors are lo-
cated in the infrastructure. This arrangement sends alll#¥icomp researchers have long recognized the need for
the sensor data across the network link to the applicatié@ntext collection, aggregation, and disseminat@rip,
platform, and expects the application and its platform &7 The challenge is to allow applications to define their
be capable of transforming the raw data into the desir@@n operations, to describe flexible compositions of op-
context information. In a situation with slow or unreli€rations, and to support many such applications with scal-
able networks, and low-capability mobile platforms, thigble performance. Based on our observations in the pre-
arrangement is unworkable. With hundreds or thousarf@ling section, we propose an abstraction for context col-
of applications and platforms sharing a network connd€ction, aggregation, and dissemination based on a di-
tion, it is impossible. rected acyclic graph (DAG). This abstraction can meet
A common approach is to construct a “context servicthe fundamental challenges of flexibility, scalability, and
that receives all of the raw source data, and supplies §¢Curity, although a discussion of security is beyond the
formation about the current context, and changes to §f&oPe of this paper.
context, to interested applications. (The “location ser- I this section, we introduce the operator-graph abstrac-
vice” seen in many systems is a special case of this #gNn. Then we classify several types of commonly used
proach.) Figurelb shows that much of the processingPerators and sketch an example operator graph for an of-
has been moved off of the application platform, and m iGe scenario. Finally, we discuss the subtle semantics of
be shared by multiple applications. The context serviegerator state and “one-time” subscription requests.
provider defines the semantics of the context information
it provides. While itis pgssi_ble th_at the information meg@_l Events, operators, and graphs
the needs of some applications, in general the applications
must process the output of the context service. Context-aware applications respond to context changes
Alternatively, the application could push ity adapting to the new context. These applications are
application-specific processing into the network as ligely to have an “event-driven” structure, where context
proxy, essentially an application-specific context servicg)anges are representedea®nts In our graph abstrac-
Figure 1c demonstrates this approach. Note, howev&gn, then, we represent context information as events.
that there will be one application-specific proxy for each We treat sensors of contextual data iaformation
application, which does not scale well. sources whether they sense physical properties such as
We need a compromise that encourages sharing of figfation, or computational properties such as network
damental transformations of sensor data into context fgndwidth. Information sources produce their data as
formation, but allows application-specific operations igvents. The sequence of events produced arevant
the network. One possibility (not shown) is to supply gfream which is inherently unidirectional. An eveptib-
shared context service and install a proxy for each appigher produces an event stream, and an egetiscriber
cation. Figureld takes this approach one step further, déonsumes an event stream.
composing the context service into smaller modules thatAn operator is an object that subscribes to and pro-
produce context information of various types and formegsses one or more input event streams, and publishes an-
Application-specific proxies may now select the most apther event stream. Since the inputs and output of an oper-
propriate inputs to begin their processing. ator are all event streams, the operators can be connected
Finally, in Figurele we see that when there are marf@cursively to form a directed acyclic graph, an event-flow
applications needing context information, they may K#aph that we call theperator graph

able to share both the appllcatlon-speC|f|c as well as L”elNotice that there is a one-to-one relationship between publishers

generic processing steps. In the next section, we C?—” S event streams. In some other event systems, more than one entity
abstraction amperator graph The burden of converting may publish events into an event stream.




(b) (d) (e)

Figure 1: The circles are information sources, the white squares are operators, and the dark rectangles represent
application-specific processing. (a) Send raw data from the sources to the application, which converts the data into the
context information it needs. (b) A “context service,” receives all raw source data, and provides higher-level context in-
formation to applications, but some application-specific processing is still necessary. (c) Push the application-specific
processing into the network as a proxy. (d) Decompose the processing into application-independent portions and
application-specific portions. (e) Allow multiple applications to share data streams where possible.

Our operator graph consists of three kinds of nodes: W W

sources, operators, and applications. $berceshave no

subscriptions. They are wrappers for context sen<oyps. El g1 ElL E3

eratorsare deterministic functions of their input events. >@—> >®—>

They only publish an event when they receive an input EL E2

event.Applicationsare sinks of the graph. They subscribe

to one or more event streams and react to incoming eveigure 2: Four types of operators: T as Transformer, F as
(and possibly other stimuli, such as interactions with tlélter, M as Merger, and A as Aggregator.

user).

In our operator graph, a directed edge from node disnays the current location of all employees merges the
to node B represents that node B subscribes 1o the eveilyings from all location sensors.) While mergers are not
stream published by node A. The operator graph may @ity necessary, since any of the merger's subscribers
be a tree because an operator may subscribe to multiplgq girectly subscribe to the same inputs, a merger aids
streams, and its .publlshed output stream may 'have M8 se of event streams. Aaggregatoroutputs an ar-
than one subscriber. In summary, tpeblishersin the pirary type event stream based on the events in one or
graph are the sources and operators, ancstiiscribers e input event streams. (For example, a “max-min ther-
in the graph are the operators and applications. mometer” operator outputs an event when it detects a new

There are four common categories of operators (g@@ximum or new minimum on its input stream of current
Figure 2). A filter outputs a subset of its input eventdemperature readings.)

(For example, a sensor publishes the temperature every

10 seconds while one application needs alerts only Whg_rz An example operator graph

the reading exceeds 90 degrees.)tr@nsformerinputs
events of type E1 and outputs events of type E2. E2 miaigure3 presents an example operator graph to show how
be the same as E1 if the transformer only changes satime raw events from information sources flow through the
attribute values. (For example, a location sensor repasfgerators to become directly usable by the applications.
coordinates, but the application needs a symbolic valG@&cles represent event publishers; the letter inside indi-
such as “Lobby.”) Thenergersimply outputs every eventcates its category (S stands for source). Squares represent
it receives. (For example, an active-map application theiplications that consume the events.
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— Lab for authorized personnel at about the same time, it pub-
tog lishes an alarm event that should be sent to the lab ad-

007 Loc

Sensor oY ministrator (Bob), whos#&lessengegrpplication displays
Building A°1Ve Map these alarms on his PDA. If there is nobody in the room
. Locatr Meoomger with Bob, the Messenger beeps and displays the message.

Bob’s  Bob's
Locator  Guide

If there are other people in the room, the Messenger vi-
brates instead. Notice the Messenger subscribes to “215
’ People” operator (the dashed arrow) because Bob is in
room 215 now. This subscription is dynamic and will
change as Bob moves around. We discuss the concept of
context-sensitive subscriptions in Sectia.

There are several advantages of the operator graph ab-
straction. First, applications receive events semantically

) _ . closer to their needs than those produced by the sources.
Suppose we have location-tracking sensors |nstaIIeQ§Qcond, due to the modular, object-oriented design we

each room and badges attached to people and devigeSefit from operator reusability, data abstraction, and
Each time a sensor Qetects asignal from a badge, It se tainability. Third, due to the modular design this op-
out an event containing the badge 1D and the timestanyp,qy graph can be deployed across a network and achieve
In the figure these sources are labeled “Loc Sensor” wifll, penefits of parallelism and distribution. Fourth, since
a room number; each has a transforming operator o M5 and aggregators can dramatically reduce traffic
the badge ID to the person or device's name associalgthy the graph edges, they reduce inter-process (and of-
with it ten inter-host) communication requirements. Finally, by
TheBuilding Locatoroperator subscribes to the curren§haring the common operators and event streams the sys-

location of every badge, based on the transformed a@éh can support more such applications and more users.
merged events that originate from the location sensors.

It records the current location in its internal state. (We
discuss stateful operators below.) It generates a “locatigny Operator state
change” event whenever it sees a badge change location.

This output event stream can be used byAlséve Map Many operators need to keep internal state information to
application (such as2[7]) to display the badges’ currentpe used when processing events. The state may be simple,
location in real time. Another subscrib&pb’s Locator as in an aggregator that simply records the previous event
filters for Changes in Bob’s location. Using this informato detect Changes_ The state may be Comp|ex' asin an op-
tion, aGuideapplication [, 11] running on Bob's PDA erator that tracks the current location of many users or the
can display information related to his current location. current value of every stock on the market. Filter, trans-
Another reasonable structure, not shown, is to fifsirmation, and merger operators are stateless; aggregators
merge the events from all location sensors and then tramsy have state.
form them using only one transformer, to which the Build- Qur graph abstraction allows the subscriber to choose
ing Locator subscribes. Any application that cares ab@#ie of two possible semantics for a new subscription to
location events only in one particular room can filter the stateful operator: 1) the subscription is treated as for
Building Locator’s output. Although that approach seemgateless operators, or 2) the operator should “push” its
awkward, it allows the Building Locator to resolve sensejurrent state to the subscriber before any new events are
conflicts (where multiple location sensors report seeingablished. In the latter semantics the operator publishes
badge at the same time). a special sequence of events to the new subscriber only,
Returning to our example, the opera@®7 Monitor events that are marked as “state-pushing events” and when
tracks the set of badges currently in the lab. When a neansidered together represent the current state of the op-
badge is sensed, it generates a “badge entering” evenator. (This feature is reminiscent of the Gryphon expan-
When a badge has not been sensed in the past few g operation3].)
sor reports, this operator outputs a “badge leaving” eventConsider Figur&. The 007 Monitor maintains a list of
The filter007 Peopleemits events about people only, nabadges currently in the lab and publishes changes to this
devices. The applicatiobab Logsubscribes to that eventjst. The Lab Log logs all the change events, and never
stream and records the events with timestamp for futyigeds the original state. The Active Map, on the other
reference. hand, needs a “state push” when it first subscribes to the
If the 007 Equipment Alertereceives a “leaving” event Building Locator, so it can properly locate slow-moving
for certain equipment, without receiving a “leaving” everdevices like printers.

215 Loc
Sensor

Monitor

Figure 3: An example operator graph.



3.4 One-time subscription requests 4 Design space

The operator graph is an event-oriented abstraction tha€"€ are many design issues involved in realizing the
has publish-and-subscribe interfaces for disseminating @Rerator-space abstraction. In this section we consider
formation to applications. Occasionally an applicatidi€ representation of events, how to name operators or
may not need the ongoing event stream, but simply neé‘é@_”t streams, how to route events frqm publishers to sub-
to obtain the current value. In another system, the appli€!iPers, and the operator programming model.

tion might query the information source. In the operator

graph we retain the publish-and-subscribe abstractionpy] Event representation

permitting “one-time” subscriptions of stateful operators.

An application that needs to obtain the current value of thayents are passed from publisher to subscriber, typically
information published by an operator makes a one-tirBéross a network connection of some kind. Ultimately,
subscription to that operator. The operator “pushes” R8Y representation agreeable to both publisher and sub-
state, as described above, and then cancels the subssgipber will work, but there are three typical approaches
tion. used by event-distribution systems. The event may be
dt_yped object appropriate to a particular object-oriented

The one-time subscription approach has several anguage, a set of attribute-value pairs (usually repre
vantages, largely resulting from its simplicity. There guage, & i ue p ( y rep
nted as lines in an ASCII string), or more recently a

is only one abstraction: publish and subscribe, whicdly .

streams events from publisher to subscriber. This simpl épz! ;%Ld;js%fjli/g]r?tr:. eSEach representation has advan-

ity avoids the need for additional interfaces and maintai An obiect ? » ' I th t 0 includ

the unidirectional data flow. The subscriber’s control flow ~\1 OPJ€Ct representation aflows the event 1o include a
mplex data structure, if desired. The inherent type hi-

remains event-oriented rather than blocking for the resufitd . X
of a query. The programmer of the subscriber can cho grchy an object-oriented language can be used for type-

one-time or permanent subscriptions based on their net cking when matching subscribers to publishers. Fur-

The programmer of the publisher need not know anythi ermore, type inheritance allows subscribers to process

about queries or one-time subscriptions, only about Stgtgeneral class Of_ events even when publishers may S‘?”d
events of more refined subclasses. For example, a location

aggregator can receive any location event regardless of
whether it is a GPSLocationEvent, ActiveBadgelLocation-
Event, or CricketLocationEvent, if they are all subclasses
. . of LocationEvent. On the other hand, an object represen-
3.5 Context-sensitive subscriptions tation is usually tied to a particular language, such as Java.
An attribute-value representation is typically more lim-
Many context-aware applications use one aspect of ik than an object representation, although some hierar-
context (such as the user’s location) to subscribe to otla@ical representations (such as IN&) [do provide struc-
information about that context (such as the set of pe@re, and the use of wildcards and implicit fields provide
ple, devices, or sensors in that location). As the usgfimited form of inheritance. The simpler representation
changes location, the application must cancel its subsci@peatly facilitates content-based event routing (see Sec-
tions, then locate and subscribe to appropriate sourcestfgf 4.3), and is language- and platform-independent.
the new location. These location-sensitive subscriptionsalthough XML encoding provides more opportunities
are a general case of what we catintext-sensitive sub-for structure, XML adds substantial overhead. Parsing ev-
scriptions ery incoming event, constructing every outgoing event,

It is possible for the application to actively monitor thand transmitting information in the verbose XML for-
user’s location (for examp|e), and when the user mov&st, reduces event throughput and adds substantial la-
to manually adjust its other subscriptions. To reduce pigncy along the event flow. While compressing the XML
grammer effort and to avoid redundant monitoring of tHeduces bandwidth consumptiodd], it adds more pro-
same context by many applications, we aim to supp&@ssing overhead.
context-sensitive subscriptions directly in the infrastruc-
ture._ From the viewpo_ir_n of the g_raph, the links reprep o Operator naming
senting a context-sensitive subscription are dynamic and
the events may flow through different paths as the contéprimary feature of the graph abstraction is the opportu-
changes. We discuss the potential for context-sensitivigy to re-use the event streams between applications and
names to represent context-sensitive subscriptions in Seetween users. It is always possible for an application
tions4.2and>5. to construct its event flow from basic sources and a tree



of generic and custom operators. When an application deFinally, it is a challenge to implement a large name
scribes such a tree and asks the infrastructure to deployspace efficiently. The tree structure leads to efficient
operators, the supporting infrastructure can match the nemme resolution but may encounter a bottleneck at the
description against the existing graph to identify whethesot. Some structural conventions may be imposed on
any existing event streams can be used to satisfy all or gartattribute-based approach to improve resolution scala-
of the new request. To make life easier for application prbility [ 2]. While some recent peer-to-peer systems hash a
grammers, however, it would be helpful if common evefiill name as the first step in locating the object associated
streams could be constructed and named by an admimigh a name 10, 13, 23], it is not clear how that approach
trator, or by other users, and then new applications caight support wildcards and context-sensitive names.
subscribe to these event streams by name.

So, we need a method to name event streams (or eauVs  Event routing
alently, the operator that publishes the stream). Inciden-
tally, we must also name sources. There are many possibligiough the graph abstraction links publishers directly
approaches to naming. to subscribers, routing events from a publisher to its set

The name space could be organized as a tree, a®fisubscribers is essentially a multicast problem that may
many file systems. For those publishers given nambs,implemented in many ways. The simplest approach is
the name describes a path from the root to a leaf in tleeuse unicast, to send a copy of the event to each sub-
tree. For example, a temperature sensor in Sudikoff roseriber. This approach will not scale when there are many
215 might be named [/Sudikoff/2F/215/temp-sensor/]. Bubscribers. Where IP multicast is supported, applica-
enhance scalability, multiple levels of naming may h&®ns might subscribe and unsubscribe to event streams
helpful; although many examples exi&9 4], perhaps by joining or leaving particular multicast groups. This ap-
the most common example is the two-level name (hogtoach requires one IP-multicast group for each publisher,
name:filename) used in URLSs. however, which is not scalable. An overlay network can

The name space may be less structured. Eacde an application-level multicast protocol among a set of
named publisher could be given a set of descriptigervers acting as multicast routers, based either on tradi-
attribute-value pairsZ, 18]. The above temperaturetional multicast group<Z0] or based on groups defined by
sensor might be named [sensor=temperature, room=21&mes 2].
floor=2, building=Sudikoff]. We can take the multicast concept one step farther to

It is arguable whether one approach has clear advenntent-based event routing, [/, 33]. These systems also
tages over the other. In either case the name should h¢se an overlay network of servers, often calbrdkers
descriptive handle. In one case the description is a tupibich route events to subscribers based on the content (at-
of attributes and values, and in the other case the samdributes) of the events, not simply based on the destination
tributes may be implicit in the structure of the tree. Bot@iroup or name. In effect, all publishers send events to the
depend heavily on conventions that define the namesgtbal event stream, and subscribers describe the events
the attributes (or structure of the tree) and the rangetbey want to receive as filters. Siena filters can even rec-
values (or names of tree links). The conventions usedagnize event sequences. Some of the systems can encode
structure the tree are likely stricter than those in a setsifnple transform operations.
attributes, which may make the tree less attractive in a dy-Since event brokers implement simple merge, filter, and
namic ubicomp environment. transform operators, it is tempting to add complex oper-

Another important role for naming is to facilitate reators like aggregators. Since the brokers are essentially
source discovery. In tree-based names a wildcard allopajtern-matching engines, itis unclear whether they might
an application to easily describe a large set of publishepe, extended to implement complex operators. All such
e.g., [/Sudikoff/*/*/temp-sensor/]. The same effect mightystems must balance expressiveness with scalaldity [
be obtained in an attribute-based system that allows partiaf reasonable compromise is to use content-based rout-
matches, e.g., [sensor=temperature, building=Sudikoffing as the routing substrate of the operator graph. Im-

We are intrigued by the potential focontext- plement merge and simple filter operations in the event
sensitive names that is, names whose bindingbroker layer, and the more complicated operators remain
changes when the context changes. For examphglependent operators that subscribe to the routing system
[/people/profs/Bob/location/temp-sensor] might refé@nd publish events back into the routing system.
to the temperature sensor in the same room as Bob. A
subscription to that name would dynamically be reboqu_4 Pr
to a subscription to the appropriate publisher when Bob
changes location. It is not clear how to encode this lewdhat abstraction do we provide to the application pro-
of indirection in an attribute-based approach. grammer? The programmer may deal explicitly with the

ogramming model



operator-graph abstraction, composing an event strearsigtem, which represents another combination of design
describing an operator tree based in named sources, emuices. While Solar has many interesting characteristics,
using generic and custom operator classes. Or, the pr@ hope to explore some of the other design choices in
grammer may describe the desired events from nanrethted prototypes.

sources using a descriptive higher-level language, which

is translated by a compiler into the appropriate operator

tree. 5 The Solar system

Theexplicitapproach exposes the operator-tree abstrac-
tion to the programmer. The programmer manually de/e are building a prototype infrastructure for context
rives an event flow that produces context information frogollection, aggregation, and dissemination, based on the
named event streams using generic and custom operajsérator-graph abstraction. We describe our prototype,
classes. Then she uses a subscription language to desehigeSolar” system, in detail in a technical repdsf.[ In
the structure of the tree. She may optionally name the this paper we focus on the graph abstraction and related
termediate or final event stream, for others to use. design choices.

We speculate that the act of manually deriving an eventOur Solar prototype is implemented in Java. It models
flow, and the temptation to use existing operator classggnts as Java objects and uses Java serialization for event
where available, will encourage programmers to deri#@nsmission. The operators are small Java objects that
similar trees in similar situations, increasing the opportiinplement a simple publish/subscribe interface.
nities for re-use of event streams. Similarly, programmersSolar names sources and operators in a tree-structured
will be likely to name event streams for use by other useigme space. Thus, operators have path names like
or in other applications. [/Sudikoff/2F/215/temp-sensor]. We extend the tree ab-

With a more complex subscription language, th&raction with two types ofsoft links Alias nodes
operator-tree abstraction may tansparentto the pro- bind one name to another. Unlike a Unix symbolic
grammer. Using the language to describe the aggregati@R, however, most alias nodes are designed to change
of events from named publishers into the desired conteieir binding when certain context changes. Thus,
the programmer encodes all of the necessary logic in afe alias [/people/profs/Bob/location] may be bound to
program. A compiler translates the subscription into a trggudikoff/2F/215] now, then later to [/Sudikoff/OF/007]
of operators, which is deployed in the same way as in iien Bob walks to room 007Dynamic directoriegly-
explicit programming model. The challenge is to invemamically compute their set of children based on con-
a subscription language sufficiently powerful to encodext. For example, [/Sudikoff/0F/007/people] is a direc-
complicated aggregations, and yet simple enough to effiry whose children are other nodes in the tree, nodes that
ciently parse into an operator tree. A language like Ja@resent people. The combination can be quite powerful;
is highly expressive, but a language like SQL or XQuergr example, [/people/profs/Bob/location/people], is a di-
may offer more structure. The language needs a strugctory containing a list of people co-located with Bob.
ture that encourages the programmer to describe the eve#¥ list changes when Bob moves or when people enter
flow in a way that is easily decomposable and likely igr leave Bob'’s current room.
match other applications’ operator trees. With sophisti- Solar's naming conventions thus encode context in the
cated compiler analysis, it may be possible to define fingigme space. Dynamic context is captured with the dy-
grain operators and support finer-grain sharing within th@mic soft links. To enable applications to monitor
graph. With knowledge of the semantics, the compilghanges to the namespace, and hence changes to the en-
may also be possible to rearrange operator trees to allgyed context, all namespace nodes are publishers. Direc-

matches that would otherwise not have occurred. tories publish changes to their set of children, and aliases
publish changes to their binding. Aliases and dynamic
4.5 Summary directories are operators that subscribe to the context in-

formation necessary to change their binding or set of chil-
We discuss several design issues for realizing theen.
operator-graph abstraction. The combination of differentGiven this context-sensitive namespace, we then en-
choices will result in different systems. For example, dourage applications to subscribe to context-sensitive
events are represented as XML documents, the applinames. Thus, an application desiring to track the set of
tion programmer might use the XQuery programming lapeople Bob meets in a given day, subscribes to the oper-
guage to describe its subscription for a compiler to traretor at name [/people/profs/Bob/location/people], and re-
late into an operator tree and a set of filter expressionscives an event about changes to the set of people sur-
provide to an XML-based event-routing overlay networkounding Bob. We show below how Solar supports sub-

In next section we discuss the prototype of our Solacriptions to context-sensitive names.



At the center of any Solar system iStar, which keeps 6 Related work
a reference to the root of naming tree, maintains the op-
erator graph, and services requests for new subscriptidiany have studied context-aware applications and their
When the Star receives a new subscription-tree descsppport systems. In Xerox Parc’s distributed architecture
tion, it parses the description, checks the name spaeach user’s “agent” collects context (location) about that
and matches the subscription tree against its internal daser, and decides to whom the context can be delivered
structure representing the operator graph. When it decitd@sed on that user’s policg1, 34]. AT&T Laboratories
to deploy an operator, it instantiates the operator's objettCambridge built a dense network of location sensors to
on one of manylanets Each Planet is an execution platmaintain a world model shared between users and appli-
form for Solar sources and operators. Applications r@ations [L7]. Location context can be used to select on-
outside the Solar system and use a small Solar library tha-spot information for tourist guide applicatiords 11].
allows them to send requests to the Star, and to man&tfgs Cooltown project adds Web context to the environ-
their subscriptions, over standard network protocols. ment by allowing mobile users to receive URLs sent by

ubiquitous beacon®P]. HP’s Easyliving focuses on a

Planets play a key role in the subscriptions of residetif,5t space that is aware of the user's presence and ad-
operators. When deploying new subscriptions, the Sfé‘éts environmental settings to suit her ne€gs [

tells the Planets to record a subscription from one of S A few projects specifically address the flexibility and

operators 10 an aperator in another Planet. In our Imp&‘alability of context aggregation and dissemination. Like

mentation there is at most one network (TCP/IP) CONN&S51ar, the Context Toolkit is also a distributed architec-
tion between any two Planets, regardless of the numbe > supporting context fusion and delived]. It uses a

operators on or subscriptions between the two PIanetsWidgetto wrap a sensor, through which the sensor can be

Planets support subscription requests that invoIQH‘?”ed about it; state or activated. Applications can sub-
context-sensitive names (CSNs). These subscription $&fibe to pre-defined aggregators that compute commonly
quests are mapped to subscriptions, which need to .Lbc@d context. Splar allows applications to dyn§m|cally
changed when the CSN binding changes. Consider igf€rt operators into the system and compose refined con-
operator X that records the name of every person pigxt that can be shgre(_j by other applu_:atlons. The_Context
meets. The operator requests subscription to the ng_)lk!t allows _apphcathns to supply filters fpr their sub-
[/people/profs/Bobl/location/people], currently bound t%crlpu_ons_, wh|I_e Solar mtrodgces general filter operators
an operator P. X's Planet subscribes to the name [/p&@Maintain a simple abstraction.
ple/profs/Bob/location]. The Planet receives the currentGiven the type of desired data, some systems automati-
binding and subscribes X to P. When Bob moves, supp&&dly construct a data-flow path from sources to requesting
the binding changes to operator Q. X's Planet contacts PRplications, by selecting and chaining appropriate com-
Planet to remove X from P’s data structure, and conta@@nents from a system repositorgl] 19). CANS can
Q's Planet to add X to the Q's data structure. All the worikirther replace or rearrange the components to adapt to

is done by planets and the namespace operators; P, Q, @Hhges in resource usad€]l To apply this approach to
X are never involved. support context-aware applications, the system manager

must foresee the necessary event transformations and in-
These and other aspects of the Solar architecture @il them in the component repository. These systems
key to its scalability and flexibility. Our next step is twffer no specific support for applications to provide cus-
experiment with the use of Solar in several real-wortldm operators. Active Names, on the other hand, allow
context-sensitive mobile applications to determine thfients to supply a chain of generic or custom compo-
value of the abstraction and the performance of the sygnts through which the data from a service must pass
tem. We installed an IR-based location system from VgB5]. Also, Active Streams support event-oriented inter-
sus Technologie$to supply location context to our Solaprocess communication, and allow application-supplied
system and its applications. We plan to add more infaftreamletsto be dynamically inserted into the data path
mation sources to enrich the context space and to explprg].
the performance and flexibility of the operator graph ab- A|l of these approaches encourage the re-use of stan-
straction. Finally, Solar has unique mechanisms for accgig$d components to construct custom event flows. None,
control and authorizaﬁon, but their deSCI’iption is beyorig our know|edge, Speciﬁca”y encourage the dynamic and
the scope of this paper. transparent re-use of event streams across applications
and users. Solar’s re-use of operator instances, and their
event streams, avoids redundant computation and data
transmission, and improves scalability.
2http://www.versustech.com/ Solar is designed to support a wide variety of sensor
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data, including computational as well as physical parafng, event routing, and programming models. We give an
eters. Solar may then be the delivery mechanism for spserview of our Solar system that implements the graph
tems that allow mobile applications to adapt to changesahstraction. Interested readers can find more details in
computational resources. For example, Odyssey applitachnical reports about Sola8][and about a smart re-
tions are aware of the state of resources and can adaphioder application built on top of Sola2§)].

variations in bandwidthZ8] and battery powerl[5)].

As we discuss in Sectioh 3, there are many options forReferences

event routing. Solar currently uses a point-to-point links
between a publisher and its subscribers. Although the infit]
plementation multiplexes links on Planet-to-Planet socket
connections, and implements multicast within a Planet,
we may eventually construct an overlay multicast network
on the Planets. We may also consider using content-basi@i
eventrouting 7, 3, 33] to support the operator graph. Ulti-
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filtering in content-based event routing system like Siena.
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7 Summary

To support context-aware mobile applications, we pro[-5]
pose a graph-based abstraction for context aggregation
and dissemination. The abstraction models the contex-
tual information sources as event publishers. The events
flow through a graph of event-processing operators a g]
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tion meets both challenges. It allows the flexible construc-
tion of event streams through composition of generic and
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We discuss the details of the operator graph abstragy]
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namic. There are many ways to realize the graph ab-
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