
In ESORICS 2000, doi:10.1007/10722599_9. Copyright 2000 by Springer-Verlag.�
THIS COPY IS THE AUTHORS’ PRE-PUBLICATION VERSION;�
 it may differ slightly from the official published version.�

A Formal Semantics for SPKI

Jon Howell� and David Kotz

Dartmouth College, Hanover NH 03755, USA
{jonh,dfk}@cs.dartmouth.edu
http://www.cs.dartmouth.edu/

Abstract. We extend the logic and semantics of authorization due to
Abadi, Lampson, et al. to support restricted delegation. Our formal
model provides a simple interpretation for the variety of constructs in the
Simple Public Key Infrastructure (SPKI), and lends intuition about pos-
sible extensions. We discuss both extensions that our semantics supports
and extensions that it cautions against.

1 Introduction

This paper provides a formal semantics for the Simple Public Key Infrastruc-
ture (SPKI), an Internet Experimental Protocol [1]. The current (2.0) version of
SPKI is a merger of SPKI 1.0 and the Simple Distributed Security Infrastructure
(SDSI) 1.0.

SPKI is an elegant practical system that addresses the problem of ensuring
that a user is authorized to perform an action, not just the problem of iden-
tifying the user. This focus allows for much more flexible sharing of resources
through delegation; in contrast, systems based on authentication with a con-
ventional public-key infrastructure (PKI) plus authorization with conventional
ACLs limit the available modes of resource sharing. SPKI does incorporate a
notion of authentication as well: its linked local namespaces bind keys to names.
This notion of authentication is more general than conventional hierarchical PKI
naming, allowing it to escape the “trusted-root” problem.

Unfortunately, SPKI is not founded on a formal semantics that can provide
intuition for what it does, what it promises, what it assumes, and how it may
or may not be safely extended.

Abadi, Lampson, and others defined an authorization system called the Logic
of Authentication [2, 3]. This system provides delegation without restrictions. A
user can encode restrictions by delegating control over “self as role” to another
user, and adding the principal “self as role” to the ACL of the resource to be
shared. The system is based on a formal semantics that explains how delegations
interact with various combination operators for principals. Our formalism for
SPKI is based on the semantics of the Logic of Authentication, extended to
support restricted delegation and SPKI names.

Our formal treatment of SPKI is attractive for two reasons:
� Supported by the USENIX Association.

First, it supplies intuition for what SPKI operations mean. The proliferation
of concrete concepts in SPKI can be understood as applications of just three
abstractions: principal, statement, and name.

Second, the formalism gives us guidance in extending SPKI. We give examples
of dangerous extensions that the formalism advises against, and we give examples
of extensions that the formalism supports and that we use in our concrete system
implementation.

2 Related work

Abadi provides a semantics for SPKI names [4], but its definition shares a flaw
with that used for roles in the original logic [2]. We discuss Abadi’s name se-
mantics in Section 4.3.

Halpern and van der Meyden supply an alternate semantics for SPKI names
[5], but it only encompasses the containment relation among names, and does
not treat names as principals. As a result, it cannot relate names to compound
principals nor relate names to other principals that are only connected by a
restricted delegation.

Aura supplies a semantics for SPKI restricted delegation [6], but it is unsat-
isfying in that it essentially says what the reduction procedure says: a delegation
is in place if there is a chain of delegation certificates and principals. It does not
lend intuition about what the delegations mean. In contrast, our semantics con-
nects restricted delegation to the logic of belief, a formal model that describes
what a principal means when it delegates authority.

3 The logic and semantics of restricted delegation

In the original logic, a proposition s might mean “it would be good to read this
file now.” The statement A says s represents a principal A asserting the truth
of s. A statement B ⇒ A (read “B speaks for A”) captures delegation from A to
B: If B says s, then A agrees; we conclude A says s. As is conventional in the
modal logic community, the symbol �

� is used for logical implication. Table 1
summarizes the notation we use for sets in the following sections.

We assume here that the reader is familiar with the basic operation of modal
logic. Hughes and Cresswell provide the canonical, concise introduction to modal
logic [7]. Fagin et al. provide a gentler introduction with motivating examples
[8]. The extended version of this paper [9] includes a brief introduction to each
of the above topics, plus an overview of SPKI.

Lampson et al. mention in passing the idea of a restricted speaks-for operator
[3, p. 272]. In this section, we introduce our speaks-for-regarding operator, which
formalizes the notion of the restricted speaks-for operator. (The extended ver-
sion of this paper proves the soundness of our axiomatization and the theorems
mentioned here.) The new operator is written B

T⇒ A, and read “B speaks for

Set Example
members

Description

Σ s, t The set of primitive propositions. They represent
resources.

Σ∗ σ, τ
s ∧ t

The set of well-formed formulas (statements) constructed
from Σ, ∧, ¬, A says, and B ⇒ A

2Σ∗
S, T, V The set of sets of statements

P A, B The set of primitive principals. They represent agents,
including people, machines, programs, and communications
channels.

P ∗ A,B
A ∧ B

The set of compound principals constructed from P , ∧, |,
and ·N

N N The set of local names
Table 1. The symbols used to represent sets in this article.

A regarding the set of statements in T .” T is any subset of Σ∗. The desired
meaning is that when σ ∈ T ,

B
T⇒ A �

�((B saysσ) �
�(A says σ))

The power of the speaks-for-regarding operator T⇒ is that A can delegate a
subset of its authority without modifying any ACLs. Contrast the situation with
the use of roles in the Logic of Authentication, where to delegate authority over
a restricted subset of her resources, a user had to define a role and install that
role in the ACLs of each resource to be shared.

Restricted speaks-for is transitive:

� (C T⇒ B) ∧ (B T⇒ A) �
�(C T⇒ A) (Axiom E1)

We expect the ∧ operation on principals to be monotonic over T⇒:

� (B T⇒ A) �
�(B ∧ C) T⇒ (A ∧ C) (Axiom E2)

Restricted control over two principals is the same as restricted control over
their conjunct:

� (C T⇒ A) ∧ (C T⇒ B) ≡ C T⇒ (A ∧B) (Axiom E3)

Let U be the universe of all well-formed formulas; that is, those formulas over
which a model M defines E .1 Restricted speaks-for degenerates to the original
speaks-for when the restriction set is the set of all statements:

� (B U⇒ A) ≡ (B ⇒ A) (Axiom E4)
1 E is the extension function as in the formalism of Abadi et al. The function maps

each logical formula to the set of worlds where the formula is true.

If Bob speaks for Alice regarding a set of statements T , he surely speaks for
her regarding a subset T ′ ⊆ T :

� (B T⇒ A) �
�(B T ′⇒ A) (Axiom E5)

Using Axiom E5, a chain of delegations can be collapsed to a single delegation,
connecting the head principal in the chain to the tail, whose restriction set is
the intersection of the restriction sets of each of the original delegations.

� (C S⇒ B) ∧ (B T⇒ A) �
�(C S∩T⇒ A) (Theorem E6)

This is not to say that C may not speak for A regarding more statements than
those in the intersection; we address this topic further in Section 5.9.

If we have two restricted delegations from Alice to Bob, we might expect
Alice to speak for Bob with respect to the union of the restriction sets. Because
of the semantics we choose for T⇒, however, this intuition does not hold.

(B S⇒ A) ∧ (B T⇒ A) � �
�B

S∪T⇒ A (Result E7)

In the extended version of this paper, we describe a relation weaker than T⇒ for
which the intuitive statement holds.

The quoting operator (|) constructs compund principals such as B|A, read “B
quoting A.” When principal B|A says σ, we conclude that B says (A says σ):
B is asserting what he thinks A believes. The quoting operator is monotonic in
both arguments over ⇒. Quoting is still monotonic over T⇒ in its left argument:

� (B T⇒ A) �
�C|B T⇒ C|A (Axiom E8)

Our semantics does not justify monotonicity in the right argument, however:

(B T⇒ A) � �
�B|C T⇒ A|C (Result E9)

Hence, when quoting others, principals cannot automatically invoke the same
delegated authority they have when speaking directly. The same counterexample
that shows Result E9 shows the same property for the weak speaks-for-regarding
relation defined in the extended version of this paper, so it seems that the notion
of quoting simply does not mix easily with restricted delegation. This result
appears to limit the usefulness of quoting, because principals cannot employ
quoting with the same ease as in the Logic of Authentication.

We can salvage some of the convenience of quoting, however, by propagating
the quoted principal through the restriction set. Let T ∗ be the closure of T with
respect to the propositional operators ¬ and ∧: T ⊆ T ∗, and if σ, τ ∈ T ∗, then
¬σ ∈ T ∗ and σ∧τ ∈ T ∗. Furthermore let TC be the closure of T with respect to
the modal operator C says: T ⊆ TC, and if σ ∈ TC, then (C saysσ) ∈ TC. Now
(T ∗)C is the modal closure applied to the propositional closure of some original
set T . With these definitions, we can justify this axiom:

�
(
B (T∗)C⇒ A

)
�
�

(
B|C T⇒ A|C

)
(Axiom E10)

When T = U , this axiom reduces to showing right-monotonicity for the original
speaks-for relation. This axiom means that A’s restricted delegation to B must
explicitly include any “quotes” of C about which it is willing to believe B. It
seems awkward, but it is a useful result. Why? Because in any possible-worlds
semantics wherein (B T⇒ A) �

�(B|C T⇒ A|C) for all principals C, the relation
representing A depends on every other principal relation. The introduction of
malicious principals with cleverly-chosen relations into such a system can effec-
tively expand T until T = U .

3.1 Semantics of T⇒

Like Abadi et al. [2], we use a semantics based on possible worlds, modeling
a system with a model M = 〈W, w0, I, J〉. W is a set of possible worlds and
w0 ∈ W the distinguished “real” world. The interpretation function I maps
each primitive proposition to the worlds where it is true, and the interpretation
function J maps each primitive principal to its possible-worlds visiblity relation.

The semantic definition of T⇒ is based on the notion of projecting a model
into a space where only the statements in set T are relevant. The idea behind
this definition is that if one were to take the “quotient” of a model M with
respect to the dual of T , the resulting model M would be concerned only with
statements in T . B ⇒ A in M should be equivalent to B

T⇒ A in the original
model. The model M is a projection of M that only preserves information about
statements in T .

We begin the construction by defining an equivalence relation ∼=T : W × W
that relates two worlds whenever they agree on all statements in T :

w ∼=T w′ iff (∀σ ∈ T, w ∈ E(σ) iff w′ ∈ E(σ)) (Definition E11)

Then we define the mapping φT : W → W that takes worlds from the original
model to equivalence classes under ∼=T :

φT (w) = φT (w′) iff w ∼=T w′ (Definition E12)

The equivalence classes belong to a set W = 2T ; notice that worlds (equivalence
class representatives) in M cannot be confused with those in M . The extended
version of this paper gives a construction of φT (w).

Next we extend φT to the function φw
T : 2W → 2W that maps a set of worlds

Sw ⊆ W to a set of equivalence class representatives in the projected model:

φw
T (Sw) = {w | ∃w ∈ Sw, w = φT (w)} (Definition E13)

We use bar notation (w) to indicate an equivalence class representative (member
of a world of a projected model) as opposed to a member of W in the original
model.

We can now give a semantic definition of restricted delegation:

E(B T⇒ A)

=
{

W if ∀w0

(
φw

T (R(A)(w0)) ⊆ φw
T (R(B)(w0))

)
∅ otherwise (Definition E14)

For the justifications of several of the axioms it is more convenient to shift
the projection (φ) operation to one side of the subset relation. To do so, we
define

φ+
T (R) = {〈w0, w

′
1〉 | ∃w1

∼=T w′
1, 〈w0, w1〉 ∈ R} (Definition E15)

Think of φ+
T as a function that introduces as many edges as it can to a relation

without disturbing its projection under T .
We can use φ+

T to give an equivalent definition of T⇒:

E(B T⇒ A) =
{

W if R(A) ⊆ φ+
T (R(B))

∅ otherwise (Definition E16)

The symbolic gymnastics of moving the projection to the right side of the ⊆
relation is equivalent to the definition in terms of φw

T , but it makes some of the
proofs more concise. The extended version of this paper shows the equivalence.

A casual intuition for this definition is that φT projects from the full model M
down to a model in which worlds are only distinguished if they differ with regard
to the truth of statements in T . If we collapse away the accessibility arrows that
do not say anything about what is happening in T , and A’s relation is a subset
of B’s relation in the projection, then A believes everything B believes about
statements in T . This intuition is exactly what we want for restricted delegation.

What happens if we take an alternative semantic definition for restricted
delegation? We explore one seemingly-natural but undesirable alternative and
two other interesting alternatives in the extended version of this paper.

3.2 Additional benefits of T⇒
Introducing the T⇒ operator to the logic not only provides the important feature
of restricted delegation, but it simplifies the logic by replacing the controls op-
erator, replacing roles, and providing a formal mechanism for the treatment of
expiration times.

Supplanting controls. Now that we have the restricted speaks-for relation,
we can dispense with the special controls operator for building ACLs.

Recall Abadi et al.’s special identity principal 1 [2, p. 718]. Because it be-
lieves only truth, (1 says s) �

�s for all statements s. That is, there is an implicit
principal that controls all statements. We can replace every statement of the

form A controls s with an equivalent one: A
{s}⇒ 1. This statement ensures that

if A says s, then 1 says s. Since the 1 relation only contains edges from a node
to itself, a model can only satisfy this condition by selecting an actual world w0

where s is true.

Supplanting roles. Roles as originally defined are attractive, but they have the
significant difficulty that introducing a new restricted role R2 involves finding all
of the objects that role should be allowed to touch, and adding A as R2 to each
of those ACLs. When one of those objects does not allow ACL modifications by
A, it is impossible for A to express the desired new role. The SPKI document
gives a vivid example that shows how ACL management can become unwieldy
[1, p. 17].

With the speaks-for-regarding relation, A can introduce a new role R2 for
itself by allowing (AasR2)

T2⇒ A. In fact, roles are no longer necessary at all, but
the as and for operators, or operators like them, may still be useful for building
tractable implementations.

Roles, as semantically defined by Abadi et al., can also have surprising conse-
quences because they belong to a global “namespace.” Imagine that both Alice
and Bob use the role Ruser in their ACLs. That means that the same relation
R(Ruser) encodes both the way that A as Ruser is weaker than A, and the way
that B as Ruser is weaker than B. In the extended version of this paper, we give
a detailed example model that demonstrates this problem.

Formalizing statement expiration. Lampson et al. treat expiration times
casually: “Each premise has a lifetime, and the lifetime of the conclusion, and
therefore of the credentials, is the lifetime of the shortest-lived premise” [3,
p. 270]. It is likely that a formal treatment of lifetimes would be time-consuming
and unsurprising, but the lifetimes are an unsightly element glued onto an other-
wise elegant logical framework. Fortunately, the T⇒ relation allows us to dispense
with lifetimes.

Recall from [3, p. 271, note 4] that primitive statements such as s are meant to
encode some operation in a real system. Assume that each s describes not only an
operation, but the effective time the operation is to take place.2 Further, assume
a restriction set T in a delegation B

T⇒ A includes restrictions on the times of
the operations under consideration. After the last time allowed by the set, the
delegation remains logically valid, but becomes useless in practice. Furthermore,
restrictions on T can be more than expiration times; one can encode arbitrary
temporal restrictions, such as only allowing a delegation to be valid on Friday
afternoons.

4 The semantics of SPKI names

Recall from Section 3.2 how roles share a global “namespace,” and the danger
of crosstalk between applications of the same role. SPKI names have the same
dangerous property: identical names have different meaning depending on the
“scope” in which they appear. Hence treating names as roles will not do; we
must extend the logic and semantics to model names.
2 Like Lampson et al., we ignore the issue of securely providing loosely synchronized

clocks.

We introduce to the logic a new set of primitive names, N . We also extend
principal expressions to include those of the form A·N , where A is an arbitrary
principal expression and N ∈ N . A · N is read “A’s N .” For example, if Al-
ice is represented by the logical principal A, and Nbarber is the symbolic name
“barber,” then A · Nbarber is a principal that represents “Alice’s barber.” That
is, A · Nbarber represents whoever it is that Alice defines as her barber. Should
Bob delegate authority to the principal A · Nbarber, he is relying on a level of
symbolic indirection defined by Alice. Should Alice change who has authority
over A · Nbarber, she has redefined the subject of Bob’s delegation.

Because · only accepts a principal as its left argument, there is no ambiguity
in the order of operations; A·N1 ·N2 can only be parenthesized (A·N1) ·N2. For
example, “Alice’s barber’s butcher” is “(Alice’s barber)’s butcher.” Parenthesiz-
ing the expression the other way, as “Alice’s (barber’s butcher),” is unnatural
because it requires the ungrounded subexpression “(barber’s butcher).”

4.1 The logic of names

What properties do we want names to have?

Local namespaces. First, a principal should control the meaning of any names
defined relative to itself:

∀ principals A, names N :

(A says (B T⇒ A · N)) �
�(B T⇒ A · N)

We do not take this statement as an axiom for the same reason that Abadi,
Lampson et al. do not accept the handoff axiom [2, p. 715], [3, p. 273]: our
semantics does not support it in general. Instead, as with the handoff axiom, we
allow the implementation to assume appropriate instances of it.

Left-monotonicity. Name application should be monotonic over speaks-for. If
Alice binds her name “barber” to Bob, and Bob binds his name “butcher” to
Charlie, then we want “Alice’s barber’s butcher” to be bound to Charlie.

� (B ⇒ A) �
�(B ·N ⇒ A · N) (Axiom E17)

Using this rule, we can write the following to capture the desired intuition:

(B ⇒ A · Nbarber) �
�

B · Nbutcher ⇒ A · Nbarber · Nbutcher

Distributivity. We combine the following pair of results

� (A ∧ B) ·N ⇒ (A · N) ∧ (B · N) (Theorem E18)
� (A · N) ∧ (B ·N) ⇒ (A ∧B) · N (Axiom E19)

to show that names distribute over principal conjunction:

� (A ∧B) · N = (A · N) ∧ (B ·N) (Theorem E20)

Here is a motivating example: If Alice has two doctors Emily and Fred, and Bob
visits doctors Fred and George, then who is “(Alice and Bob)’s doctor?”

E ⇒ A · Ndoctor

F ⇒ A · Ndoctor

F ⇒ B · Ndoctor

G ⇒ B · Ndoctor

Applying Theorem E20, we conclude:

F ⇒ (A ∧B) · Ndoctor

That is, Fred is the only person who serves as both people’s doctor.

No quoting axiom. The principal (A|B) · N can be written, but we have yet
to find a meaningful intuitive interpretation for it. (A|B) · N bears no obvious
relation to (A ·N)|(B ·N), for example. We allow the principal in the logic, but
we offer no axioms for extracting quoting from inside a name application.

Nonidempotence. Finally, application of names should not be always idem-
potent. Unless some other speaks-for statement causes it, there is no reason
that “Bob’s barber’s barber” should speak for “Bob’s barber.” We were ini-
tially tempted to model name application (·) with role application, because roles
satisfy Axiom E17; however, roles are idempotent. It may be the case that the
application of a name can become idempotent; the extended version of this paper
gives an example.

4.2 The semantics of names

Names and name application cannot be modeled with the roles and the quoting
operator, because quoting a role is always idempotent. Furthermore, using the
same role for multiple uses of the same name by different principals introduces
crosstalk as described in Section 3.2.

Instead, we model names as follows. First, add a new element K to the tuple
that defines a model. A model with naming consists of:

M = 〈W, w0, I, J, K〉

The new interpretation function K : P ×N → 2W×W maps a primitive principal
A and a name N to a relation. The idea is that principals only define the first

level of names in their namespaces; all other names are consequences of chained
first-level name definitions.

Next extend R to define the relations for principals formed through name
application. We want to define R(A·N) as the intersection of several other sets,
each requirement ensuring a desired property. The definition, however, would
end up circular (at requirement (I), with equal principals) if it were expressed
in terms of set intersection. Instead, we define R(A · N) as the largest relation
(subset of 2W×W) satisfying all of the following requirements:

R(A · N) ⊆ R(B · N) (I)
(∀B : R(A) ⊆ R(B))

R(A · N) ⊆ K(A, N) (II)
(when A ∈ P)

R(A · N) ⊆ R(B · N) ∪R(C · N) (III)
(when A = B ∧ C)

(Definition E21)

Requirement (I) supports Axiom E17. Requirement (II) applies only to primitive
principals, and allows each primitive principal to introduce definitions for first-
level names in that principal’s namespace. A system implementing instances of
the handoff rule does so conceptually by modifying K(A, N). Requirement (III)
only applies to principal expressions that are conjunctions, and justifies Theorem
E20.

There is no question some such largest relation exists. Since each requirement
is a subset relation, at least the empty set satisfies all three. There is an upper
bound, since every relation is a subset of the finite set W×W . Finally, the largest
relation must be unique. If there were two such relations, then any element in
one must belong to the other, since it belongs to every set on the right-hand side
of a subset relation in the requirements, and we arrive at a contradiction.

In our semantics, as in Abadi’s, left-monotonicity (Axiom E17) turns out to
be surprisingly powerful. In the extended version of this paper, we consider how
to temper it. Note also that Axiom E17 applies only to unrestricted delegation
(⇒). In the extended paper we consider a stronger version of left-monotonicity,
generalized to the restricted-speaks-for relation (T⇒), and discuss why it is diffi-
cult to support semantically. Because Theorem E20 derives from Axiom E17, it
is similarly limited to the unrestricted case.

4.3 Abadi’s semantics for linked local namespaces

Abadi gives an alternate logic and semantics for SPKI-style linked local names-
paces [4]. (He refers to SDSI, from which SPKI 2.0 derives.) Abadi’s notation
diverges from that used in the Logic of Authentication [2], but the semantics are
the same. Table 2 helps translate the notation. Our semantics differs in three
interesting ways.

Abadi’s notation Our notation

S Σ

µ : S ×W → {true, false} I : Σ → 2W

ρ : N ×W → 2W K : P ×N → 2W×W

a ∈ W w ∈ W
principals p, q A,B ∈ P ∗

n ∈ N N ∈ N
[[n]]a = ρ(n, a) R(A · N)(w) = K(A,N)(w)

[[p′s n]]a R(A · N)(w)
Table 2. A guide to translating between Abadi’s notation and ours

First, SPKI has special global names, so that if NG is a global name, A ·NG

= NG. The result is that the same syntactic construct can be used to bind a
local name to another local name or to a globally-specified name. All names in
linking statements are implicitly prefixed by the name of the speaking principal;
but if the explicitly mentioned name is global, the prefix has no consequence.
We consider this syntactic sugar, and leave it to an implementation to determine
from explicit cues (such as a key specification or a SDSI global name with the
special !! suffix) whether a mentioned principal should be interpreted as local to
the speaker.

Second, Abadi’s logic adopts the handoff rule for names, which he calls the
“Linking” axiom. Here it is, translated to our terminology:

A says (B ⇒ (A · N)) �
�(B ⇒ (A ·N))

He validates the axiom by the use of composition to model name application,
with which we disagree.

Indeed, the third and most important way our semantics differs from Abadi’s
explains just why we disagree. Abadi’s semantics models name application as
quoting (composition). Each unqualified (local) name is mapped to a single re-
lation. This property can introduce crosstalk between otherwise unconnected
principals; recall the example from Section 3.2. Even when a name relation is
not constrained to be a role, the same problem arises. For example, let N rep-
resent the name “doctor.” Imagine that Bob assigns Charlie to be his doctor:
C ⇒ B|N . This is fine; Charlie should be able to do some things on Bob’s behalf,
but not everything: If B|N T⇒ B, then Charlie can do the things in T .

Enter Alice, who is not only omniscient (A = 1), but serves as her own doctor
(A ⇒ A|N). Abadi’s semantics requires that R(1) ◦ R(N) ⊆ R(1). At worst,
R(N) = R(1), causing B|N = B, enabling Charlie’s doctor to make investment
decisions on Charlie’s behalf. At best, R(N) ⊂ R(1), and B|N begins spouting
off random statements, some of which may be in T , making Bob believe random
statements. Our semantics escapes this fate by assigning to each use of a name
its own relation, then ensuring the correct subset relationships remain among
those relations.

In summary, defining a meaningful semantics to local applications of names
from the same global namespace is nontrivial. Our semantics depends on an
existential definition involving the “largest set satisfying the requirements,” and
is therefore more opaque than illuminating. Despite its limitations, we feel that
it is better than an alternative that implies undesirable consequences.

5 Modeling SPKI

The original Logic of Authentication is useful because its principals are general
enough to model several parts of a computing system, from users to trusted
servers to communications channels. To formally model SPKI with our extended
calculus, we first give a construction that models the delegation-control bit.

5.1 Delegation control

The SPKI document gives the motivation for including a delegation-control bit
in SPKI certificates. We disagree with the argument and fall in favor of no dele-
gation control, and for the same reasons as described in the document: delegation
control is futile, and its use tempts users to divulge their keys or install signing
oracles to subvert the restriction. Such subversion not only nullifies delegation
control, but forfeits the benefits of auditability provided by requiring proofs of
authorization. Despite our opinion, we present a construction that models dele-
gation control.

To model the delegation-control feature we wish to split the says modality
into two separate modalities: “utterance,” which represents a principal actually
making a statement, and is never automatically inherited by other principals, and
“belief,” which is inherited transitively just as says is. Not only is introducing
a new logical modality clumsy, but it would require us to support a dubious
axiom, undermining the simplicity of the semantics.

Instead, we resort to an equivalent construct: we split each “real” principal
A we wish to model into subprincipals Au and Ab. Au shall say only the things
that A utters (statements that are actually signed by A’s key; recall that all
certificate-issuing principals in SPKI are keys), and Ab shall say all of the things
that A believes. A may inherit her beliefs from other principals (because she
has delegated to other subjects the authority to speak on her behalf), and fur-
thermore A should believe anything she utters. This last condition replaces the
clumsy axiom we wished to avoid; instead we enforce it by explicitly assuming
the following statement for all principals A and statements s:

� Au says s �
�Ab says s (Assumption E22)

Certificates issued by a concrete principal A are statements uttered by A
asserting things that A believes, so we model them as statements about Ab said
by Au. The desirable outcome is that no principal can delegate authority to
make herself utter something (make Au say something); she may only utter the
statement directly (by signing it with her key).

5.2 Restriction

Recall that a SPKI 5-tuple includes five fields: issuer, subject, delegation-control
bit, authorization, and validity dates. Let I and S represent the issuer and sub-
ject principals. Let TA represent the set of primitive permissions represented by
the authorization S-expression, and TV the set of primitive permissions limited
by the validity dates (assuming the effective-time encoding of Section 3.2). The
5-tuple can be represented this way if its delegation-control bit is set:

Iu saysSb
TA∩TV⇒ Ib

or this way if not:

Iu saysSu
TA∩TV⇒ Ib

A 4-tuple has a name field (N) and no authorization field or delegation-
control bit. It would be encoded:

Iu saysSb
TV⇒ Ib · N

It seems natural that a delegation bit is meaningless for a name binding,
for in SPKI, a name principal can never utter a statement directly, only a key
principal can. It is surprising, however, that SPKI name-binding certificates omit
the authorization field. Why not allow a principal to say the following?

Iu says (Sb
{shampoo}⇒ Ib · Nbarber)

As it turns out, our semantics does not support such restricted name bindings
(see Section 4.2).

5.3 Linked local namespaces

The subject principals in the keys above may be either keys (each directly rep-
resented by a primitive principal) or a string of names grounded in a key. Hence
namespaces are “local” in that names are meaningless except relative to a glob-
ally unambiguous key; namespaces are “linked” in that the naming operation
may be repeated: If K1 · N1 resolves to K2, then K1 · N1 · N2 is the same as
K2 ·N2, perhaps defined as some K3.

We give a logic and semantics for linked local namespaces in Section 4. We
model the SPKI name subject “george: (name fred sam)” with the principal
expression Kgeorge ·N“fred” ·N“sam”. Substituting the principal expression for Sb,
a 4-tuple takes on the general appearance:

Iu says ((KS · N1 · · ·Nk) TV⇒ Ib · N0)

5.4 Threshold subjects

A threshold subject is a group of n principals who are authorized by a certificate
only when k of the principals agree to the requested action. Such certificates are
really just an abbreviation for a combinatorially-long (n

k) list of conjunction
statements. For example, a certificate with a 2-of-3 threshold subject naming
principals P1, P2, and P3 and an issuer A can be represented as:

P1 ∧ P2 ⇒ A

P1 ∧ P3 ⇒ A

P2 ∧ P3 ⇒ A

Hence the logic easily captures threshold subjects, although any tractable imple-
mentation would obviously want to work with them in their unexpanded form.

5.5 Auth tags

The “auth tags” used in authorization fields in SPKI represent sets of primitive
statements. Therefore, we simply model them using mathematical sets.

5.6 Tuple reduction

The SPKI access-control decision procedure is called “tuple reduction.” A re-
quest is granted if it can be shown that a collection of certificates reduce to
authorize the request. The reduced tuple’s subject must be the key that signed
the request; the tuple’s issuer must represent the server providing the requested
service; and the specific request must belong to the authorization tag of the
reduced tuple.

It is clear that tuple reduction is sound with respect to the extended logic.
When 5- and 4-tuples are encoded in the logic as shown in Section 4 and Sec-
tion 5.2, tuple-reduction simply constructs a proof from several applications of
Theorem E6 and Axiom E17.

5.7 Validity conditions

An optional validity condition, such as a certificate revocation list, a timed reval-
idation list, or a one-time revalidation, can be encoded in the logic using a
conjunction. For example, a certificate requiring a timed revalidation would be
interpreted

A says (B ∧ (R|H1)) ⇒ A

to mean that the revalidation principal R must verify that this certificate (with
hash H1) is valid. Principal R signs a revalidation instrument I with a short
validity interval TV

R says I
TV⇒ R

and a given revalidation instrument would agree with all valid outstanding cer-
tificates:

I says 0 ⇒ I|H1

I says 0 ⇒ I|H2

...

The principal 0 has relation R(0) = ∅, so that every principal speaks for 0.
Using the logic, we can reason that

0 ⇒ I|H1
TV⇒ R|H1

and since B = B ∧ 0, B
TV⇒ A. Notice the treatment of a certificate’s hash as a

principal. In the logic, principals are general entities and can be used to represent
many objects and actors.

Negative certificate revocation lists can be handled similarly; an implemen-
tation examining a revocation list would conclude I says 0 ⇒ I|H1 for any H1

not present in the list.
One-time revalidations are meant to be interpreted as having a zero valid-

ity interval. A system verifying a request s creates a nonce E, understanding
E says s, and sends it to the revalidator R. R replies with a statement meant to
be interpreted

R says E
{s}⇒ R|H1

Now both B and E
{s}⇒ R|H1 say s, so A says s. Any future request of the same

sort will require another revalidation, for its s will have a different effective time.

5.8 Safe extensions

Our semantics suggests that SPKI may be safely extended to support a variety of
principals other than public keys. Channels protected by secret keys or a trusted
computing base, for example, are easily modeled as principals in the logic. In
the examples in this article, we represent principals with symbolic names. Real
principals, however, are represented by some mechanism that can verify that a
given request comes from a particular principal. Examples of mechanisms for
authenticating users include the UID mechanism in Unix, the Kerberos authen-
tication server, and public key cryptography. Lampson et al. show that many
common system components can be modeled as principals [3].

Compound principals let us represent useful trust relationships other than
delegation. A conjunct principal (A∧B), for example, represents a principal that
only believes σ when both A and B believe σ. Hence a delegation to a conjunct
principal is analogous to a check that requires two signatures to cash. Conjunct
principals are not first-class entities in SPKI, although they can appear as thresh-
old subjects; an extended SPKI might exploit Theorem E20. Quoting principals

are also missing from SPKI; Lampson et al. give nice examples showing how
quoting can help a multiplexed server or communications channel differentiate
when it is working on behalf of one client versus another [3, Sections 4.3, 6.1, 6.2,
and 7.1]. Without quoting, such a server has permission to make statements for
either client, so it must perform an access-control check in advance of relaying a
client’s statement. Quoting lets the multiplexed server defer the complete access-
control decision to the final resource server that verifies the proof. The result
is improved auditability, since the gateway’s role in the transaction is recorded
at the server, and a smaller trusted computing base, since only a tiny part of
the gateway code must be correct to pass on the authorization decision to the
server.

5.9 Dangerous extensions

In this section, we argue that SPKI auth tags should not be extended to repre-
sent logical negations. If B speaks for A regarding multiple restriction sets, the
semantics suggest that B actually has some authority not explicitly mentioned
in either set. For example,

(B {σ,τ}⇒ A) �
�(B {σ∧τ}⇒ A) (Axiom E23)

means that a principal believed on a set of statements is also believed on their
conjuncts. This conclusion seems fairly natural, but it is interesting to note that
a restriction set actually permits more statements than it represents explicitly.

With the semantics for restricted delegation we define in Section 3, not only
does

(B {σ,τ}⇒ A) �
�(B {σ∧τ}⇒ A) (Axiom E24)

hold, but also:

(B {σ}⇒ A) �
�(B {¬σ}⇒ A) (Axiom E25)

This result implies that given authority on a set of primitive statements, a prin-
cipal also has authority on any propositional formula constructed from those

statements. It is surprising, for even if only B {s}⇒ A is explicitly granted, B can
also cause A to say the negation of s.

Perhaps scarier still is that

B {σ}⇒ A �
�B {σ,¬σ}⇒ A
�
�(B says false) �

�(A says false)

The conclusion is the definition of Abadi’s �→ relation:

“Intuitively, A �→ B means that there is something that A can do (say
false) that yields an arbitrarily strong statement by B (in fact, false).
Thus, A �→ B means that A is at least as powerful as B in practice.”
[2, p. 713]

With these semantics, one might fear that no restriction is actually meaning-
ful. How might we escape it? We might abandon the K axiom (A believes s
∧ A believes (s �

�t) �
� A believes t), so that principals no longer believe

every consequence of their beliefs. This option is undesirable because it cripples
the logic to only operate outside the scope of belief operators.

A second option is to both disallow negative statements in restriction sets
and to use the weaker B T→ A relation (described in the extended paper) instead
of B T⇒ A to model delegation.

A third option is to prevent principals from making contradictory statements.
This is difficult in general in a distributed system. One approach is to prevent
principals from making negative statements at all. SPKI takes this approach.
Its tags, which represent both restriction sets and individual statements, can-
not represent both a statement and its logical negation. We provide a formal
treatment of tags in the extended version of this paper.

Another extension might be to allow SPKI name bindings (4-tuples) to in-
clude authorization restrictions. As mentioned in Section 4.2, our semantics sug-
gests that this seemingly-natural extension has undesirable consequences.

We conclude that in certain dimensions, SPKI is as strong as it can be.
Changing SPKI by allowing principals to make negative statements or by allow-
ing negative statements in restriction sets would push SPKI “over the edge,”
making its restrictions meaningless. Those proposing to augment SPKI, or other
systems based on a logic of restricted delegation such as that of Section 3, must
be wary of this hazard.

6 Summary

We extend the Logic of Authentication and its underlying possible-worlds seman-
tics to support restricted delegation, delegation control, and local namespaces.
To define the semantics of restricted delegation, we project a model to a set
of worlds distinguished only by statements in the restriction set. The resulting
system provides intuition and a formal framework in which we reason about the
current SPKI system and possible extensions to SPKI.

One of the advantages our formal framework is that it represents the many
complicated features of SPKI with three simple concepts: principal, statement,
and name. Features such as threshold subjects and on-line validations can be
modeled with compound principals and idiomatic statements. The simplicity also
suggests that SPKI may be safely integrated with systems with notions of “prin-
cipal” other than SPKI’s public keys; such principals are desirable because they
can exploit fast local or secret-key-protected channels. The results are applied
in just this way in a prototype system implementation [10].

Our formalism also warns of the danger of apparently-harmless extensions.
In our semantics, allowing a principal to utter both a statement and its negation
or allowing restricted delegation to a name binding would reduce restricted del-
egation to meaninglessness. It would be imprudent to so extend SPKI without
developing an alternate semantics that gives the extension meaning. One might

also assume that delegation over two sets of permissions should combine to rep-
resent a delegation over the union of the permissions, but Result E7 suggests
that this is not the case.

Acknowledgements

Thanks to John Lamping, who patiently helped Jon understand logical proof
systems and semantic models. Thanks also Jon Bredin, Valeria de Paiva, Mark
Montague and Larry Gariepy for their discussions, which helped refine the idea.
Thanks to the USENIX organization for funding our research on this topic.

References

1. Carl M. Ellison, Bill Frantz, Butler Lampson, Ron Rivest, Brian M. Thomas, and
Tatu Ylonen. SPKI certificate theory, October 1999. Internet RFC 2693.

2. Mart́ın Abadi, Michael Burrows, Butler Lampson, and Gordon Plotkin. A
calculus for access control in distributed systems. ACM Transactions on
Programming Languages and Systems, 15(4):706–734, September 1993.

3. Butler Lampson, Mart́ın Abadi, Michael Burrows, and Edward Wobber.
Authentication in distributed systems: theory and practice. ACM Transactions
on Computer Systems, 10(4):265–310, November 1992.

4. Mart́ın Abadi. On SDSI’s linked local name spaces. Journal of Computer
Security, 6(1-2):3–21, 1998.

5. Joseph Y. Halpern and Ronald van der Meyden. A logic for SDSI’s linked local
name spaces. In Proceedings of the 12th IEEE Computer Security Foundations
Workshop, pages 111–122, 1999.

6. Tuomas Aura. On the structure of delegation networks. In Proceedings of the
Eleventh IEEE Computer Security Foundations Workshop, pages 14–26, 1998.

7. G. E. Hughes and M. J. Cresswell. A New Introduction to Modal Logic.
Routledge, 1996.

8. Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning
about Knowledge. MIT Press, 1995.

9. Jon Howell and David Kotz. A Formal Semantics for SPKI. Technical Report
TR2000-363, Dartmouth College, Computer Science, Hanover, NH, March 2000.
Available at: http://www.cs.dartmouth.edu/reports/abstracts/TR2000-363/.

10. Jonathan R. Howell. Naming and sharing resources across administrative
boundaries. PhD thesis, Department of Computer Science, Dartmouth College,
2000.

