
Copyright 1994 by the authors

Disk�directed I�O for MIMD Multiprocessors

David Kotz

Department of Computer Science

Dartmouth College

Hanover� NH �����

dfk�cs�dartmouth�edu

Dartmouth PCS�TR�����	

July ���
���
Revised November �� ����

Abstract

Many scienti�c applications that run on today�s multiprocessors� such as weather forecast�
ing and seismic analysis� are bottlenecked by their �le�I�O needs� Even if the multiprocessor
is con�gured with su�cient I�O hardware� the �le�system software often fails to provide the
available bandwidth to the application� Although libraries and enhanced �le�system interfaces
can make a signi�cant improvement� we believe that fundamental changes are needed in the
�le�server software� We propose a new technique� disk�directed I�O� to allow the disk servers to
determine the �ow of data for maximum performance� Our simulations show that tremendous
performance gains are possible� Indeed� disk�directed I�O provided consistent high performance
that was largely independent of data distribution� obtained up to �	
 of peak disk bandwidth�
and was as much as �� times faster than traditional parallel �le systems�

� Introduction

Scienti�c applications like weather forecasting� aircraft simulation� seismic exploration� and climate

modeling are increasingly being implemented on massively parallel supercomputers� Applications

like these have intense I�O demands� as well as massive computational requirements� Recent

multiprocessors have provided high�performance I�O hardware� in the form of disks or disk arrays

attached to I�O processors connected to the multiprocessor�s interconnection network� but e�ective

�le�system software has yet to be built�

Today�s typical multiprocessor has a rudimentary parallel �le system derived from Unix� While

Unix�like semantics are convenient for users porting applications to the machine� the performance

This research was funded by Dartmouth College� A condensed form of this text appears in the First Symposium
on Operating Systems Design and Implementation �OSDI�� November ����� This revised technical report updates a
few of the traditional�caching numbers from the OSDI paper �see page ���� but makes no qualitative changes�

�

is often poor� Poor performance is not surprising because the Unix �le system was designed for

a general�purpose workload �OCH�	
�� rather than for a parallel� scienti�c workload� Scienti�c

applications use larger �les and have more sequential access �MK��� GGL�� PP��� Parallel

scienti�c programs access the �le with patterns not seen in uniprocessor or distributed�system

workloads� in particular� complex strided access to discontiguous pieces of the �le �KN��� NK����

Finally� scienti�c applications use �les for more than loading raw data and storing results� �les are

used as scratch space for very large problems as application�controlled virtual memory �CK��� In

short� multiprocessors need new �le systems that are designed for parallel scienti�c applications�

In this paper we describe a technique that is designed speci�cally for high performance on paral�

lel scienti�c applications� It is most suited for MIMD multiprocessors that have no remote�memory

access� and that distinguish between I�O Processors �IOPs�� which do �le�system processing� and

Compute Processors �CPs�� which do mostly application processing� Figure � shows such an archi�

tecture� The IBM SP��� Intel iPSC� Intel Paragon� KSR��� Meiko CS��� nCUBE��� and Thinking

Machines CM�
 all use this model� the CS�� and the SP�� allow IOPs to double as CPs� Fur�

thermore� our technique is best suited to applications written in a single�program�multiple�data

�SPMD� or data�parallel programming model� With our technique� disk�directed I�O� CPs collec�

tively send a single request to all IOPs� which then arrange the �ow of data to optimize disk� bu�er�

and network resources�

We begin by advocating a �collective�I�O� interface for parallel �le systems� Then� in Sections

and �� we consider some of the ways to support collective I�O and our implementation of these

alternatives� Section
 describes our experiments� and Section � examines the results� We contrast

our system to related work in Section �� and summarize our conclusions in Section 	�

� Collective I�O

Consider programs that distribute large matrices across the processor memories� and the task of

loading such a matrix from a �le�� From the point of view of a traditional �le system� each processor

independently requests its portion of the data� by reading from the �le into its local memory� If

that processor�s data is not logically contiguous in the �le� as is often the case �KN���� a separate

�le�system call is needed for each contiguous chunk of the �le� The �le system is thus faced with

�This scenario arises in many situations� The 	le may contain raw input data or may be a scratch 	le written in
a previous phase of the application� The matrix may be the whole data set� or may be a partition of a larger data
set� for example� a
�d slice of a ��d matrix� Furthermore� the operation may be synchronous� with the application
waiting for I�O to complete� or asynchronous� perhaps as the result of a compiler�instigated prefetch request�

�

Network

Memory

Memory

Memory

Disk

Disk

Disk

I�O Processor

I�O Processor

I�O Processor

Memory

Memory

Memory

Compute Processor

Compute Processor

Compute Processor

Interconnection

Figure �� Parallel Independent Disks �PID� in an MIMD multiprocessor� with separate compute
processors �CP� and I�O processors �IOP��

concurrent small requests from many processors� instead of the single large request that would

have occurred on a uniprocessor� Indeed� since most multiprocessor �le systems �CF��� FPD��

Pie	�� Roy�� DdR��� LIN��� BGST�� Dib��� DSE		� decluster �le data across many disks�

each application request may be broken into even smaller requests that are sent to di�erent IOPs�

It is di�cult for the �le system� which is distributed across many I�O processors� to recognize

these requests as a single coordinated request� and to use that information to optimize the I�O�

Valuable semantic information � that a large� contiguous� parallel �le transfer is in progress �

is lost through this low�level interface� A collective�I�O interface� in which all CPs cooperate to

make a single� large request� retains this semantic information� making it easier to coordinate I�O

for better performance �dBC�� Nit��� PGK		��

Collective I�O need not involve matrices� Many out�of�core parallel algorithms do I�O in �mem�

oryloads�� that is� they repeatedly load some subset of the �le into memory� process it� and write it

out �CK��� Each transfer is a large� but not necessarily contiguous� set of data� Traditional caching

and prefetching policies� geared for sequential access� would be ine�ective or even detrimental for

this type of I�O�

Unfortunately� few multiprocessor �le systems provide a collective interface� Most have an

interface based on simple parallel extensions to the traditional read�write�seek model� focusing on

coordination of the �le pointer� Vesta �CF��� and the nCUBE �le system �DdR��� support logical

mappings between the �le and processor memories� de�ning separate �sub�les� for each processor�

Although these mappings remove the burden of managing the �le pointer from the programmer�

and allow the programmer to request noncontiguous data in a single request� there is no support for

collective I�O� CM�Fortran for the CM�
 does provide a collective�I�O interface� which leads to high

performance through cooperation among the compiler� run�time� operating system� and hardware�

ELFS �KGF��� provides an object�oriented interface that encourages operations on large objects�

and could lead to support for collective I�O� Finally� there are several interfaces for collective matrix

I�O �GGL�� BdC�� BBS����� For example� to read a two�dimensional matrix of integers in the

notation of �GGL��� every processor executes the following code�

�� describes my part of matrix ��

PIFArrayPart mypart��� � ��� �

�� memory for my part ��

int �A � malloc����	�

PIFILE �fp � PIFOpen����	�

PIFReadDistributedArray�fp
 NULL
 sizeof�int	
 mypart
 �
 A
 MSG�INT	�

Thus� the groundwork for collective I�O exists� The challenge is to provide mechanisms that

use the semantic�information content of collective operations to improve performance�

� Collective�I�O implementation alternatives

In this paper we consider collective�read and �write operations that transfer a large matrix between

CP memories and a �le that is declustered� block by block� over many IOPs and disks� The

matrix is distributed among the CPs in various ways� but within each CP the data is contiguous

in memory� We discuss three implementation alternatives� traditional caching� two�phase I�O� and

disk�directed I�O� The latter two require a collective�I�O interface similar to that of Galbreath

et al �GGL��� above�

Traditional caching� This alternative mimics a �traditional� parallel �le system like Intel

CFS �Pie	��� with no explicit collective�I�O interface and with IOPs that each manage a �le cache�

Figure �a shows the function called by the application on the CP to read its part of a �le� and

�

the corresponding function executed at the IOP to service each incoming CP request� Recall that

each application process must call ReadCP once for each contiguous chunk of the �le� no matter

how small� Each IOP attempts to dynamically optimize the use of the disk� cache� and network

interface�

Two�phase I�O� Figure �b sketches an alternative proposed by del Rosario� Bordawekar� and

Choudhary �dBC�� BdC��� which permutes the data among the CP memories before writing or

after reading� Thus� there are two phases� one for I�O and one for an in�memory permutation� The

permutation is chosen so that requests to the IOPs �conform� to the layout of the �le� that is� the

requests are for large contiguous chunks�

Disk�directed I�O� We go further by having the CPs pass the collective request on to the

IOPs� which then arrange the data transfer as shown in Figure �c� This disk�directed model� which

essentially puts the disks �IOPs� in control of the order and timing of the �ow of data� has several

potential performance advantages�

� The I�O can conform not only to the logical layout of the �le� as in two�phase I�O� but to

the physical layout on disk�

� The disk�I�O phase is integrated with the permutation phase�

� There is only one I�O request to each IOP� subsequent communication uses only low�overhead

data�transfer messages�

� Disk scheduling is improved� possibly across megabytes of data� in Figure �c� the IOPs presort

the block list for each disk�

� Prefetching and write�behind require no guessing� and thus make no mistakes�

� Bu�er management is perfect� needing little space �two bu�ers per disk per �le�� and capturing

all potential locality advantages�

� No additional memory or memory�memory copying is needed at the CPs for bu�ering�

message�passing� or permuting data�

� There is no communication among the IOPs and none� other than barriers� among the CPs�

The cost of these barriers is negligible compared to the time needed for a large �le transfer�

a
�
T
ra
d
it
io
n
a
l
c
a
c
h
in
g

R
e
a
d
C
P
�
f
i
l
e
�
r
e
a
d
p
a
r
a
m
e
t
e
r
s
�
d
e
s
t
i
n
a
t
i
o
n
a
d
d
r
e
s
s
�
�

f
o
r
e
a
c
h
f
i
l
e
b
l
o
c
k
n
e
e
d
e
d
t
o
s
a
t
i
s
f
y
r
e
q
u
e
s
t

c
o
m
p
u
t
e
w
h
i
c
h
d
i
s
k
h
o
l
d
s
t
h
a
t
f
i
l
e
b
l
o
c
k

i
f
o
u
r
p
r
e
v
i
o
u
s
r
e
q
u
e
s
t
t
o
t
h
a
t
d
i
s
k
i
s
s
t
i
l
l
o
u
t
s
t
a
n
d
i
n
g
�

w
a
i
t
f
o
r
r
e
s
p
o
n
s
e
a
n
d
d
e
p
o
s
i
t
d
a
t
a
i
n
t
o
u
s
e
r
�
s
b
u
f
f
e
r

s
e
n
d
n
e
w
r
e
q
u
e
s
t
t
o
t
h
a
t
d
i
s
k
�
s
I
O
P
f
o
r
t
h
i
s
�
p
a
r
t
i
a
l
�
b
l
o
c
k

e
n
d

w
a
i
t
f
o
r
a
l
l
o
u
t
s
t
a
n
d
i
n
g
r
e
q
u
e
s
t
s
�

R
e
a
d
I
O
P
�
f
i
l
e
�
r
e
a
d
p
a
r
a
m
e
t
e
r
s
�
�

l
o
o
k
f
o
r
t
h
e
r
e
q
u
e
s
t
e
d
b
l
o
c
k
i
n
t
h
e
c
a
c
h
e

i
f
n
o
t
t
h
e
r
e

f
i
n
d
o
r
m
a
k
e
a
f
r
e
e
c
a
c
h
e
b
u
f
f
e
r

a
s
k
d
i
s
k
t
o
r
e
a
d
t
h
a
t
b
l
o
c
k
i
n
t
o
c
a
c
h
e
b
u
f
f
e
r

r
e
p
l
y
t
o
C
P
�
i
n
c
l
u
d
i
n
g
d
a
t
a
f
r
o
m
c
a
c
h
e
b
u
f
f
e
r

c
o
n
s
i
d
e
r
p
r
e
f
e
t
c
h
i
n
g
o
r
o
t
h
e
r
o
p
t
i
m
i
z
a
t
i
o
n
s

b
�
T
w
o
�p
h
a
se
I�
O

C
o
l
l
e
c
t
i
v
e
R
e
a
d
C
P
�
f
i
l
e
�
r
e
a
d
p
a
r
a
m
e
t
e
r
s
�
d
e
s
t
i
n
a
t
i
o
n
a
d
d
r
e
s
s
�
�

B
a
r
r
i
e
r
�
C
P
s
u
s
i
n
g
t
h
i
s
f
i
l
e
�
�
t
o
e
n
s
u
r
e
t
h
a
t
a
l
l
a
r
e
r
e
a
d
y

d
e
c
i
d
e
w
h
a
t
p
o
r
t
i
o
n
o
f
t
h
e
d
a
t
a
t
h
i
s
p
r
o
c
e
s
s
o
r
s
h
o
u
l
d
r
e
a
d

�
c
o
n
f
o
r
m
i
n
g
t
o
t
h
e
f
i
l
e
l
a
y
o
u
t
�

f
o
r
e
a
c
h
c
o
n
t
i
g
u
o
u
s
c
h
u
n
k
o
f
t
h
e
f
i
l
e
t
h
i
s
p
r
o
c
e
s
s
o
r
s
h
o
u
l
d
r
e
a
d

R
e
a
d
C
P
�
f
i
l
e
�
o
n
e
c
h
u
n
k
�

B
a
r
r
i
e
r
�
C
P
s
u
s
i
n
g
t
h
i
s
f
i
l
e
�
�
t
o
w
a
i
t
f
o
r
a
l
l
I
�
O
t
o
c
o
m
p
l
e
t
e

r
u
n
p
e
r
m
u
t
a
t
i
o
n
a
l
g
o
r
i
t
h
m
t
o
s
e
n
d
d
a
t
a
t
o
c
o
r
r
e
c
t
d
e
s
t
i
n
a
t
i
o
n

B
a
r
r
i
e
r
�
C
P
s
u
s
i
n
g
t
h
i
s
f
i
l
e
�
�
t
o
w
a
i
t
f
o
r
p
e
r
m
u
t
a
t
i
o
n
t
o
c
o
m
p
l
e
t
e

R
e
a
d
I
O
P

�a
s
a
bo
ve
�

c
�
D
is
k
�d
ir
e
c
te
d
I�
O

C
o
l
l
e
c
t
i
v
e
R
e
a
d
C
P
�
f
i
l
e
�
r
e
a
d
p
a
r
a
m
e
t
e
r
s
�
d
e
s
t
i
n
a
t
i
o
n
a
d
d
r
e
s
s
�
�

a
r
r
a
n
g
e
f
o
r
i
n
c
o
m
i
n
g
d
a
t
a
t
o
b
e
s
t
o
r
e
d
a
t
d
e
s
t
i
n
a
t
i
o
n
a
d
d
r
e
s
s

B
a
r
r
i
e
r
�
C
P
s
u
s
i
n
g
t
h
i
s
f
i
l
e
�
�
t
o
e
n
s
u
r
e
t
h
a
t
a
l
l
b
u
f
f
e
r
s
a
r
e
r
e
a
d
y

a
n
y
o
n
e
C
P
�

m
u
l
t
i
c
a
s
t
�
C
o
l
l
e
c
t
i
v
e
R
e
a
d
�
f
i
l
e
�
r
e
a
d
p
a
r
a
m
e
t
e
r
s
�
t
o
a
l
l
I
O
P
s

w
a
i
t
f
o
r
a
l
l
I
O
P
s
t
o
r
e
s
p
o
n
d
t
h
a
t
t
h
e
y
a
r
e
f
i
n
i
s
h
e
d

B
a
r
r
i
e
r
�
C
P
s
u
s
i
n
g
t
h
i
s
f
i
l
e
�
�
t
o
w
a
i
t
f
o
r
a
l
l
I
�
O
t
o
c
o
m
p
l
e
t
e

C
o
l
l
e
c
t
i
v
e
R
e
a
d
I
O
P
�
f
i
l
e
�
r
e
a
d
p
a
r
a
m
e
t
e
r
s
�
�

d
e
t
e
r
m
i
n
e
t
h
e
s
e
t
o
f
f
i
l
e
d
a
t
a
l
o
c
a
l
t
o
t
h
i
s
I
O
P

d
e
t
e
r
m
i
n
e
t
h
e
s
e
t
o
f
d
i
s
k
b
l
o
c
k
s
n
e
e
d
e
d

s
o
r
t
t
h
e
d
i
s
k
b
l
o
c
k
s
t
o
o
p
t
i
m
i
z
e
d
i
s
k
m
o
v
e
m
e
n
t

u
s
i
n
g
d
o
u
b
l
e
�
b
u
f
f
e
r
i
n
g
f
o
r
e
a
c
h
d
i
s
k
�

r
e
q
u
e
s
t
b
l
o
c
k
s
f
r
o
m
t
h
e
d
i
s
k

a
s
e
a
c
h
b
l
o
c
k
a
r
r
i
v
e
s
f
r
o
m
d
i
s
k
�

s
e
n
d
p
i
e
c
e
�
s
�
t
o
t
h
e
a
p
p
r
o
p
r
i
a
t
e
C
P
s

w
h
e
n
c
o
m
p
l
e
t
e
�
s
e
n
d
m
e
s
s
a
g
e
t
o
o
r
i
g
i
n
a
l
r
e
q
u
e
s
t
i
n
g
C
P

F
ig
u
re
�
�
P
se
u
d
o
�c
o
d
e
fo
r
co
ll
ec
ti
v
e�
re
a
d
im
p
le
m
en
ta
ti
o
n
s�
C
o
ll
ec
ti
v
e
w
ri
te
s
a
re
si
m
il
a
r�

�

� Evaluation

We implemented both a traditional�caching system and a disk�directed�I�O system on a simulated

MIMD multiprocessor �see below�� We did not implement two�phase I�O because� as we discuss in

Section ���� disk�directed I�O obtains all the bene�ts of two�phase I�O� and more� In this section�

we describe our simulated implementation�

Files were striped across all disks� block by block� Each IOP served one or more disks� using

one I�O bus� Each disk had a thread permanently running on its IOP� that controlled access to the

disk� The disk thread corresponded with threads representing CP requests through a disk�request

queue�

Message�passing and DMA� Since we assumed there was no remote�memory access� we had to

depend on message passing for data transfer� We did assume� however� that the network interface

had a direct�memory access �DMA� capability� Our implementation used DMA to speed message

passing in several ways� Each message was encoded so that the interrupt handler on the receiving

processor could quickly decide where to deposit the contents of the message� using DMA� For

requests to the IOP� it created a new thread and deposited the message in the thread�s stack� Part

of each request was the address of a reply action� a structure on the CP which contained the address

where a reply could be written� and the identity of a thread to wake after the reply arrived� The

IOP included this reply�action address in its reply to a request� for the CP�s interrupt handler to

interpret�

In addition to the request�reply messages� the IOP could use �Memget� and �Memput� mes�

sages to read and write the user�s bu�er on the CPs� Every CP provided a base address to

its message�passing system� so that the IOPs only referred to o�sets within each CP� Memput

messages contained data� and returned only an acknowledgement� Memget messages contained a

reply�action address� and returned a reply containing the requested data�

Disk�directed I�O� Each IOP received one request� creating one new thread� The new thread

computed the list of disk blocks involved� sorted the list by location� and informed the relevant

disk threads� It then allocated two one�block bu�ers� for each local disk� and created a thread

to manage each bu�er� While not absolutely necessary� the threads simpli�ed programming the

concurrent activities� These bu�er threads repeatedly transferred blocks� letting the disk thread

�Larger bu�ers could be used� but with todays track�bu�ering disk devices� they are not particularly helpful�

�

choose which block to transfer next� When reading� they used Memput messages to move data

from the IOP memory to the CP memories� When writing� they sent Memget messages to the CPs�

causing them to reply with a message containing the requested data� When possible the thread

sent concurrent Memget or Memput messages to many CPs�

Traditional caching� Our code followed the pseudo�code of Figure �a� CPs did not cache

or prefetch data� so all requests involved communication with the IOP� The CP sent concurrent

requests to all the relevant IOPs� with up to one outstanding request per disk per CP� This limit

was a compromise between maximizing concurrency and the need to limit the potential load on

each IOP��

Each IOP managed a cache that was large enough to double�bu�er an independent stream of

requests from each CP to each disk�� The cache used an LRU�replacement strategy� prefetched one

block ahead after each read request� and �ushed dirty bu�ers to disk when they were full �i�e�� after

n bytes had been written to an n�byte bu�er �KE����

As described above� we transferred data as a part of request and reply messages� using DMA to

avoid most extraneous copies� At the IOP incoming write requests� containing the data to write�

were stored in the new thread�s bu�er until the thread determined where in the cache to put the

data� Later� the thread copied the data into a cache bu�er� the only memory�memory copy we

used��

While our cache implementation does not model any speci�c commercial cache implementation�

we believe it is reasonable and better than most� and thus a fair competitor for our disk�directed�I�O

implementation�

��� Simulator

The implementations described above ran on top of the Proteus parallel�architecture simula�

tor �BDCW���� which in turn ran on a DEC�
��� workstation� We con�gured Proteus using the

parameters listed in Table �� These parameters are not meant to re�ect any particular machine�

but a generic machine of current technology�

�More aggressive strategies would require either more bu�er space or the addition of dynamic �ow control� without
a substantial improvement in parallelism�

�While two cache bu�ers per disk per CP is not scalable� it is reasonable in most situations �e�g�� only �� MB
per IOP for
 local disks� ��
 CPs� and an � KB block size�� Note that this is much more than the space needed for
disk�directed I�O� two bu�ers per disk�

�We chose this design because it was similar to traditional systems� In any case� we believe that avoiding the
memory�memory copy by using Memgets and dataless request messages would be unlikely to justify the extra round�
trip message tra�c� particularly for small writes�

	

Table �� Parameters for simulator� Those marked with a � were varied in some experiments�

MIMD� distributed�memory � processors
Compute processors �CPs� ��

I�O processors �IOPs� ��

CPU speed� type
� MHz� RISC

Disks ��

Disk type HP ��
��
Disk capacity �� GB
Disk peak transfer rate ��� Mbytes�s
File�system block size 	 KB
I�O buses �one per IOP� ��

I�O bus type SCSI
I�O bus peak bandwidth �� Mbytes�s

Interconnect topology �� � torus
Interconnect bandwidth ���� ��� bytes�s

bidirectional
Interconnect latency �� ns per router
Routing wormhole

Proteus itself has been validated against real message�passing machines �BDCW���� Proteus

has two methods for simulating the interconnection network� an exact simulation that models

every �it movement� and a modeled simulation that uses stochastic techniques to estimate network

contention and its e�ect on latency�� We compared the e�ect of this choice on a subset of our

experiments� some with thousands of very short messages� and some with many large messages�

and found that the results of each experiment using the modeled network di�ered from the same

experiment using the exact network by at most
���� and typically by less than ����� Thus� our

experiments used the modeled network�

We added a disk model� a reimplementation of Ruemmler and Wilkes� HP ��
�� model �RW���

KTR���� We validated our model against disk traces provided by HP� using the same technique

and measure as Ruemmler and Wilkes� Our implementation had a demerit percentage of ����

which indicates that it modeled the ��
�� accurately�

�Both methods assume that each processor has a deep hardware FIFO for incoming messages� To reduce the e�ect
of this assumption� we added �ow control to limit our use of this FIFO�

�

� Experimental Design

We used the simulator to evaluate the performance of disk�directed I�O� with the throughput for

transferring large �les as our performance metric� The primary factor used in our experiments was

the �le system� which could be one of three alternatives� traditional caching� disk�directed� or disk�

directed with block�list presort �de�ned in Figure �c�� We repeated this experiment for a variety of

system con�gurations� each con�guration was de�ned by a combination of the �le�access pattern�

disk layout� number of CPs� number of IOPs� and number of disks� Each test case was replicated

in �ve independent trials� to account for randomness in the disk layouts and in the network� To

be fair� the total transfer time included waiting for all I�O to complete� including outstanding

write�behind and prefetch requests�

The �le and disk layout� Our experiments transferred a one� or two�dimensional array of

records� Two�dimensional arrays were stored in the �le in row�major order� The �le was striped

across disks� block by block� The �le size in all cases was �� MB ���	� 	�KB blocks�� While �� MB

is not a large �le� preliminary tests showed qualitatively similar results with ��� and ���� MB �les

�see page ��� Thus� �� MB was a compromise to save simulation time�

Within each disk� the blocks of the �le were laid out according to one of two strategies� con�

tiguous� where the logical blocks of the �le were laid out in consecutive physical blocks on disk� or

random�blocks� where blocks were placed at random physical locations�� A real �le system would

be somewhere between the two� As a validation� however� we experimented with a compromise

random�tracks layout� In this layout� we chose a random set of physical tracks� and placed blocks

consecutively within each track� We found our results to be qualitatively similar� and quantitatively

between the contiguous and random�blocks layouts� so we only treat the two extremes here�

The access patterns� Our read� and write�access patterns di�ered in the way the array elements

�records� were mapped into CP memories� We chose to evaluate the array�distribution possibilities

available in High�Performance Fortran �HPF�� dBC��� as shown in Figure � Thus� elements

in each dimension of the array could be mapped entirely to one CP �NONE�� distributed among

CPs in contiguous blocks �BLOCK� note this is a di�erent �block� than the �le system �block���

or distributed round�robin among the CPs �CYCLIC�� We name the patterns using a shorthand

�We chose 	ve random layouts� one for each trial� and used the same set of 	ve layouts for all random�blocks

experiments� Of course� there was only one contiguous layout� used in all trials�

��

NONE
NONE

(rnn)
cs = 64

1
0

2
3

1
0

2
3

1

0

2

3

0

BLOCK
NONE

(rbn)
cs = 16

CYCLIC
NONE

(rcn)
cs = 8
s = 32

0

NONE
CYCLIC

(rnc)
cs = 1
s = 4

BLOCK
CYCLIC

(rbc)
cs = 1
s = 2

CYCLIC
CYCLIC

(rcc)
cs = 1

s = 2, 10

0
1

2
3

1
2

3

0
1

0
1

0
1

0
1

2
3

2
3

2
3

2
3

0 1
2 3 2 3 2 3 2 3

0 1 0 1 0 1

0 1
2 3 2 3 2 3 2 3

0 1 0 1 0 1

0 1
2 3 2 3 2 3 2 3

0 1 0 1 0 1

0 1
2 3 2 3 2 3 2 3

0 1 0 1 0 1

HPF array-distribution patterns

10 2 30

NONE (rn)
cs = 8

BLOCK (rb)
cs = 2

CYCLIC (rc)
cs = 1, s = 4

10 2 3 10 2 3

NONE
BLOCK

(rnb)
cs = 2
s = 8

BLOCK
BLOCK

(rbb)
cs = 4
s = 8

CYCLIC
BLOCK

(rcb)
cs = 4
s = 16

0
1

2
3

0 1

2 3

0
2

0
2

0
2

0
2

3

3

3

3
1

1

1

1

Figure � Examples of matrix distributions� which we used as �le�access patterns in our experi�
ments� These examples represent common ways to distribute a �x	 vector or an 	x	 matrix over
four processors� Patterns are named by the distribution method �NONE� BLOCK� or CYCLIC�
in each dimension �rows �rst� in the case of matrices�� Each region of the matrix is labeled with
the number of the CP responsible for that region� The matrix is stored in row�major order� both
in the �le and in memory� The chunk size �cs� is the size of the largest contiguous chunk of the
�le that is sent to a single CP �in units of array elements�� and the stride �s� is the �le distance
between the beginning of one chunk and the next chunk destined for the same CP� where relevant�
The actual shapes used in our experiments are listed in Table ��

beginning with r for reading and w for writing� the r names are shown in Figure � There was

one additional pattern� ra �ALL� not shown�� which corresponds to all CPs reading the entire

�le� leading to multiple copies of the �le in memory� Table � shows the exact shapes used in our

experiments� A few patterns are redundant in our con�guration �rnn � rn� rnc � rc� rbn � rb�

and were not actually used�

We chose two di�erent record sizes� one designed to stress the system�s capability to process

small pieces of data� with lots of interprocess locality and lots of contention� and the other designed

��

Table �� Summary of �le�access patterns �smaller examples of these patterns are shown in Figure ��
We list only the read patterns here� All numbers are for a �� MB �le distributed over �� CPs�
Two�dimensional matrices are stored in the �le in row�major order� A dash ��� indicates �not
applicable�� Chunks and strides are given in records� not bytes �for 	�byte records� notice that
� K record is one block��

Record Chunk
Pattern Row Column size size Stride Same
name distribution distribution �bytes� Rows Cols �records� �records� as

ra ALL � � � � ��	� blocks �
rn NONE � � � � ��	� blocks �

rb BLOCK � 	 ������ � 	� K �
rc CYCLIC � 	 ������ � � ��
rnn NONE NONE 	 ��	� ���� ��	� K � rn

rnb NONE BLOCK 	 ��	� ���� �� � K
rnc NONE CYCLIC 	 ��	� ���� � �� rc

rbn BLOCK NONE 	 ��	� ���� 	� K � rb

rbb BLOCK BLOCK 	 ��	� ���� �
� � K
rbc BLOCK CYCLIC 	 ��	� ���� � �
rcn CYCLIC NONE 	 ��	� ���� � K �� K
rcb CYCLIC BLOCK 	 ��	� ���� �
� � K
rcc CYCLIC CYCLIC 	 ��	� ���� � �� K��

rb BLOCK � 	��� ��	� � 	� �
rc CYCLIC � 	��� ��	� � � ��
rnn NONE NONE 	��� �� � ��	� � rn

rnb NONE BLOCK 	��� �� � � �
rnc NONE CYCLIC 	��� �� � � �� rc

rbn BLOCK NONE 	��� �� � 	� � rb

rbb BLOCK BLOCK 	��� �� � 	 �
rbc BLOCK CYCLIC 	��� �� � � �
rcn CYCLIC NONE 	��� �� � �
��
rcb CYCLIC BLOCK 	��� �� � 	 ��	
rcc CYCLIC CYCLIC 	��� �� � � �����

to work in the most�convenient unit� with little interprocess locality or contention� The small

record size was 	 bytes� the size of a double�precision �oating point number� The large record

size was 	��� bytes� the size of a �le�system block and cache bu�er� These record�size choices are

reasonable �KN���� We also tried �����byte and �����byte records �Figure ���� leading to results

between the 	�byte and 	����byte results� we present only the extremes here�

��

� Results

A note on the results� the numbers have been updated since the earlier version of this TR and since

the OSDI paper� Earlier� the traditional�caching code did not include some obvious optimizations�

leading to an unfair comparison� In this revision we update the traditional�caching numbers to

incorporate the optimizations� while many cases did not change� a few cases are substantially faster

than before� Thus� these numbers represent a better comparison between disk�directed I�O and

traditional caching� Overall� however� there is no qualitative di�erence or change in the conclusions�

Figures � and
 show the performance of our disk�directed�I�O approach and of the traditional�

caching method�	 Each �gure has two graphs� one for 	�byte records and one for 	����byte records�

Disk�directed I�O was usually at least as fast as traditional caching� and in one case was �� times

faster�

Figure � and Table display the performance on a random�blocks disk layout� Three cases are

shown for each access pattern� traditional caching �TC�� and disk�directed I�O �DDIO� with and

without a presort of the block requests by physical location� Throughput for disk�directed I�O

with presorting consistently reached ��� Mbytes�s for reading and ������
 Mbytes�s for writing�

In contrast� traditional�caching throughput was highly dependent on the access pattern� was never

faster than
 Mbytes�s� and was particularly slow for many 	�byte patterns� Cases with small

chunk sizes were the slowest� as slow as ��� Mbytes�s� due to the tremendous number of requests

required to transfer the data� As a result� disk�directed I�O with presorting was up to ���� times

faster than traditional caching�

Figure � and Table also make clear the bene�t of presorting disk requests by physical location�

an optimization available in disk�directed I�O to an extent not possible in traditional caching or�

for that matter� in two�phase I�O� Nonetheless� disk�directed I�O without presorting was still faster

than traditional caching in most cases� At best� it was ��� times faster� at worst� there was no

noticeable di�erence� Disk�directed I�O thus improved performance in two ways� by reducing

overhead and by presorting the block list�

�Because the ra pattern broadcasts the same �� MB data to all �� CPs� its apparent throughput was in�ated�
We have normalized it in our graphs by dividing by the number of CPs�

�In the worst case where disk�directed I�O was slower than traditional caching by a statistically signi	cant amount�
disk�directed I�O was slower by �����

�

Throughput (MB/s)

0.0 2.0 4.0 6.0 8.0

wcn

wcc

wbc

wcb

wbb

wnb

wc

wb

wn

rcn

rcc

rbc

rcb

rbb

rnb

rc

rb

rn

ra

DDIO
(sort)

DDIO TC

b) 8192-byte records

Throughput (MB/s)

0.0 2.0 4.0 6.0 8.0

wcn

wcc

wbc

wcb

wbb

wnb

wc

wb

wn

rcn

rcc

rbc

rcb

rbb

rnb

rc

rb

rn

ra

DDIO
(sort)

DDIO TC

a) 8-byte records

Figure �� Two graphs comparing the throughput of disk�directed I�O �DDIO� to that of traditional
caching �TC�� on a random�blocks disk layout� ra throughput has been normalized by the number
of CPs� Each point represents the average of �ve trials of an access pattern on both methods
�maximum coe�cient of variation �cv� is ������ These data are also presented in Table �

��

Table � Throughput in MB�s for traditional caching �TC� and disk�directed I�O ��DD� for disk�
directed I�O without presort� and �DDs� for disk�directed I�O with presort�� on all patterns� for
both record sizes� for the random�blocks layout� averaged over �ve trials� Along with each
pair is the average of the throughput ratios �r�� those in italics do not represent a di�erence that
is statistically signi�cant at the �
� con�dence level� Disk�directed I�O was never substantially
slower than traditional caching� Pattern ra is not scaled as it is in the graphs� Patterns ra� rn�
and wn are independent of record size� and are listed in the 	��� column� These data are graphed
in Figure ��

Random�blocks layout
	�byte records 	����byte records

Pattern TC DD r DDs r TC DD r DDs r

ra � � � � � ���� ���� ��� ���	 ��

rn � � � � � �� ��� ��� ��� ���
rb �	 ��� ��� ��� ��� �	 ��� ��� ��� ���
rc ��� ��� ��� ��� ��� ��� ��� ��	 ��� ���
rnb � ��� �� ��� ��� ��� ��� ��	 ��� ���
rbb �� ��� ��� ��� ��� �� ��� ��� ��� ��

rcb ��� ��� ��� ��� ��
 ��
 ��� ��	 ��� ���
rbc ��� ��� ��� ��� �� ��� ��� ��� ��� ��

rcc �� ��� ��� ��� ��� ��� ��� ��� ��� ��

rcn ��� ��� ��	 ��� ��� �� ��� ��� ��� ���

wn � � � � � ��� ��� ��	 ��� ��

wb
��
�� ��	 ��
 ��

��
�� ��	 ��
 ��

wc ���
�� �� ���
�� ���
�� ��� ��
 ��

wnb ���
�� ��� ��
 ��
 ���
�� ��	 ��
 ��

wbb ���
�� ��	 ��
 ��
 ���
�� ��	 ��
 ��

wcb ���
�� ��� ��
 ��

��
�� ��	 ��
 ��

wbc ���
�� ��� ��� ���� ���
�� ��	 ��
 ��

wcc ��

�� � ��� ���
��
�� ��	 ��
 ��

wcn ���
�� ��� ��
 ��

��
�� ��	 ��
 ��

Maximum coe�cient of variation on average of ratios was �����

�

To test the ability of the di�erent �le�system implementations to take advantage of disk layout�

and to expose other overheads when the disk bandwidth could be fully utilized� we compared the

two methods on a contiguous disk layout �Figure
 and Table ��� I�O on this layout was much faster

than on the random�blocks layout� by avoiding the disk�head movements caused by random layouts

and by bene�ting from the disks� own caches when using the contiguous layout� In most cases

disk�directed reading moved about ��	 Mbytes�s� and disk�directed writing moved ��	 Mbytes�s�

which was an impressive �� of the disks� peak transfer rate of ��
 Mbytes�s� The few cases where

disk�directed I�O did not get as close to the peak disk transfer rate were a�ected by the overhead

of moving individual 	�byte records to and from the CPs� Further tuning of the disk�directed�I�O

code may alleviate this problem� but the real solution would be to use gather�scatter Memput and

Memget operations�

Traditional caching was rarely able to obtain the full disk bandwidth� and had particular trou�

ble with the 	�byte patterns� Although there were cases where traditional caching could match

disk�directed I�O� traditional caching was as much as �	�� times slower than disk�directed I�O�

Traditional caching failed in a few critical ways�

� When the CPs were active at widely di�erent locations in the �le �e�g�� in rb or rcn�� there was

little interprocess spatial locality� In the contiguous layout� the multiple localities defeated the

disk�s internal caching and caused extra head movement� both a signi�cant performance loss�

Furthermore� the lost locality hampered the performance of IOP caching and prefetching�

causing extraneous disk I�O�

� In some patterns� IOP�prefetching mistakes caused extraneous disk reads� At the end of the

rb pattern� for example� one extra block is prefetched for each CP on each disk� these extra

blocks are negligible in large �les �see page ��� but account for most of traditional caching�s

poor performance on rb in Figure �� rcn with 	 KB records and rbb had similar problems�

� When the CPs were using 	�byte CYCLIC patterns� many IOP�request messages were nec�

essary to transfer the small non�contiguous records� requiring many �expensive� IOP�cache

accesses� In addition� the success of interprocess spatial locality was crucial for performance�

� The high data rates of the contiguous disk layout expose the cache�management overhead in

traditional caching� unable to match disk�directed I�O�s performance except for wn�

��

Throughput (MB/s)

0.0 10.0 20.0 30.0 40.0

wcn

wcc

wbc

wcb

wbb

wnb

wc

wb

wn

rcn

rcc

rbc

rcb

rbb

rnb

rc

rb

rn

ra

DDIO TC

b) 8192-byte records

Throughput (MB/s)

0.0 10.0 20.0 30.0 40.0

wcn

wcc

wbc

wcb

wbb

wnb

wc

wb

wn

rcn

rcc

rbc

rcb

rbb

rnb

rc

rb

rn

ra

DDIO TC

a) 8-byte records

Figure
� Two graphs comparing the throughput of disk�directed I�O �DDIO� and traditional
caching �TC�� on a contiguous disk layout� ra throughput has been normalized by the number
of CPs� Each point represents the average of �ve trials of an access pattern on both methods
�maximum cv is ������ Note that the peak disk throughput was ��
 Mbytes�s� These data are
also presented in Table ��

��

Table �� Throughput in MB�s for traditional caching �TC� and disk�directed I�O �DD�� on all
patterns� for both record sizes� for the contiguous layout� averaged over �ve trials� Along with
each pair is the average of the throughput ratios �r�� all are statistically signi�cant at the �
�
con�dence level� Disk�directed I�O was in all cases faster than traditional caching� Pattern ra is
not scaled as it is in the graphs� Patterns ra� rn� and wn are independent of record size� and are
listed in the 	��� column� These data are graphed in Figure
�

Contiguous layout
	�byte records 	����byte records

Pattern TC DD r TC DD r

ra � � � �����
���� ���

rn � � � ��� ��� ���
rb
�� ��	
�	
�� ��	
�	
rc ��� ��� ��� ��� ��	 ���
rnb �	�� ��	 ��	 ��� ��� ���
rbb ��� ��	
� 	� ��	 ���
rcb ���� ��	 ��� ���
 ��	 ��
rbc ��� �
�� ��	 ��� ��	 ���
rcc ��� ���� ��	 ���� ��	 �
rcn ��� ��	 ��� ��� ��� ���

wn � � � ��� ��� ���
wb ��� ��	 �� ��� ��	 ��
wc ��� ���� ��� ��� ��	 ���
wnb ��� ��	 ��� 	�� ��	 ���
wbb ��� ��	 �	 ��� ��	 ��
wcb ��� ��	 ��� ���� ��	 �

wbc ��	 ��� �	�� ��	 ��	 ���
wcc ��
 ��� ��� ��
 ��	 ��
wcn ��� ��	 ��� ��� ��� ��

Maximum coe�cient of variation on average of ratios was �����

�	

��� Sensitivity

To evaluate the sensitivity of our results to some of the parameters� we independently varied the

number of CPs� number of IOPs� and number of disks� It was only feasible to experiment with a

subset of all con�gurations� so we chose a subset that would push the limits of the system by using

the contiguous layout� and exhibit most of the variety shown earlier� by using the patterns ra� rn�

rb� and rc with 	 KB records� ra throughput was normalized as usual�

We �rst varied the number of CPs �Figure ��� holding the number of IOPs and disks �xed�

and maintaining the cache size for traditional caching at two bu�ers per disk per CP� Note that

disk�directed I�O was una�ected� Multiple localities hurt rb as before� but the most interesting

e�ect was the poor performance of traditional caching on the rc pattern� With ��block records

and no bu�ers at the CP� each CP request can only use one disk� With fewer CPs than IOPs� the

full disk parallelism was not used� Finally� cache�management overhead� which grew with cache

size and contention by multiple CPs� reduced the performance of traditional caching on all four

patterns�

We then varied the number of IOPs �and SCSI busses�� holding the number of CPs� number

of disks� and total cache size �xed �Figure ��� Performance decreased with fewer IOPs because

of increasing bus contention� particularly when there were more than two disks per bus� and was

ultimately limited by the �� MB�s bus bandwidth� As always� traditional caching had di�culty

with the rb pattern� Cache�management overhead contributed to traditional caching�s inability to

match disk�directed I�O�

��

�

�

��

��

��

��

	�

	�

��

� � � � � �� �� �� �� ��

Mbytes�s

Number of CPs

Throughput of TC and DDIO� varying number of CPs

Max bandwidth

DDIO ra �

� � � � �

DDIO rn �

� � � � �

DDIO rb �

� � � � �

DDIO rc �

� � � � �

TC ra �

� � �
�

�

TC rn �

� � �
� �

TC rb �

�

� � �
�

TC rc �

�

�

�
�

�

Figure �� A comparison of the throughput of disk�directed I�O �DDIO� and traditional caching
�TC�� as the number of CPs varied� for the ra� rn� rb� and rc patterns �ra throughput has
been normalized by the number of CPs�� All cases used the contiguous disk layout� and all used
	 KB records�

�

�

��

��

��

��

	�

	�

��

� � � � � �� �� �� �� ��

Mbytes�s

Number of IOPs

Throughput of TC and DDIO� varying number of IOPs

Max bandwidth

DDIO ra �

�

�

�

�
�

DDIO rn �

�

�

�

�
�

DDIO rb �

�

�

�

�
�

DDIO rc �

�

�

�

�
�

TC ra �

�

�

�

� �

TC rn �

�

�

�

� �

TC rb �

� � � � �

TC rc �

�

�

�

�
�

Figure �� A comparison of the throughput of disk�directed I�O �DDIO� and traditional caching
�TC�� as the number of IOPs �and busses� varied� for the ra� rn� rb� and rc patterns �ra
throughput has been normalized by the number of CPs�� All cases used the contiguous disk
layout� and all used 	 KB records� The maximum bandwidth was determined by either the busses
���� IOPs� or the disks ����� IOPs��

��

We then varied the number of disks� using one IOP� holding the number of CPs at ��� and

maintaining the traditional�caching cache size at two bu�ers per CP per disk �Figures 	 and ���

Performance scaled with more disks� approaching the �� MB�s bus�speed limit� The relationship

between disk�directed I�O and traditional caching was determined by a combination of factors�

disk�directed I�O�s lower overhead and better use of the disks� and traditional caching�s better use

of the bus �sometimes the �synchronous� nature of disk�directed I�O caused bus congestion on the

contiguous layout��

��

�

�

�

�

�

��

� � �� �� �� �� 	�

Mbytes�s

Number of disks

Throughput of TC and DDIO on contiguous layout� varying number of disks

Max bandwidth

DDIO �all�
TC ra �

�

�

�

�

�

�

TC rn �
�

�

�

�

�
�

TC rb �

�
�

�
�

�

�

TC rc �

�

�

�

�

�

�

Figure 	� A comparison of the throughput of disk�directed I�O �DDIO� and traditional caching
�TC�� as the number of disks varied� for the ra� rn� rb� and rc patterns �ra throughput
has been normalized by the number of CPs�� All cases used the contiguous disk layout� and all
used 	 KB records� All the DDIO cases fell on the same line� so only one curve is plotted� The
maximum bandwidth was determined either by the disks ���� disks� or by the �single� bus �	��
disks��

�

�

�

�

�

��

� � �� �� �� �� 	�

Mbytes�s

Number of disks

Throughput of TC and DDIO on random�blocks layout� varying number of disks

Max bandwidth

DDIO ra �

�
�

�

�

�

�

DDIO rn �

��
�

�

�

�DDIO rb �

�
�

�

�

�

�
DDIO rc �

�
�

�

�

�

�

TC ra �

�
�

�

�

�

�

TC rn �

��
�

�

�

�

TC rb �

�
�

�

�

�

�

TC rc �

�
�

�

�

�

�

Figure �� Similar to Figure 	� but here all cases used the random�blocks disk layout�

��

In most of this paper we simulate ���MB �les� To examine the e�ect of this choice� Figures ��

and �� compare throughputs for �les �� and ��� times larger� Though the maximum throughputs

were reached with �les ��� MB or larger� we chose �� MB for simulation e�ciency� The relative

order of test cases remained the same� with one exception� rb had much lower throughput on

�� MB �les than on ��� MB �les� This was due to the relatively large cost of prefetching mistakes

committed at the end of the pattern� since their number was independent of the �le size�

�

�

�

��

��

��

��

	�

	�

��

� ��� ��� ��� ��� ����

Mbytes�s

File size in MB

Throughput of TC and DDIO on contiguous layout� varying �le size

Max bandwidth

DDIO ra �

� � �

DDIO rn �

� � �

DDIO rb �

� � �

DDIO rc �

�
� �

TC ra �

�
� �

TC rn �

�
� �

TC rb �

�
� �

TC rc �

�

� �

Figure ��� A comparison of the throughput of disk�directed I�O �DDIO� and traditional caching
�TC�� as the �le size varied� for the ra� rn� rb� and rc patterns �ra throughput has been
normalized by the number of CPs�� All cases used the contiguous disk layout� and all used 	 KB
records�

�

�

�

	

�

�

�

�

�

�

� ��� ��� ��� ��� ����

Mbytes�s

File size in MB

Throughput of TC and DDIO on random�blocks layout� varying �le size

Note rb change DDIO ra �

�

�

�

DDIO rn �

�

�

�

DDIO rb �

�

�

�

DDIO rc �

�

�

�

TC ra �

� � �

TC rn �

� � �

TC rb �

�

� �

TC rc �

�
� �

Figure ��� A comparison of the throughput of disk�directed I�O �DDIO� and traditional caching
�TC�� as the �le size varied� for the ra� rn� rb� and rc patterns �ra throughput has been
normalized by the number of CPs�� All cases used the random�blocks disk layout� and all used
	 KB records� Here� disk�directed I�O includes a presort� similar conclusions were obtained
without the presort�

��

In this paper we focus on 	� and 	����byte record sizes� Figure �� shows the e�ect of other

record sizes in situations where the record size was expected to make the most di�erence� traditional

caching on rc� using both contiguous and random�blocks layouts� This plot justi�es our focus on the

extremes� 	�byte records limited throughput through excessive overhead� while 	����byte records

reduced overhead and exposed other limits �here� the disk bandwidth in the random�blocks layout��

�

�

��

��

��

��

	�

	�

��

� ���� ���� ����

Mbytes�s

Record size in bytes

Throughput of TC on rc� varying record size

Max bandwidth

contiguous �

�

�

�
�

random blocks �

�

� � �

Figure ��� The throughput of traditional caching on rc patterns of various record sizes� for both
the contiguous and random�blocks layouts�

Summary� These variation experiments showed that while the relative bene�t of disk�directed

I�O over traditional caching varied� disk�directed I�O consistently provided excellent performance�

at least as good as traditional caching� often independent of access pattern� and often close to

hardware limits�

�

� Related work

Disk�directed I�O is somewhat reminiscent of the PIFS �Bridge� �tools� interface �Dib���� in that

the data �ow is controlled by the �le system rather by than the application� PIFS focuses on

managing where data �ows �for memory locality�� whereas disk�directed I�O focuses more on when

data �ows �for better disk and cache performance��

Some parallel database machines use an architecture similar to disk�directed I�O� in that certain

operations are moved closer to the disks to allow for more optimization� In the Tandem NonStop

system �EGKS��� each query is sent to all IOPs� which scan the local database partition and send

only the relevant tuples back to the requesting node� The Super Database Computer �KHH����

has disk controllers that continuously produce tasks from the input data set� which are consumed

and processed by CPs as they become available� While this concept is roughly similar to our

disk�directed I�O� it is primarily a speed�matching bu�er used for load balancing�

The Jovian collective�I�O library �BBS���� tries to coalesce fragmented requests frommany CPs

into larger requests that can be passed to the IOPs� Their �coalescing processes� are essentially a

dynamic implementation of the two�phase�I�O permutation phase�

Our model for managing a disk�directed request� that is� sending a high�level request to all

IOPs which then operate independently under the assumption that they can determine the neces�

sary actions to accomplish the task� is an example of collaborative execution like that used in the

TickerTAIP RAID controller �CLVW���

Finally� our Memput and Memget operations are not unusual� Similar remote�memory�access

mechanisms are supported in a variety of distributed�memory systems �WMR���� CDG����

��� Comparison to Two�phase I	O

The above results clearly show the bene�ts of disk�directed I�O over traditional caching� Two�

phase I�O �dBC�� was designed to avoid the worst of traditional caching while using the same

IOP software� by reading data in a �conforming distribution�� then permuting it among the CPs�

At �rst glance� disk�directed I�O is two�phase I�O implemented by rewriting IOP software so the

IOPs do both phases simultaneously� In fact� disk�directed I�O has many advantages over two�phase

I�O�

� There is no need to choose a conforming distribution� Our data indicates that it would

be a di�cult choice� dependent on the �le layout� access pattern� record size� and cache

��

management algorithm� The designers of two�phase I�O found that an rb distribution was

appropriate for a matrix laid out in row�major order� but our results show that rb was rarely

the best choice�

� There is the opportunity to optimize disk access with disk�request presorting� in our case

obtaining a ���
�� performance boost�

� Smaller caches are needed at the IOPs� there are no prefetching mistakes� and there is no

cache thrashing�

� No extra memory is needed for permuting at the CPs�

� No extra time is needed for a permutation phase� the �permutation� is overlapped with I�O�

� Each datum moves through the interconnect only once in disk�directed I�O� and typically

twice in two�phase I�O�

� Communication is spread throughout disk transfer� not concentrated in a permutation phase�

Thus� although we did not simulate two�phase I�O� it should be slower than disk�directed I�O

because it cannot optimize the I�O as well and because the I�O and permutation phases are not

overlapped� Two�phase I�O could be faster than disk�directed I�O in some patterns if the network

were much slower than the disks� and two�phase I�O were able to use a smart permutation algorithm

not available to the more dynamically scheduled disk�directed I�O�

	 Conclusions

Our simulations showed that disk�directed I�O avoided many of the pitfalls inherent in the tradi�

tional caching method� such as cache thrashing� extraneous disk�head movements� excessive request�

response tra�c between CP and IOP� inability to use all the disk parallelism� inability to use the

disks� own caches� overhead for cache management� and memory�memory copies� Furthermore�

disk�directed I�O presorted disk requests to optimize head movement� and had smaller bu�er space

requirements� As a result� disk�directed I�O could provide consistent performance close to the limits

of the disk hardware� Indeed� it was in one case more than �	 times faster than the caching method�

and was never substantially slower� More importantly� its performance was nearly independent of

the distribution of data to CPs�

��

Our results also rea�rm the importance of disk layout to performance� throughput on the

contiguous layout was about
 times that on a random�blocks layout� Multiprocessor �le systems

for scienti�c applications should de�nitely consider extent�based layouts or other techniques to

increase physical contiguity�

As presented here� disk�directed I�O would be most valuable when making large� collective

transfers of data between multiple disks and multiple memories� whether for loading input data�

storing result data� or swapping data to a scratch �le in an out�of�core algorithm� Indeed� the data

need not be contiguous� our random�blocks layout also simulates a request for an arbitrary subset

of blocks from a large �le� The concept of disk�directed I�O can be extended to other environments�

however� Non�collective I�O access �e�g�� our rn and wn patterns� can bene�t� although the gain

is not as dramatic� Our Memput and Memget operations would �t in well on a shared�memory

machine with a block�transfer operation� Although our patterns focused on the transfer of ��d

and ��d matrices� we expect to see similar performance for higher�dimensional matrices and other

regular structures� Finally� there is potential to implement transfer requests that are more complex

than simple permutations� for example� selecting only a subset of records that match some criterion�

Our results emphasize that simply layering a new interface on top of a traditional �le system

will not su�ce� For maximum performance the �le�system interface must include collective�I�O

operations� and the �le�system software �in particular� the IOP software� must be redesigned to

use mechanisms like disk�directed I�O to support collective I�O� Nonetheless� there is still a place

for caches� Irregular or dynamic access patterns involving small� independent transfers and having

substantial temporal or interprocess locality will still bene�t from a cache� The challenge� then� is

to design systems that integrate the two techniques smoothly�

Future work

There are many directions for future work in this area�

� design an appropriate collective�I�O interface�

� �nd a general way to specify a collective� disk�directed access request to IOPs�

� reduce overhead by allowing the application to make �strided� requests to the traditional
caching system�

� optimize network message tra�c by using gather�scatter messages to move non�contiguous
data� and

� optimize concurrent disk�directed activities�

�	

Acknowledgements

Thanks to Song Bac Toh and Sriram Radhakrishnan for implementing and validating the disk

model� to Chris Ruemmler� John Wilkes� and Hewlett Packard Corporation for allowing us to

use their disk traces to validate our disk model� and for their help in understanding the details

of the HP ��
��� to Denise Ecklund of Intel for help understanding the Paragon interconnection

network� to Eric Brewer and Chrysanthos Dellarocas for Proteus� to Tom Cormen� Keith Kotay�

Nils Nieuwejaar� the anonymous reviewers� and especially Karin Petersen for feedback on drafts of

this paper�

References

�BBS���� Robert Bennett� Kelvin Bryant� Alan Sussman� Raja Das� and Joel Saltz� Jovian� A framework
for optimizing parallel I�O� In Proceedings of the ���� Scalable Parallel Libraries Conference�
IEEE Computer Society Press� October ����� To appear�

�BdC�	� Rajesh Bordawekar� Juan Miguel del Rosario� and Alok Choudhary� Design and evaluation of
primitives for parallel I�O� In Proceedings of Supercomputing ���� pages �������� ���	�

�BDCW��� Eric A� Brewer� Chrysanthos N� Dellarocas� Adrian Colbrook� and William E� Weihl� Proteus�
A high�performance parallel�architecture simulator� Technical Report MIT�LCS�TR����� MIT�
September �����

�BGST�	� Michael L� Best� Adam Greenberg� Craig Stan�ll� and Lewis W� Tucker� CMMD I�O� A parallel
Unix I�O� In Proceedings of the Seventh International Parallel Processing Symposium� pages
�������� ���	�

�CDG��	� David E� Culler� Andrea Drusseau� Seth Copen Goldstein� Arvind Krishnamurthy� Steven
Lumetta� Thorsten von Eicken� and Katherine Yelick� Parallel programming in Split�C� In
Proceedings of Supercomputing ���� pages ������	� ���	�

�CF��� Peter F� Corbett and Dror G� Feitelson� Design and implementation of the Vesta parallel �le
system� In Proceedings of the Scalable High�Performance Computing Conference� pages �	����
�����

�CK�	� Thomas H� Cormen and David Kotz� Integrating theory and practice in parallel �le systems�
In Proceedings of the ���� DAGS�PC Symposium� pages ������ Hanover� NH� June ���	� Dart�
mouth Institute for Advanced Graduate Studies� Revised from Dartmouth PCS�TR�	�����

�CLVW�	� Pei Cao� Swee Boon Lim� ShivakumarVenkataraman� and John Wilkes� The TickerTAIP parallel
RAID architecture� In Proceedings of the ��th Annual International Symposium on Computer
Architecture� pages ����	� ���	�

�dBC�	� Juan Miguel del Rosario� Rajesh Bordawekar� and Alok Choudhary� Improved parallel I�O
via a two�phase run�time access strategy� In IPPS ��� Workshop on Input�Output in Parallel
Computer Systems� pages ������ ���	� Also published in Computer Architecture News ������
December ���	� pages 	��	��

�DdR��� Erik DeBenedictis and Juan Miguel del Rosario� nCUBE parallel I�O software� In Eleventh
Annual IEEE International Phoenix Conference on Computers and Communications 	IPCCC
�
pages ���������� April �����

�Dib��� Peter C� Dibble� A Parallel Interleaved File System� PhD thesis� University of Rochester� March
�����

��

�DSE��� Peter Dibble� Michael Scott� and Carla Ellis� Bridge� A high�performance �le system for parallel
processors� In Proceedings of the Eighth International Conference on Distributed Computer
Systems� pages �������� June �����

�EGKS��� Susanne Englert� Jim Gray� Terrye Kocher� and Praful Shah� A benchmark of NonStop SQL
Release � demonstrating near�linear speedup and scaleup on large databases� In Proceedings
of the ���� ACM Sigmetrics Conference on Measurement and Modeling of Computer Systems�
pages �������� May �����

�FPD�	� James C� French� Terrence W� Pratt� and Mriganka Das� Performance measurement of the
Concurrent File System of the Intel iPSC�� hypercube� Journal of Parallel and Distributed
Computing� ���������������� January and February ���	�

�GGL�	� N� Galbreath� W� Gropp� and D� Levine� Applications�driven parallel I�O� In Proceedings of
Supercomputing ���� pages �������� ���	�

�HPF�	� High Performance Fortran Forum� High Performance Fortran Language Speci�cation� ��� edi�
tion� May 	 ���	�

�KE�	� David Kotz and Carla Schlatter Ellis� Caching and writeback policies in parallel �le systems�
Journal of Parallel and Distributed Computing� ���������������� January and February ���	�

�KGF��� John F� Karpovich� Andrew S� Grimshaw� and James C� French� Extensible �le systems ELFS�
An object�oriented approach to high performance �le I�O� In Proceedings of the Ninth Annual
Conference on Object�Oriented Programming Systems� Languages� and Applications� pages ����
���� October �����

�KHH���� Masaru Kitsuregawa� Satoshi Hirano� Masanobu Harada� Minoru Nakamura� and Mikio Takagi�
The Super Database Computer �SDC�� System architecture� algorithm and preliminary evalu�
ation� In Proceedings of the Twenty�Fifth Annual Hawaii International Conference on System
Sciences� volume I� pages 	���	��� �����

�KN��� David Kotz and Nils Nieuwejaar� Dynamic �le�access characteristics of a production parallel
scienti�c workload� In Proceedings of Supercomputing ���� November ����� To appear�

�KTR��� David Kotz� Song Bac Toh� and Sriram Radhakrishnan� A detailed simulation model of the
HP ����� disk drive� Technical Report PCS�TR������� Dept� of Computer Science� Dartmouth
College� July �����

�LIN��	� Susan J� LoVerso� Marshall Isman� Andy Nanopoulos� William Nesheim� Ewan D� Milne� and
Richard Wheeler� sfs� A parallel �le system for the CM��� In Proceedings of the ���� Summer
USENIX Conference� pages ����	��� ���	�

�MK��� Ethan L� Miller and Randy H� Katz� Input�output behavior of supercomputer applications� In
Proceedings of Supercomputing ���� pages �������� November �����

�Nit��� Bill Nitzberg� Performance of the iPSC���� Concurrent File System� Technical Report RND�
������� NAS Systems Division� NASA Ames� December �����

�NK��� Nils Nieuwejaar and David Kotz� A multiprocessor extension to the conventional �le system
interface� Technical Report PCS�TR����	�� Dept� of Computer Science� Dartmouth College�
September �����

�OCH���� John Ousterhout� Herv�e Da Costa� David Harrison� John Kunze� Mike Kupfer� and James
Thompson� A trace driven analysis of the UNIX ��� BSD �le system� In Proceedings of the
Tenth ACM Symposium on Operating Systems Principles� pages ������ December �����

�PGK��� David Patterson� Garth Gibson� and Randy Katz� A case for redundant arrays of inexpensive
disks �RAID�� In ACM SIGMOD Conference� pages �������� June �����

�Pie��� Paul Pierce� A concurrent �le system for a highly parallel mass storage system� In Fourth
Conference on Hypercube Concurrent Computers and Applications� pages �������� �����

�

�PP�	� Barbara K� Pasquale and George C� Polyzos� A static analysis of I�O characteristics of scienti�c
applications in a production workload� In Proceedings of Supercomputing ���� pages 	���	���
���	�

�Roy�	� Paul J� Roy� Unix �le access and caching in a multicomputer environment� In Proceedings of
the Usenix Mach III Symposium� pages ���	�� ���	�

�RW��� Chris Ruemmler and John Wilkes� An introduction to disk drive modeling� IEEE Computer�
���	�������� March �����

�WMR���� Stephen R� Wheat� Arthur B� Maccabe� Rolf Riesen� David W� van Dresser� and T� Mack
Stallcup� PUMA� An operating system for massively parallel systems� In Proceedings of the
Twenty�Seventh Annual Hawaii International Conference on System Sciences� �����

Many of these papers can be found at

http���www�cs�dartmouth�edu�pario�html

The disk�model software can be found at

http���www�cs�dartmouth�edu�cs archive�diskmodel�html

�

