
Integrating Theory and Practice in Parallel File Systems

Thomas H. Cormen David Kotz

Department of Mathematics and Computer Science

Dartmouth College

Hanover, NH 03755-3551

March 31, 1993

Abstract

Several algorithms for parallel disk systems have appeared in the literature recently, and

they are asymptotically optimal in terms of the number of disk accesses. Scalable systems with

parallel disks must be able to run these algorithms. We present for the �rst time a list of

capabilities that must be provided by the system to support these optimal algorithms: control

over declustering, querying about the con�guration, independent I/O, and turning o� parity,

�le caching, and prefetching. We summarize recent theoretical and empirical work that justi�es

the need for these capabilities. In addition, we sketch an organization for a parallel �le interface

with low-level primitives and higher-level operations.

1 Introduction

To date, the design of parallel disk systems and �le systems for parallel computers has not taken

into account much of the theoretical work in algorithms for parallel I/O models. Yet, theory has

proven to be valuable in the design of other aspects of parallel computers, most notably networks

and routing methods. In addition, empirical studies of early parallel �le systems have found that

optimizing performance requires programs to carefully organize their I/O. This paper describes

how the design of parallel I/O software and hardware should be inuenced by these theoretical and

empirical results.

People use parallel machines for one reason and one reason only: speed. Parallel machines

are certainly no easier or cheaper to use than serial machines, but they can be much faster. The

design of parallel disk and �le systems must be performance-oriented as well. There are several

recent algorithms for parallel disk systems that are asymptotically optimal, solve important and

This research was supported in part by funds from Dartmouth College. Authors' names are listed alphabetically.

Tom Cormen's Internet address is Thomas.H.Cormen@Dartmouth.edu, and his telephone number is (603) 646-2417.
David Kotz's Internet address is David.Kotz@Dartmouth.edu, and his telephone number is (603) 646-1439. Please

address correspondence to Tom Cormen.

1

David Kotz
Technical Report number PCS-TR93-188, Dept. of Math and Computer Science, Dartmouth College, March 1993. ©Copyright the authors. Revised 9/20/94. �



interesting problems, and are practical. These algorithms require certain capabilities from the

underlying disk and �le systems, and these capabilities are not di�cult to provide.

Not all parallel systems provide these capabilities, however, and only those that do can be

scalable. Here, by scalable we mean that disk usage is asymptotically optimal as the problem and

machine size increase. Because disk accesses are so time-consuming compared to computation,

changing the number of parallel disk accesses by even a constant factor often has a strong impact

on overall performance. The impact is even greater as the problem or machine size grows. For

applications that use huge amounts of data, it is essential to use the best algorithms to access the

data. The disk and �le system capabilities to support these algorithms are then equally essential

for scalability.

The capabilities we describe apply to two di�erent uses of parallel I/O. One is the traditional

�le-access paradigm, in which programs explicitly read input �les and write output �les. The

other is known variously as \out-of-core," \extended memory," \virtual memory," or \external"

computing, in which a huge volume of data forces a computation to store most of it on disk. Data

is transferred between memory and disk as needed by the program.

This paper sketches an interface that includes primitive operations to provide the capabilities.

The interface also includes higher-level operations that use these primitives to implement algorithms

whose disk usage is asymptotically optimal.

The remainder of this paper is organized as follows. Section 2 describes the capabilities required

for asymptotically optimal parallel I/O performance and surveys some existing systems according

to whether they provide these capabilities. Section 3 lists the algorithms that drive these capabil-

ities and presents supporting empirical evidence for why these capabilities are necessary for high

performance. Section 4 outlines an organization for a parallel �le interface. Maintaining parity for

data reliability on parallel disk systems exacts a performance cost, and Section 5 shows that for

several parallel I/O-based algorithms, we can dramatically reduce the cost of maintaining parity

information. Finally, Section 6 o�ers some concluding remarks.

2 Necessary capabilities

In this section, we present the capabilities that parallel �le systems and disk I/O architectures must

have to support the most e�cient parallel I/O algorithms. Many of these required capabilities turn

out to be at odds with those of some existing parallel systems. We conclude this section with a

brief survey of existing parallel �le systems in terms of these capabilities.

2



All disk I/O occurs in blocks, which contain the smallest amount of data that can be transferred

in a single disk access. Any system may choose to perform its disk I/O in integer multiples of the

block size.

Before proceeding, we note that the algorithms, and hence the required capabilities, apply to

both SIMD and MIMD systems. In SIMD systems, the controller organizes the disk accesses on

behalf of the processors. In MIMD systems, the processors organize their own disk accesses. In

either case, the algorithms specify the activity of the disks.

The necessary capabilities are control over declustering, querying about the con�guration, in-

dependent I/O, and turning o� parity, �le caching, and prefetching. We discuss each in turn.

Control over declustering

Declustering is the method by which data in each �le is distributed across multiple disks. A given

declustering is de�ned by a striping unit and a distribution pattern of data across disks. The

striping unit is the sequence of logically contiguous data that is also physically contiguous within a

disk. A common distribution pattern is striping, in which striping units are distributed in round-

robin order among the disks; a stripe consists of the data distributed in one round. Striping unit

sizes are often either one bit (as in RAID level three [PGK88]) or equal to the block size (as in

RAID levels four and �ve).

The optimal algorithms assume striping with a block-sized striping unit. The programmer,

therefore, should be able to rede�ne the striping unit size and distribution pattern of individual

�les.

Querying about the con�guration

The optimal algorithms need the ability to query the system about the number of disks, block size,

number of processors, amount of available physical memory, and current declustering method. In

addition, some algorithms need to know the connection topology among compute processors, I/O

processors, and disks.

Independent I/O

The algorithms typically access one block from each disk in an operation known as a parallel I/O.

Optimality often depends on the ability to access blocks at di�erent locations on the multiple disks

in a given parallel I/O. We call such parallel I/O operations independent, in contrast to fully striped

3



operations, in which all blocks accessed are at the same location on each disk.1 The block locations

we refer to are not absolute disk addresses; rather, they are logical o�sets from the beginning of

the �le on each disk.

In order to perform independent I/O within a SIMD system, the I/O interface must allow

speci�cation of one o�set into the �le for each disk. Contrast this style of access with the standard

sequential style, in which all I/O operations specify a single o�set into the �le. When this single-

o�set style is extended to parallel �le systems, independent I/O is not possible.

Turning o� parity

Another necessary capability is that of turning o� parity or other redundancy management on a

per-�le basis. Section 5 examines why turning o� parity can help performance and how to do so

without compromising data reliability.

Turning o� �le caching and prefetching

The �nal capability we require is that of bypassing all �le caching and prefetching mechanisms. In

Section 3, we show that �le caching interferes with many �le access patterns and that the optimal

algorithms e�ectively perform their own caching.

Existing systems

Here we survey some existing systems and their support for the above capabilities.

One of the �rst commercial multiprocessor �le systems is the Concurrent File System (CFS)

[Pie89, FPD93, PFDJ89] for the Intel iPSC, Touchstone Delta, and Paragon multiprocessors [Int88,

Int91]. CFS declusters �les across several I/O processors, each with one or more disks. It provides

the user with several di�erent access modes, allowing di�erent ways of sharing a common �le

pointer. Unfortunately, caching and prefetching are completely out of the control of the user, and

the pattern for declustering the �le across disks is not predictable and mostly out of the user's

control.

The �rst �le system for the nCUBE multiprocessor [PFDJ89] gives plenty of control to the

user. In fact, the operating system treats each disk as a separate �le system and does not decluster

individual �les across disks. Thus, the nCUBE provides the low-level access one needs, but no

1There is potential for confusion here. Fully striped operations are based on the block size, which may or may

not correspond to the striping unit size. The term \fully striped," however, is standard in the literature.

4



higher-level access. The current nCUBE �le system supports declustering and does allow applica-

tions to manipulate the striping unit size and distribution pattern [dRBC93].

The �le system for the Kendall Square Research KSR-1 [KSR92] shared-memory multiproces-

sor declusters �le data across disk arrays attached to di�erent processors. The memory-mapped

interface uses virtual memory techniques to page data to and from the �le, which does not provide

su�cient control to an application trying to optimize disk I/O.

Reads and writes in the Thinking Machines Corporation's DataVault [TMC91] are controlled

directly by the user. Writes must be fully striped, however, thus limiting some algorithms. Neither

the �le system for the newer Scalable Disk Array [TMC92] nor the �le system for the MasPar MP-1

and MP-2 [Mas91a, Mas91b] support independent I/O as we have de�ned it.2

3 Justi�cation

In this section, we justify the capabilities of parallel �le systems and disk I/O architectures that we

claimed to be necessary in Section 2. Our justi�cation is based on both theoretical and empirical

grounds.

Theoretical grounds

Several algorithms for parallel disk systems have been developed recently. These algorithms, which

are oriented toward out-of-core situations, are asymptotically optimal in terms of the number of

parallel disk accesses. They solve the following problems:

Sorting: Vitter and Shriver [VS90, VS92] give a randomized sorting algorithm, and Nodine and

Vitter [NV91, NV92] present a deterministic sorting algorithm.

General permutations: Vitter and Shriver [VS90, VS92] use their sorting algorithm to perform

general permutations by sorting on target addresses.

Bit-de�ned permutations: Cormen [Cor92, Cor93] presents algorithms to perform bit-de�ned

permutations often with fewer parallel I/O operations than general permutations. This class

of permutations includes BPC (bit-permute/complement) permutations, in which each tar-

get address is formed by applying a �xed permutation to the bits of a source address and

then complementing a �xed subset of the resulting bits. Among the useful BPC permuta-

2These systems use RAID level three, which serializes what look to the programmer like independent writes.

5



tions are matrix transpose3 with dimensions that are powers of 2, bit-reversal permutations,

vector-reversal permutations, hypercube permutations, and matrix reblocking. Cormen and

Wisniewski [CW93] present an asymptotically optimal algorithm for BMMC (bit-matrix-

multiply/complement) permutations, in which each target address is formed by multiplying

a source address by a matrix that is nonsingular over GF (2) and then complementing a �xed

subset of the resulting bits. This class includes all BPC permutations, Gray code permuta-

tions, and inverse Gray code permutations.

General matrix transpose: Cormen [Cor92] gives an asymptotically optimal algorithm for ma-

trix transpose with arbitrary dimensions, not just those that are powers of 2.

Fast Fourier Transform: Vitter and Shriver [VS90, VS92] give an asymptotically optimal algo-

rithm to compute an FFT.

Matrix multiplication: Vitter and Shriver [VS90, VS92] cover matrix multiplication as well.

These algorithms have the following characteristics:

� They solve important and interesting problems.

� They are designed for a parallel disk model based on control over declustering, knowledge of

the con�guration, independent I/O, and no parity, �le caching, or prefetching.

� They are asymptotically optimal in this model. That is, their parallel I/O counts match

known lower bounds for the problems they solve to within a constant factor.

� Several of them are practical in that the constant factors in their parallel I/O counts are small

integers.

� Although the algorithms, as described in the literature, appear to directly access disk blocks,

it is straightforward to modify them to access blocks within �les instead.

The parallel disk model used by these algorithms was originally proposed by Vitter and Shriver

[VS90, VS92]. The cost measure is the number of parallel I/O operations performed over the

course of a computation. The model does not specify the memory's organization, connection to the

disks, or relation to the processors, and so it is independent of any particular machine architecture.

Moving or manipulating records solely within the physical memory is free. The cost measure focuses

3Vitter and Shriver earlier gave an algorithm for matrix transpose.

6



on the amount of tra�c between the memory and the parallel disk system, which is the dominant

cost.

Note that these algorithms are asymptotically optimal over all SIMD or MIMD algorithms. The

lower-bound proofs make no distinction between SIMD and MIMD; they simply count the number

of times that any algorithm to solve a problem must access the parallel disk system.

Asymptotically optimal algorithms require independent parallel I/O. Restricting the I/O oper-

ations to be fully striped is equivalent to using just one disk whose block size is multiplied by the

number of disks. It turns out that the constraint of fully striped I/O increases the number of disk

accesses by more than a constant factor compared to independent I/O [VS90, VS92]. Disk accesses

are expensive enough; to increase their number by more than a constant factor for large amounts

of data can be prohibitively expensive.

The algorithms treat all physical memory uniformly; there is no distinct �le cache. They

carefully plan4 their own I/O patterns so as to minimize tra�c between the parallel disk system

and the memory. File caching, and hence cache-consistency mechanisms, are unnecessary because

the algorithms are already making optimal use of the available memory. In e�ect, the algorithms

perform their own caching.

Empirical grounds

Several empirical studies of multiprocessor �le system performance have found that common �le

access patterns do not always �t well with the underlying �le system's expectations, leading to

disappointing performance. Therefore, the basic �le system interface should include primitives to

control �le declustering, caching, and prefetching.

The performance of Intel's CFS when reading or writing a two-dimensional matrix, for example,

depends heavily on the layout of the matrix across disks and across memories of the multiproces-

sor, and also on the order of requests [dRBC93, BCR92, Nit92, GP91, GL91]. del Rosario et

al. [dRBC93] �nd that the nCUBE exhibits similar ine�ciencies: when reading columns from a

two-dimensional matrix stored in row-major order, read times increase by factors of 30{50. One

solution is to transfer data from disk into memory and then permute it within memory to its �nal

destination [dRBC93]. Nitzberg [Nit92] shows that some layouts experience poor performance on

CFS because of thrashing in the �le system cache. His solution to this problem carefully schedules

the processors' accesses to the disks by reducing concurrency [Nit92]. Each of these examples high-

4The literature sometimes employs the more colorful term \choreograph."

7



lights the need for programs to organize their I/O carefully. To do so, we must be able to discover

and control the I/O system con�guration.

Grimshaw et al. make many of the same arguments for their ELFS �le system [GP91, GL91].

ELFS is an extensible �le system, building object-oriented, operation-speci�c classes on top of

a simple set of �le access primitives. ELFS leaves decisions about declustering, caching, and

prefetching to the higher-level functions, which have a broader understanding of the operation.

Asynchronous I/O primitives are necessary for these libraries to perform prefetching and parallel

I/O operations.

4 Interface

In Sections 2 and 3, we argued that a multiprocessor �le system must provide su�cient control to

allow user-level applications to control �le declustering, caching, prefetching, and parity, because a

higher-level understanding of the application I/O patterns can lead to signi�cant, even asymptotic,

performance gains. Without detailing a speci�c �le system interface (although some of our ideas

are given in [Kot93]), we propose an interface with two personalities.

Low-level primitive operations

The primitive operations provide the \traditional" �le system interface, such as basic read, write,

and seek operations. The �le system provides default declustering, caching, prefetching, and parity,

making this interface su�cient for many simple applications. In addition, the interface includes

primitives implementing all the capabilities listed in Section 2. Most current systems lack this

degree of control.

High-level operations

Operations such as sorting, FFT, �le copy, matrix transpose, and matrix transfer between dis-

tributed disks and distributed memories are programmed using the appropriate algorithms (Sec-

tion 3), tuned for the particular architecture and combined into an I/O library. The library can

be invoked either directly by the user or by a smart compiler, much like the LINPACK suite of

numerical algorithms [DBMS79]. This library depends on the existence of the above primitive

operations for detailed control of I/O.

8



5 Parity

We claimed in Section 2 that parallel �le systems should be able to turn o� parity or other re-

dundancy information on a per-�le basis. This section shows why we want to do so. Because we

maintain parity to improve data reliability, this section also describes typical situations in which

we can turn o� parity without compromising data reliability.

The cost of maintaining parity

Patterson, Gibson, and Katz [PGK88] outline various RAID (Redundant Arrays of Inexpensive

Disks) organizations. RAID levels four and �ve support independent I/Os. Both use check disks

to store parity information.

In level four, the parity information is stored on a single dedicated check disk. If all parallel

writes are fully striped, parity maintenance entails no additional disk accesses. Why? First, all

the information needed to compute parity is drawn from the data to be written, and so no further

information needs to be read to compute the parity. Second, each block written on the check disk

is considered to be part of a stripe, and so each check-disk block is written concurrently with the

rest of its stripe. When parallel writes are independent, however, maintaining parity information

in RAID level four often entails extra disk accesses. The blocks are still striped across the disks.

When writing some, but not all, the blocks in a stripe, we incur the additional expense of reading

the old values in these blocks and the old parity values in order to compute the new parity values.

Moreover, the check disk becomes a bottleneck. For each block written, the check disk in its stripe

must be written as well. In a write to blocks in k di�erent stripes, parity maintenance causes k

serial accesses to the check disk.

In RAID level �ve, also known as \rotated parity," the data and parity information are dis-

tributed across all the disks. The cost of independent writes is lower than for level four, since

the check disk is no longer as severe a bottleneck. Level �ve still su�ers from three performance

disadvantages for independent writes, however. First, the additional read of the old data block

and old parity block is still necessary to compute the new parity block. Second, any individual

disk can still be a bottleneck in a write if it happens to store parity blocks corresponding to more

than one of the data blocks being written. Third, the block addresses are moved to accommodate

the rotated parity information. The logical location of a block within a stripe might not match its

physical location. This mismatch can complicate the algorithms of Section 3, which carefully plan

9



so that when several blocks are accessed at once, they are on distinct disks.

Turning o� parity safely

Systems maintain parity to enhance data reliability. When parity is maintained correctly, if a disk

fails, its contents can be reconstructed from the remaining disks.

Although reliability is important for permanent data �les, it is much less important for tempo-

rary data �les. By temporary, we mean that the lifetime of the �le is solely within the course of the

application execution. For example, several of the algorithms listed in Section 3 perform multiple

passes over the data. Each pass copies the data from one �le to another, reordering or modifying

the data. With the possible exceptions of the input �le for the �rst pass and the output �le for the

last pass, all other �les are temporary from the point of view of these algorithms.

What is the cost of a disk failure during a computation that uses only temporary �les? The

computation needs to be restarted from the last point at which parity information was maintained.

We call this time a paritypoint, by analogy to the term \checkpoint." Disks de�nitely do fail, but

only rarely. Therefore, it pays to avoid the cost of maintaining parity all the time for the rarely

incurred cost of restarting the computation from the last paritypoint. Note that once any �le has

been written to disk, we can choose to paritypoint it at the cost of just one pass.

Furthermore, if a temporary �le is written solely in full stripes, paritypointing is free for that

�le. This observation is signi�cant because some of the algorithms listed in Section 3 perform some

of their passes with fully striped writes. For example, the BPC algorithm mentioned in Section 3

alternates passes that use independent I/O with passes that use fully striped I/O. Every other

pass, therefore, can paritypoint its output �le as it is produced.

Turning o� parity alleviates the problems of RAID level four and the �rst two problems of level

�ve but not the third level-�ve problem: the alteration of block addresses due to rotated parity.

Consequently, for the out-of-core algorithms, we prefer RAID level four with the capability to turn

o� parity.

6 Conclusion

Since many high-performance parallel applications depend heavily on I/O, whether for out-of-core

operations on large data sets, loading input data, or writing output data, multiprocessors must

have high-performance �le systems. Obtaining maximum performance, however, requires a careful

interaction between the application, which has an understanding of the high-level operations, and

10



the I/O subsystem, which has an understanding of the architecture's capabilities. Many high-level

operations can gain signi�cant, even asymptotic, performance gains through careful choreography

of I/O operations. We know of algorithms for many complex high-level operations, such as sorting,

FFT, and matrix transpose, but also for simpler operations such as reading an input matrix into

distributed memories.

We argue that the �le system of a high-performance multiprocessor should include both the

typical primitive operations such as read and write, as well as a library of high-level operations

that optimize I/O. For these operations to be successful, the primitives must include querying about

the con�guration, control over declustering, independent I/O, and turning o� parity, �le caching,

and prefetching. In short, the �le system may provide default strategies, but the programmer must

be able to override them when higher-level knowledge so dictates.

References

[BCR92] Rajesh Bordawekar, Alok Choudhary, and Juan Miguel Del Rosario. An experimental

performance evaluation of Touchstone Delta Concurrent File System. Technical Report

SCCS-420, NPAC, Syracuse University, 1992.

[Cor92] Thomas H. Cormen. Virtual Memory for Data-Parallel Computing. PhD thesis, De-

partment of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, 1992. Available as Technical Report MIT/LCS/TR-559.

[Cor93] Thomas H. Cormen. Fast permuting in disk arrays. Journal of Parallel and Distributed

Computing, 17(1{2):41{57, January and February 1993.

[CW93] Thomas H. Cormen and Leonard F. Wisniewski. Asymptotically tight bounds for per-

forming BMMC permutations on parallel disk systems. To appear in SPAA '93, January

1993.

[DBMS79] J. Dongarra, J. Bunch, C. Moler, and G. W. Stewart. LINPACK User's Guide. SIAM,

Philadelphia, PA, 1979.

[dRBC93] Juan Miguel del Rosario, Rajesh Borawekar, and Alok Choudhary. Improving parallel

I/O performance using a two-phase access strategy. Technical Report SCCS{406, NPAC

at Syracuse University, 1993.

[FPD93] James C. French, Terrence W. Pratt, and Mriganka Das. Performance measurement

of the Concurrent File System of the Intel iPSC/2 hypercube. Journal of Parallel and

Distributed Computing, 17(1{2):115{121, January and February 1993.

[GL91] Andrew S. Grimshaw and Edmond C. Loyot, Jr. ELFS: object-oriented extensible �le

systems. Technical Report TR-91-14, Univ. of Virginia Computer Science Department,

July 1991.

[GP91] Andrew S. Grimshaw and Je� Prem. High performance parallel �le objects. In Sixth

Annual Distributed-Memory Computer Conference, pages 720{723, 1991.

11



[Int88] iPSC/2 I/O facilities. Intel Corporation, 1988. Order number 280120-001.

[Int91] Paragon XP/S product overview. Intel Corporation, 1991.

[Kot93] David Kotz. Multiprocessor �le system interfaces. In Proceedings of the Second Inter-

national Conference on Parallel and Distributed Information Systems, pages 194{201,

1993.

[KSR92] KSR1 technology background. Kendall Square Research, January 1992.

[Mas91a] MP-1 family: Massively parallel computers. MasPar Computer Corporation brochure

number PL014.0691, 1990,1991.

[Mas91b] Parallel �le I/O routines. MasPar Computer Corporation, 1991.

[Nit92] Bill Nitzberg. Performance of the iPSC/860 concurrent �le system. Technical Report

RND-92-020, NAS Systems Division, NASA Ames, December 1992.

[NV91] Mark H. Nodine and Je�rey Scott Vitter. Large-scale sorting in parallel memories. In

Proceedings of the 3rd Annual ACM Symposium on Parallel Algorithms and Architec-

tures, pages 29{39, July 1991.

[NV92] Mark H. Nodine and Je�rey Scott Vitter. Optimal deterministic sorting on parallel

disks. Technical Report CS-92-08, Department of Computer Science, Brown University,

1992.

[PFDJ89] Terrence W. Pratt, James C. French, Phillip M. Dickens, and Stanley A. Janet, Jr. A

comparison of the architecture and performance of two parallel �le systems. In Fourth

Conference on Hypercube Concurrent Computers and Applications, pages 161{166, 1989.

[PGK88] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays of

inexpensive disks (RAID). In ACM International Conference on Management of Data

(SIGMOD), pages 109{116, June 1988.

[Pie89] Paul Pierce. A concurrent �le system for a highly parallel mass storage system. In

Fourth Conference on Hypercube Concurrent Computers and Applications, pages 155{

160, 1989.

[TMC91] Thinking Machines Corporation, Cambridge, Massachusetts. Connection Machine I/O

System Programming Guide, October 1991.

[TMC92] CM-5 scalable disk array. Thinking Machines Corporation glossy, November 1992.

[VS90] Je�rey Scott Vitter and Elizabeth A. M. Shriver. Optimal disk I/O with parallel block

transfer. In Proceedings of the Twenty Second Annual ACM Symposium on Theory of

Computing, pages 159{169, May 1990.

[VS92] Je�rey Scott Vitter and Elizabeth A. M. Shriver. Algorithms for parallel memory I:

Two-level memories. Technical Report CS-92-04, Department of Computer Science,

Brown University, August 1992. Revised version of Technical Report CS-90-21.

12


