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Abstract. Opportunistic sensing allows applications to “task” mobile devices
to measure context in a target region. For example, one could leverage sensor-
equipped vehicles to measure traffic or pollution levels on a particular street, or
users’ mobile phones to locate (Bluetooth-enabled) objects in their neighborhood.
In most proposed applications, context reports include the time and location of
the event, putting the privacy of users at increased risk—even if a report has been
anonymized, the accompanying time and location can reveal sufficient informa-
tion to deanonymize the user whose device sent the report.
We propose AnonySense, a general-purpose architecture for leveraging users’
mobile devices for measuring context, while maintaining the privacy of the users.
AnonySense features multiple layers of privacy protection—a framework for
nodes to receive tasks anonymously, a novel blurring mechanism based on tes-
sellation and clustering to protect users’ privacy against the system while report-
ing context, and k-anonymous report aggregation to improve the users’ privacy
against applications receiving the context. We outline the architecture and se-
curity properties of AnonySense, and focus on evaluating our tessellation and
clustering algorithm against real mobility traces.

1 Introduction

Opportunistic sensing has been gaining popularity, with several systems and applica-
tions being proposed to leverage users’ mobile devices to measure environmental con-
text. In these systems, applications can task mobile nodes (such as a user’s sensor-
equipped mobile phone or vehicle) in a target region to report context information
from their vicinity. With opportunistic sensing, applications need not rely on a static
sensor deployment, and can instead glean context from any region that mobile nodes
visit. Applications of opportunistic sensing include collecting traffic reports or pollution
readings from a particular street [19], locating Bluetooth-enabled objects with the help
of users’ mobile devices [11], and even inferring coffee-shop space availability [35].
Examples of opportunistic-sensing systems include CarTel [19], Mobiscopes [1], Ur-
banet [32], Urban Sensing [6], SenseWeb [33] and our own MetroSense [5] at Dart-
mouth College. These systems predominantly rely on mobile nodes whose carriers are
humans (or their personal vehicles) in an urban environment, thus putting the privacy
of users at risk. For example, location and time, which are often included in context
reports, reveal movement patterns of the reporting users.
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In many opportunistic-sensing applications, knowing the identities of the devices is
unnecessary. Indeed, to protect users’ privacy, Tang et al. [35] take the approach of sup-
pressing the node’s identity from reports, and Calandriello et al. [3] support pseudony-
mous or anonymous reports. Unfortunately, knowing users’ movement patterns is often
enough to deanonymize their reports [26]. Furthermore, a report taken inside Alice’s
office, for example, allows one to infer that Alice was likely in her office, even if her
name was suppressed from the report. We assume that both the system and applications
may attempt to deanonymize users using information contained in reports, and have
developed a system called AnonySense to protect users against these privacy threats.
Specifically, no entity should be able to link a report to a particular user.

We leverage k-anonymity. To improve users’ privacy, k-anonymity [34] requires that
at least k reports are combined together before being revealed, adding enough “confu-
sion” in the data to make it difficult to pinpoint exact times and locations (and sensor
data) for the individuals reporting the data. Even if an adversary knows that a user Alice
has reported data, the attacker is unable to distinguish Alice’s report from k− 1 other
reports. Existing server-based techniques apply location and time blurring (known as
spatial and temporal cloaking) for combining reports to provide k-anonymity [17, 15,
12, 23, 29]. The main challenge with this approach, however, is that users must reveal
their private information to a trusted server, resulting in a single point of failure with
complete knowledge of users’ sensitive information. Approaches that aim to improve
the privacy against the system suggest the use of a peer-to-peer (p2p) mechanism for
users to aggregate data locally before presenting the data to the server [8, 13]. Unfor-
tunately, the p2p approach requires k− 1 other users to be online (i.e., present) in the
user’s vicinity. Ideally users should achieve k-anonymity even if the other k− 1 users
visit the same area at a later point within a particular time window (in this regard, a
server-based approach can combine reports from users who may have visited a particu-
lar location at different times). Another problem is that the k−1 users may be located
beyond the range of p2p communication (e.g., if Bluetooth is used). Mokbel and Chow
outline several challenges [28] in this space and suggest a multi-hop approach to reach
such nodes [8]. Their approach, however, assumes that nodes trust other nodes with their
location information. Ideally, the p2p protocol should require the nodes to anonymously
exchange and combine reports while preserving privacy. Secure multi-party computa-
tion [14] provides such solutions, but they are computationally expensive and require
the k parties to be online simultaneously, neither of which may be acceptable for mobile,
pervasive devices. Last, but not least, the k reports may come from within Alice’s of-
fice (e.g., during a meeting), making it obvious that Alice is at her office, exposing her
location privacy. Spatiotemporal cloaking must therefore take into account that some
spatial regions can leak information about users even if k-anonymity is obtained.

Local location blurring to improve k-anonymity. Location blurring by users’ de-
vices [20, 10] can indeed improve the privacy of users. In this approach, the granularity
of the user’s reported location is altered before sending the report to the system, thereby
adding uncertainty to the user’s location and hence protecting their identity. The level
of blurring, however, may not be sufficient to prevent deanonymization by the system.
For example, blurring Alice’s location to a region larger than her office might be insuf-
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ficient at 2am, when she is the only person usually present in that region at that time.
While existing solutions allow users to specify the amount of location blurring [30, 18],
we believe this approach is unrealistic for opportunistic sensing, which is a secondary
application with no direct benefit to the user. Therefore, an automatic mechanism is
needed to blur the user’s location without their intervention.

AnonySense—anonymous tasking and reporting. We present AnonySense, a general-
purpose framework for anonymous tasking that is designed to provide users with pri-
vacy from the ground up. Using AnonySense, applications can deliver tasks to anony-
mous nodes, and eventually collect reports from anonymous nodes. Furthermore, nodes
accepting tasks cannot be linked with nodes submitting reports. Since cryptographic
anonymity cannot prevent inference-based attacks on privacy, we provide a multi-
layered approach to improve the user’s privacy. We present a novel solution based on
tessellation, which partitions the geographical area into tiles large enough to preserve
the users’ privacy. Users report locations at the granularity of these tiles. At a high level,
a tile represents a region (centered on a public space) that k users normally visit during a
typical interval (e.g., 5 minutes), thereby ensuring that users cannot be identified within
a set of k users (with a high probability) if their report is indexed by tile and time inter-
val. Such an approach provides users with what we call “statistical k-anonymity” before
any report aggregation is performed, and therefore protects users’ privacy against the
system itself at a lower (first) layer. Our approach, therefore, provides users with loca-
tion privacy without requiring any user intervention, and is efficient because the amount
of blurring is determined locally without the need to communicate with other peers. In
this paper, we focus on blurring the location and time of a device’s reports, and as-
sume that environmental sensing itself does not leak (too much) information about the
reporting user to the system. To further protect the users’ privacy against applications,
however, reports are aggregated at a higher (second) layer to ensure that several, namely
`, reports are combined before sending context information to applications, thereby im-
plementing `-anonymity at the sensed-context level and providing better privacy against
applications. AnonySense thus ensures privacy throughout the tasking lifecycle without
requiring any user intervention.

Our contributions.

– We present AnonySense, a general-purpose framework for anonymous opportunis-
tic tasking, that allows any authorized application to leverage sensors on mobile
devices while preserving the privacy of users.

– We develop a new automatic local blurring technique where users report locations
based on a tessellation large enough to provide statistical k-anonymity against the
system. Additional report aggregation is performed to provide `-anonymity against
applications.

– We evaluate our tessellation technique based on real mobility traces representing
6,553 active users over 77 days and show that a reasonable tradeoff can be achieved
between users’ privacy and spatiotemporal granularity.

Paper outline. We present AnonySense’s architecture and formalize the notion of pri-
vacy in Section 2, then describe our tessellation-based technique in Section 3. We
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present our trust assumptions and protocol for anonymous tasking in Section 4, fol-
lowed by an evaluation of the privacy provided by tessellation in Section 5. We discuss
several related issues Section 6, and conclude in Section 7. Focused on anonymity, this
paper omits some design and implementation details of our system due to lack of space.

2 Architecture

In what follows, we describe the architecture of our context tasking and reporting sys-
tem, as well as the threat model and desired security properties.

2.1 System overview

AnonySense is a general-purpose system that allows applications to collect and process
(e.g., view, store, monitor and fuse) large volumes of sensed data from urban areas,
inspired by the MetroSense [5] vision of opportunistic sensing. Applications can spec-
ify tasks using an expressive language, annotated with appropriate spatial and tempo-
ral semantics. Applications can use collected data to learn, infer or analyze contextual
information related to everyday human-behavior patterns, natural phenomena and spo-
radic social or environmental events. Following the new sensor-networking paradigm
that leverages humans or mobile objects in the sensing infrastructure, AnonySense im-
plements context collection though opportunistic sensing, where mobile (mainly) sens-
ing devices voluntarily participate in the system’s data-sensing capabilities. Overall,
AnonySense offers the following core functionality: applications submit specifications
called tasks for collecting context through sensing, which are answered by the system
through a privacy-preserving opportunistic context-collection technique that employs a
mobile set of heterogeneous sensing entities.3

We identify three parties in our model: the application, the system and the users.
An application connects to the system through an interface to request collection of con-
text data from the users’ devices. Given a context request, the system employs a static
networking infrastructure that it owns and controls and a mobile sensing infrastruc-
ture that the users implement collectively. The static networking infrastructure consists
of servers that are responsible for anonymously contacting mobile sensor devices to
request sensor data, anonymously collecting sensor data back from the devices, and
aggregating the data into context information. The mobile sensing infrastructure con-
sists of individual users carrying sensor devices that dynamically participate in the data
collection process. AnonySense’s architecture is presented in Figure 1.

The primary goal for AnonySense is to protect users’ anonymity with respect to
their sensing activity; privacy is desirable not only in its own right, but also as a key
factor in encouraging voluntary participation [22]. Indeed, any opportunistic human-
centered sensing system should be protecting privacy of its members to support its
own existence and ensure proper context collection. AnonySense maintains anonymity
at two levels: protecting the user’s anonymity against the system (through anonymous

3 This is a necessity rather an assumption: indeed, participants in an opportunistic context collec-
tion system have different sensing profiles as they carry devices with different sensing capabil-
ities and they are not like-minded with respect to participation patterns and privacy concerns.
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Fig. 1. The AnonySense architecture. A collection of sensor-equipped mobile nodes
(MNs), owned by participating users, register (0) in the system through the registration
authority (RA); RA also certifies the authenticity of the system’s components: (1) the
task server (TS) and (2) report server (RS). Applications (App) submit (3) tasks to the
TS; the MNs occasionally download (4,5) new tasks from the TS using the Internet and
any available wireless access point (AP). The task specifies when the MN should sense
information, and under what conditions to submit reports. MNs report (6) sensed data
via APs and their reports eventually arrive (7) at the RS. At its convenience, the App
fetches (8) the data from the RS.

protocols and a tessellation-based technique for k-anonymous location blurring) and
protecting the user’s anonymity against the applications (through `-anonymous report
aggregation). Before describing these properties, we define the system’s components.

The mobile sensing infrastructure consists of individual mobile nodes (MNs), which
are devices with sensing, computation, memory, and wireless communication capabili-
ties. These mobile nodes may be motes or, we anticipate, cellphone-class devices. Mo-
bile nodes are carried by people, or are attached to moving objects, such as vehicles.4

The carrier of a node is the person carrying the node, or the owner of the vehicle.
Applications specify the desired context as tasks, which specify when and what

sensor readings to collect, and when to report these readings back to the system. After
accepting a task, an MN produces a series of reports, each of which is a tuple of the
form (taskID, location, time, data. . . ). We defined a simple and expressive Lisp-like
language called AnonyTL for applications to specify what reports to produce, over what
region of space-time, and under what conditions (either periodic or value threshold).

The static networking infrastructure consists of several components, each of which
may be distributed or replicated:

– A Task Server (TS) that accepts tasks from Apps, and distributes tasks to MNs.
– A Report Server (RS) that receives and aggregates sensor reports.
– A Registration Authority (RA) that registers participating users and their mobile

nodes, installing the AnonyTL interpreter and the cryptographic certificates neces-
sary to later validate the authenticity of the MN to the system, and certificates for
the MN to validate the authenticity of the TS and RS.

4 For simplicity we explicitly assume only mobile nodes. In general, our system can also in-
clude static nodes, attached to stationary objects (e.g., buildings), controlled by the system or
administered by individual members of the system.
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– A set of access points (APs) that are wired to the Internet. As described in Sec-
tion 4, we rely on APs to collect anonymous statistics about user associations for
the generation of tessellation maps.

2.2 Threat model and desired properties

Users participate in the system on a voluntary basis by enabling their mobile nodes to
respond to tasks distributed by the system and contribute reports. This opportunistic
sensing functionality, however, is implemented by nodes reporting sensed data while
their carriers are performing everyday activities, and thus tied to many aspects of users’
professional, personal and social lives. Consequently, data reports designed for context
collection carry explicit or implicit sensitive information about the carriers of the nodes.
This information is primarily related to a spatiotemporal component describing a user’s
activity, since any report annotated with a (time, location) pair clearly reveals the exact
time the carrier was at a certain location, and secondarily to a data-related component of
the report, i.e., the actual sensed data. On the surface, these reports are anonymous, that
is, they are not tagged by the node’s identifier. De-identified reports, however, may not
provide sufficient anonymity. By associating pairs of time and location with observed
or predictable activity patterns of individuals, sensitive information about carriers can
be revealed or inferred. Using recent terminology [24], the digital footprints left by
users implementing opportunistic sensing are easily obtainable and are a rich source of
information for inference about users’ location and activity. And even if such inferred
information cannot possibly form an undeniable attestation about a user’s behavior,5

it can easily provide statistical inferences about a user’s behavior that correspond to
reasonably high confidence levels or that can hold with almost certainty.

This threat is directly addressed by AnonySense. The adversary in our anonymity
model is an entity that, we must assume, has unlimited access to the users’ activities and
social, professional or personal every-day life patterns over an unlimited time window
extended both in the past and in the future but not in the present. That is, the adversary
is knowledgeable but not omniscient. In particular, we instantiate this entity to two
concrete cases: (1) the system itself, that is, the AnonySense software and hardware
and their owners, and (2) the applications and their users. We assume that these two
adversaries can observe, collect and learn any information related to the activities of any
number of individual users of the system, and the adversary’s goal is to deanonymize
reports obtained through AnonySense for the time period when a particular user is not
under direct observation by the adversary.

In this setting, our goal is to apply privacy-protection techniques in a trade-off be-
tween anonymity and context accuracy. We apply the principles of k-anonymity [34] to
design mechanisms that allow opportunistic sensing in our model, such that the follow-
ing two properties are satisfied:

Privacy against the system. To protect users against the system, we provide statistical
k-anonymity to any participating user. Thus, even though the system may observe

5 Indeed, since reports carry no identification labels (at least from a computational point of view
through the use of “unbreakable” cryptography), a user can always deny that a certain report
came from his or her device (e.g., if brought to court or been accused for a certain behavior).
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all reports, it is statistically difficult to link any report to a specific user within a
set of k users based on the location or timestamp within the report. Furthermore,
nodes also remain (statistically) k-anonymous during the process of receiving tasks
and sending reports. Here, k is a known, system parameter controlling the users’
anonymity against the system.

Privacy against applications. To protect users against the applications, we provide `-
anonymity to any participating user. That is, at least ` reports are combined together
before the aggregate is revealed to the application. Here, ` is an anonymity param-
eter enforced by the system. We impose no assumption on the relation of k and `.
In practice k might be equal to `.

Our techniques ensure that when a node is tasked, neither the TS nor any AP will
learn the identity of the node or its carrier. Similarly, when the node later sends a report,
neither the RS nor AP will be able to identify the node or its carrier. We also ensure
that the system cannot link the tasking event to the reporting events, or link the multiple
reports that a single node may submit.

In the next section, we present mechanisms that achieve the above goals.

3 Tessellation

To protect the user’s privacy against the system, an MN needs to blur the location in
its reports. We aim for a statistical form of k-anonymity, reporting a region rather than
a point. The challenge is to divide a geographical area into an appropriate set of re-
gions, such that each region is large enough to provide k-anonymity (usually), but small
enough to retain a reasonable level of location accuracy. Our method “tessellates” the
area into tiles, according to historical patterns of user locations.

Tessellation map generation. We assume that AnonySense has access to anonymous
user-presence data for the geographical area covered by the organization’s pervasive
environment. In our evaluation we show how such datasets are easily obtained from
Wi-Fi AP association counts from within the organization. Given recent historical data,
AnonySense generates a tessellation of the area such that each tile represents a region
that k users typically visit within a time interval t (e.g., 5 minutes). In reports sent to the
system, MNs include the tile ID (obtained from the tessellation map) and time interval
ID (time is partitioned into periods of length t). Users are, therefore, able to perform
local spatiotemporal cloaking.

We begin the tessellation by constructing a Voronoi diagram at the granularity of the
dataset. For example, if the data represents “location” symbolically by AP name, then
we first map the AP locations as points on a plane and then construct a Voronoi diagram.
For each resulting region (or polygon) we calculate the number of association counts
across all time periods, and compute the threshold number of association counts that
represent the p-th percentile of all the counts. For example, with p = 95%, a polygon
may have threshold value 12, indicating that 95% of the time periods have at least 12
associated users. In effect, we expect high values of p to be better predictors of k-
anonymity, as is verified in Section 5. Next, we cluster the resulting polygons into tiles
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such that the sum of the threshold values for each polygon exceeds k. We use this value
of k as the predicted statistical k-anonymity provided by each tile.

In Section 5 we describe our approach as applied to a specific dataset, and study
how much a user’s actual k-anonymity deviates from the predicted k-anonymity.

4 Protocol

Before we describe our privacy-preserving protocol for anonymous tasking and report-
ing, we detail the trust assumptions between the various entities in AnonySense.

4.1 Trust assumptions.

Mobile nodes. We assume that all MNs communicate with the TS and RS using Wi-Fi
APs. MNs do not trust the APs to maintain their location privacy. For now we assume
that APs are owned by a single organization, and may collude with the TS and RS. MNs
trust the RA to certify the identities of TS and RS. The MN, therefore, can establish
secure connections (e.g., SSL) to the correct TS and RS. Likewise, the RA certifies
each MN, which can then prove to the TS and RS that it is a valid node in the system.
As we explain below, MNs can prove their validity anonymously.

Applications. Like MNs, applications also trust the RA to certify the TS and RS. Apps
must trust the TS and RS to deploy tasks and collect reports as demanded and, addi-
tionally, to collect reports only from valid MNs. For now Apps are not certified. In the
future we may either require Apps to authenticate, or require the querier (user of the
App) to authenticate.

Task Server and Report Server. The TS and RS trust the RA to certify valid MNs in the
system. The RA is responsible for issuing calibration certificates to MNs, attesting to
the fact that the MNs’ sensors are properly calibrated, as well as authentication certifi-
cates. For simplicity, we assume an authentication scheme such as Direct Anonymous
Attestation (DAA) [2], but it may also be possible to use other proposed anonymous au-
thentication schemes [3]. If MNs include trusted hardware such as the Trusted Platform
Module (TPM) [36],6 DAA can also allow the TS to verify the integrity of the MN. For
example, the TPM can assert that the MN has not been tampered with, and is running
unmodified and authorized software. We leave such TPM-based “remote attestation” to
future work.

4.2 Tasking protocol

We first consider the protocol for anonymously assigning tasks to MNs.

6 TPMs are now installed on most new laptops, and we expect mobile devices to include TPMs
in the near future as well [27].
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Task Generation. The App generates a task using the tasking language and sends the
task to the TS using a server-authenticated SSL channel. This way, the TS accepts tasks
from applications and can avoid tampering by third parties. As part of the task, the
application specifies an expiration date, after which the task is deleted by the TS and
MNs. The TS generates a unique task ID for the task, and sends the application an
acknowledgment that contains this task ID along with a TS-signed certificate for the
task ID. The application later uses this certificate to access reports for the task.

Tasking language. The AnonyTL tasking language allows an application to specify a
task’s behavior by providing a set of acceptance conditions, report statements, and ter-
mination conditions. The acceptance conditions are evaluated by the MN after retrieving
tasks from the TS; for example, these conditions indicate that the MN must have certain
sensors. Report statements periodically check a set of report conditions against polled
sensor values, and if the conditions are met, report application-specified fields to the RS.
These periodic evaluations continue until a termination condition is satisfied, at which
point the task is removed from the MN’s task pool. We note that tasks are not executable
code; tasks specify sensor readings desired at a particular granularity, and under what
conditions an MN should report data. As a simple example, the following task collects
temperature measurements from sensing devices in the Sudikoff building every one
minute, and reports temperature values that do not belong to ComfLevel, a predefined
range of comfortable temperatures, after being annotated with the corresponding time
and location of the reading.

( Task 2 0 5 3 4 ) ( E x p i r e s 1896000453)
( Accept ( In l o c a t i o n ‘ s u d i k o f f ’ ) )
( Re po r t ( temp senseTime l o c a t i o n )

( Every 1 Min ) ( Not ( In temp ComfLevel ) ) )

Tasking Nodes. When MNs have Internet access, they periodically poll the TS for tasks
over a server-authenticated SSL channel. For each connection, the MN uses DAA to
prove to the TS that it is a valid MN in the system, without revealing its identity. The
TS delivers all outstanding tasks to the MN. (In future work, MNs may download a
random subset of tasks, or the MN may also reveal certain attributes thereby reducing
the number of tasks downloaded at the expense of some privacy.)

Since the MNs do not trust APs with their location privacy, an MN contacts the TS
only when it is associated with a popular AP, that is, the AP’s polygon alone meets the
k-anonymity test.

The MN ignores any tasks it has considered in an earlier download, and considers
the acceptance conditions of new tasks. During DAA, an MN proves to the TS that it is a
valid node, and if TPM-enabled, can prove that it is operating in a secure configuration.
The task is deactivated on the TS when it reaches its expiration date.

Reporting. The MN processes the task using the AnonyTL interpreter, reading sensors
when required and generating reports as necessary. The MN stores reports in an outgo-
ing queue; when the network is available, and there are queued reports, the MN contacts
the RS over a server-authenticated and encrypted channel. As with the tasking proto-
col, MNs submit reports only when connected to popular (k-anonymous) APs. The MN
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uses DAA to prove its validity to the RS without exposing its identity. To prevent the
RS from linking multiple reports within or across tasks, the MN must make a separate
connection to the RS for each report.7 Most importantly, the time and location values
in the report are specified using the granularity from the tessellation map. Location is
reported at the granularity of tiles, and time is reported at the granularity of time periods
used for generating those tiles. As a result, users are given statistical k-anonymity based
on the historical implication that the number of users visiting this tile in this interval is
likely to be greater than k.

Data Fusion. The RS aggregates reports from a task before delivering the aggregated
results to the application. Reports are combined using standard k-anonymity techniques
with parameter `, according to which individual fields of the reports are either general-
ized (i.e., values become less specific) or suppressed (i.e., values are not released). This
`-anonymity provides the second layer of privacy protection to the mobile user. The
specific aggregation method depends on many factors such as the type of data sensed
(such as a picture, an audio file, or temperature reading) and the needs of the App. A
detailed discussion of aggregation methods is beyond the scope of this paper.

Report Collection. The App polls the RS for available context using a server-
authenticated and encrypted channel. The application presents the TS-issued certificate
with the task ID, proving that it is authorized to access the reports for that task. Encryp-
tion prevents eavesdroppers from learning potentially sensitive context data.

MAC Address Recycling. Using DAA for anonymous authentication is useless if an
MN can be tracked using its static MAC address, because MNs assume the APs may
collude with other components of the system. We assume the MN changes its MAC and
IP addresses using one of the standard mechanisms [16, 21] so that an MN’s report and
task actions may not be linked, but leave its implementation to future work. Addresses
should be recycled for each report for maximum privacy, thereby ensuring reports are
unlinkable. Recently, Pang et al. have shown how users’ privacy can be reduced through
802.11 fingerprinting [31], so it may be necessary to seek other methods beyond MAC-
address rotation to maintain privacy against especially snoopy APs.

5 Evaluation

Due to the ready availability of wireless traces from CRAWDAD.org, we did not per-
form a live simulation of AnonySense on real devices. Instead, we used historical move-
ment traces to run simulations for different system parameters.

We generated a tessellation of the Dartmouth College campus based on the data
set publicly available from CRAWDAD [25]. This data set represents the locations of
(anonymized) wireless-network users: each entry represents a user’s device associating,
reassociating, or disassociating from an AP on campus. Before constructing the Voronoi
diagram, as described in Section 3, we flattened the AP locations to two dimensions
by ignoring the “floor number” provided for each AP. (We leave three-dimensional

7 For performance reasons we plan to explore batch reporting, at some trade-off to privacy.
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tessellation for future work.) This planarization step causes some locations to have tight
clusters of APs that result when a tall building has an AP at the same location on every
floor; thus, we group APs that are within a certain Euclidean distance of each other
into a single AP. Given this set of points on the plane, we generated a Voronoi diagram
to produce a polygon for each AP, and applied our clustering algorithm to generate a
tessellation of the geographical region. We generated tessellation maps for 6-hour time
periods in the day (due to varying mobility patterns throughout the day), and focused
only on the time period 12noon–6pm in our experiments.

Figure 2 shows a tessellation for k = 10, with a time granularity of 10 minutes.
The points within the tiles indicate the locations of APs that were clustered together
for that tile. There are 90 tiles in Figure 2, the smallest and largest being 82 m2 and
2,694,063 m2, with a median area of 1629 m2. We note that the tiles near the edges of
the Dartmouth campus tend to have a large area because we do not crop the tiles to the
general campus area.

Fig. 2. We generated a Voronoi diagram using the set of APs (represented as black
dots). We then combined neighboring polygons to form tiles, the colored tiles in the
figure, such that k ≥ 10 for each tile between the hours of 12pm–6pm from 9/24/2003–
10/31/2003. In general, the area of a tile is roughly inversely proportional to the number
of AP associations in that area.

Although the tessellation map was generated using historic AP visitation data, we
expect a user’s k-anonymity to be similar to the historically observed values. To eval-
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Fig. 3. This graph plots the median of the actual k-anonymity attained across all tiles
against the desired k-anonymity. We can see that the expected minimum k-anonymity
closely matches the desired k-anonymity regardless of the time interval used.

uate this claim, we measured the deviation of a user’s anonymity from the expected k-
anonymity using the same 2003 Dartmouth dataset. We generated the tessellation map
for data from the 24 September–31 October range, first half of their Fall term, and then
evaluated AnonySense with the visits from the 1 November–10 December range. This
was done by calculating the effective anonymity for each tile using the same counting
heuristic used in its generation, at the 95th percentile (i.e., 95% of the time, what value
was the tile’s effective k-anonymity greater than?) Figure 3 illustrates the performance
of our technique for various time blurring intervals. The objective is to achieve a simu-
lated k-anonymity equal to the desired k-anonymity parameter (95% of the time) used to
generate the tiling, and the figure demonstrates that this level of k-anonymity is closely
matched with the expected value. It also shows that the accuracy of our tiling method
is mostly independent of the time interval used to generate the tiling. This is important,
as it means that it is possible to select a time interval without sacrificing anonymity
(although, of course, spatial accuracy will be sacrificed, as we show in Figure 4.)

We then evaluated the trade-off between temporal and spatial accuracy, for different
levels of k-anonymity. Figure 4 shows this trade-off, with a roughly inverse relationship
between the two. This result, along with the fact that the quality (with respect to k-
anonymity) of our tessellations is independent of the time interval chosen, means that
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Fig. 4. This graph plots the median spatial granularity against the chosen time granular-
ity for various values of desired k-anonymity. We see that for a given k, time granularity
can be traded off for spatial granularity. Increasing the amount of k anonymity requires
larger tiles, and thus reduces the spatial granularity. Note the log scale.

statistical k-anonymity can be maintained regardless of an application’s desired spatial
accuracy, at the cost of temporal accuracy.

Finally, we evaluated the distribution of actual k-anonymity for specific instances
of our tessellation. Figure 5 shows one such distribution for k = 10 and t = 10. The
histogram shows that our algorithm not only gives anonymity to a majority of users, but
actually gives most users significantly greater anonymity than the tessellation parame-
ters require.

We note that the clustering algorithms used to generate the tessellation are not nec-
essarily ideal. As can be seen in Figure 2, some of the tiles have elongated and irregular
shapes, which would not necessarily translate to “useful” locality readings from a hu-
man point of view. Although the shapes of the tiles do not affect AnonySense’s privacy
properties (assuming the basic tile generation rules are met), more sophisticated cluster-
ing algorithms that favor compact tiles might give better results, while still maintaining
similar values for k.
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6 Discussion

There are many issues raised by this approach, and several challenges remain.

Real-time information. Due to the opportunistic nature of its sensing model, Anony-
Sense is inherently not a real-time context collection system. Not only is there an in-
evitable system delay arising from intermittent MN connectivity and task acceptance
conditions, but AnonySense intentionally maintains the time-location trade-off for a
given level of k-anonymity. Thus, an application needing timely information would
likely sacrifice significant location accuracy at all but the busiest of sensing locations.

Varying the degree of k-anonymity. One natural suggestion would be to allow users
to specify their desired degree of k-anonymity, and pick the right tile to match the
specified k. We caution against this approach, because the user’s preferred degree of
anonymity can itself leak information about the user. Consider the example where a
known paranoid user prefers k-anonymity with k = 200. Receiving a report with a large
blurred range can be linked to that user. Users’ privacy is therefore maximized when all
users use the same value of k.
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Privacy. AnonySense takes a conservative approach at providing users with privacy,
by blurring all dimensions of a report. Specifically, ` reports are combined so that time,
location, and sensor readings are aggregated according to standard techniques used in
the literature. We plan to explore other forms of privacy, where the fidelity of some
dimensions of reports are preserved. For example, location blurring may be sufficient to
provide users with privacy even if their identities are known. Indeed, much of the work
on location privacy related to sharing location with contacts assumes that the identity of
the person is known, and the location is blurred enough to provide users with privacy.
AnonySense, however, aims to provide stronger privacy. For example, Alice may select
a campus-level location granularity, but still leaks the exact time she arrives on campus.

Security metrics. Quantifying the privacy of users is a hard problem. We assume a
strong attack model, where adversaries can build histories of users, and then try to
deanonymize reports obtained from the tasking service. We further assume that the sys-
tem itself may misuse the information about the time and location of sensor reports,
by blurring the location and time, but we trust the system to properly anonymize (ag-
gregate) the sensor data. Blurring the sensor data at the nodes may be possible, using
a similar tessellation map built from historical sensor data. We do not evaluate such
an approach because of lack of data. Furthermore, we believe that the blurring of en-
vironmental sensor data (such as room temperature or pollution levels) will provide
diminishing returns to a user’s privacy in addition to what is already provided by time
and location blurring.

Collecting user-presence data. For simplicity we assume that users trust an entity called
the Map Server (MS) to collect AP-association traces and generate the tessellation map
accurately. There are several avenues for future work for MNs to maintain anonymous
associations with the APs, but allow the APs to accurately count MNs, and allow the
MNs to verify the accuracy of the resulting map. We hint at two such approaches based
on standard cryptographic techniques. (1) Users authenticate with APs using a variant
of anonymous authentication that allows only one authentication per time period [4].
Users obtain a token from the APs certifying that some anonymous user successfully
associated with that AP. The user posts this token onto a public bulletin board. These
AP-association “logs” can be then used for generating tessellation maps. Using the
publicly posted information, users can verify that their associations have been used in
generating the tessellation map. Note that the bulletin board is not trusted storage. If the
bulletin board cheats by throwing away some data, it can be observed by users with high
probability. Such techniques are common to e-voting protocols [7]. (2) Alternatively,
users can maintain a vector of location visits during a day (e.g., using GPS traces or by
counting their AP associations) and upload their vectors to the bulletin board at the end
of the day. Such techniques are standard to the “homomorphic encryption” family of
e-voting protocols [9].

Location data, and tessellation. We describe our tessellation approach using data about
the location history of wireless-network users, which is provided as a sequence of as-
sociations with Wi-Fi APs. The movements are discrete, hopping from one location to
another, and the locations are discrete points on the plane. In other settings, such as
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locations obtained from GPS, the locations are continuous (any coordinate on the earth)
and the movements may be less discrete (a path connecting waypoints). We believe that
our tessellation approach can be adapted to other location models, such as heat maps
showing continuous mobility distribution, although the details remain future work.

7 Conclusions

We present AnonySense, a comprehensive system aimed at preserving the privacy of
users in opportunistic-sensing environments. AnonySense uses a protocol for anony-
mous tasking and reporting, and performs report aggregation to provide k-anonymity
against applications. We show how users can proactively improve their privacy against
the system by using a novel technique based on tessellation. Using our technique, users’
devices can automatically blur time and location information in reports to provide users
with statistical k-anonymity. Automatic blurring is achieved by reporting locations at
the granularity of tiles, where the tiles are generated based on historical data. We eval-
uated our approach using real AP-association traces from the CRAWDAD dataset rep-
resenting 6,553 active users over 77 days and show that a reasonable tradeoff can be
achieved between users’ privacy and spatiotemporal granularity.
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