
Copyright 1995 by the authors.
Appeared at the Workshop for I/O in Parallel and Distributed Systems at IPPS ’95, pp. 78-89.

Exploring the use of I�O Nodes for Computation

in a MIMD Multiprocessor

David Kotz and Ting Cai

Department of Computer Science

Dartmouth College

Hanover� NH �����

fdfk�tcaig�cs�dartmouth�edu

Abstract

As parallel systems move into the production
scienti�c�computing world� the emphasis will
be on cost�e�ective solutions that provide high
throughput for a mix of applications� Cost�
e�ective solutions demand that a system make
e�ective use of all of its resources� Many MIMD
multiprocessors today� however� distinguish be�
tween �compute� and �I�O� nodes� the latter
having attached disks and being dedicated to
running the �le�system server� This static di�
vision of responsibilities simpli�es system man�
agement but does not necessarily lead to the best
performance in workloads that need a di�erent
balance of computation and I�O�

Of course� computational processes sharing a
node with a �le�system service may receive less
CPU time� network bandwidth� and memory
bandwidth than they would on a computation�
only node� In this paper we begin to examine
this issue experimentally� We found that high�
performance I�O does not necessarily require
substantial CPU time� leaving plenty of time for
application computation� There were some com�
plex �le�system requests� however� which left lit�
tle CPU time available to the application� �The
impact on network and memory bandwidth still
needs to be determined�	 For applications �or
users	 that cannot tolerate an occasional inter�
ruption� we recommend that they continue to use
only compute nodes� For tolerant applications
needing more cycles than those provided by the

compute nodes� we recommend that they take
full advantage of both compute and I�O nodes for
computation� and that operating systems should
make this possible�

� Introduction

Programmers of scienti�c computer applications
are increasingly turning to parallel systems for
their production computing� In today
s climate
of tightening budgets� however� their managers
demand cost�e�ective solutions that provide high
throughput for a mix of applications� Several
applications� each with di�erent computational
and I�O needs� are simultaneously active within
a single multiprocessor� Cost�e�ective solutions
demand that a system make e�ective use of all
of its resources�

ManyMIMDmultiprocessors today are con�g�
ured with two distinct types of processor nodes�
those that have disks attached� which are ded�
icated to �le I�O� and those that do not have
disks attached� which are used for running ap�
plications� This static division of responsibilities
simpli�es system management but does not nec�
essarily lead to the best performance in work�
loads that need a di�erent balance of compu�
tation and I�O� For example� a system which
makes all nodes available to computational appli�

This research was funded by NSF under grant number
CCR��������� by NASA Ames under agreements num�
bered NCC ����� and NAG ����	� and by IBM and Dart�
mouth College through a matching�grants program

cations increases its overall computational power
and may therefore be more cost e�ective�

Computational processes running on nodes
that also serve part of the �le system� however�
may receive less CPU time� network bandwidth�
and memory bandwidth than they would on a
computation�only node� The conventional wis�
dom is that the CPU overhead of the �le�system
code running on I�O nodes� coupled with the
unpredictable and erratic nature of I�O activ�
ity� would substantially disrupt the performance
of computational applications� In this paper we
examine this issue experimentally� focusing on
the impact of a �le�system server on the CPU
time available to local computational processes�
We found that high�performance I�O does not
necessarily require substantial CPU time� leav�
ing plenty of time for application computation�
There were some complex �le�system requests�
however� which left little CPU time available
to the application� �The impact on network
and memory bandwidth still needs to be deter�
mined�	 For applications �or users	 which can�
not tolerate an occasional interruption� we rec�
ommend that they continue to use only compute
nodes� For other applications� particularly those
that can adapt to changing load� we recommend
that they consider taking full advantage of both
compute and I�O nodes for computation� After
all� our results show that the I�O nodes usually
had cycles to spare�

We begin in the next section with background
information about multiprocessor �le systems�
Section � describes some simulations and their
results and Section describes some measure�
ments on a real system� We summarize our con�
clusions in Section ��

� Background

There are many di�erent parallel �le systems
�Kri�� Pie��� FPD��� Roy��� LIN���� DdR���
CF�� Dib��� DSE��� MS�� HdC��� HER�����
Most� though not all� are designed for ma�
chines that have dedicated I�O nodes� Most
are based on a fairly traditional Unix�like inter�
face� in which individual processes make a re�

quest to the �le system for each piece of the �le
they read or write� Increasingly common� how�
ever� are specialized interfaces to support mul�
tidimensional matrices �CFPB��� SW�� GL���
GGL��� BdC��� BBS��� Mas��� SCJ����� and
interfaces that support collective I�O �GGL���
BdC��� BBS��� Mas���� With a collective�I�O
interface� all processes make a single joint re�
quest to the �le system� rather than numerous
independent requests�

Disk�directed I�O is a promising new tech�
nique that takes advantage of a collective�I�O
interface� and leads to much better performance
than �le systems based on traditional caching
strategies �Kot��� With disk�directed I�O� com�
pute nodes make a collective request to the �le
system� which forwards the request to all I�O
nodes� Each I�O node examines the request to
determine which �le blocks are on its disks� sorts
the �le blocks by physical location to produce
an e�cient schedule� and then begins a series of
transfers according to the schedule� In e�ect�
the I�O nodes are in charge of the data transfer�
which is organized to best suit the disks
 per�
formance characteristics� Each I�O node uses
two bu�ers to overlap disk transfer and network
transfer� For example� when reading� one bu�er
is �lled by reading a block from disk while an�
other bu�er is emptied by scattering its contents
among the compute�node memories according to
the requested distribution� Data transfers be�
tween compute nodes and I�O nodes use low�
overhead �Memput� and �Memget� messages
that move data directly to and from the appli�
cation bu�er� The experiments in �Kot�� show
that disk�directed I�O obtains nearly the peak
disk bandwidth across many data distributions
and system con�gurations�

There have been no previous studies of
CPU activity on the I�O nodes of multiproces�
sors� A ten�year old study of diskless work�
stations �LZCZ��� found that �le�server CPU
load can be extremely high� To be able to pro�
vide high performance during periods of intense
I�O activity� however� a balanced multiprocessor
spreads its disks across many I�O nodes so that
the I�O�node CPUs will not be a performance
bottleneck� This con�guration leaves open the

�

possibility that the I�O nodes will be underuti�
lized during other periods�

� Simulation Experiments

We wanted to measure the worst�case impact of
unpredictable I�O interruptions on a computa�
tional application� so we devised an experiment
involving two ���processor applications on a ���
node multiprocessor� in which one application
did nothing but I�O� and the other did noth�
ing but computation� The I�O application ei�
ther read or wrote a �le that was striped across
disks attached to the computational application�s
processors� Thus� the computational application
was occasionally interrupted so that the �le sys�
tem could service I�O requests for the other ap�
plication� These interruptions slowed the com�
putational application in two ways� First� ev�
ery cycle spent servicing the I�O request was
another cycle delay for the interrupted applica�
tion� Second� delaying one process in the com�
putational application indirectly delayed other
processes that waited for the process at a future
synchronization point �MCD�����
In our experiments we used two di�erent kinds

of computational applications� �� di�erent kinds
of I�O applications� and two di�erent kinds of �le
systems� all on a parallel �le�system simulator�

��� Computational applications

Our two computational applications did noth�
ing but computation� The �rst application� de�
signed to measure the e�ect of interruptions on
raw computational performance� had no syn�
chronization or other communication between
processes� The second application was designed
to measure the e�ect of load imbalance caused
by I�O�related interruptions� by having all pro�
cesses meet at a barrier every � msec of virtual
time� With no interruptions� all processes would
meet at every barrier at precisely the same phys�
ical times� and thus would never wait� An in�
terruption of the computation on one processor�
however� delayed both that process and all other
processes that had to wait for it at the next bar�
rier� Thus� a small perturbation of the execution

time of one process could have a ripple e�ect that
was much larger than the original�

We chose to use barriers because they have the
most drastic e�ects on performance if the pro�
cessors become unbalanced� all processes must
wait for the slowest process� Similarly we chose
a tight � msec interval to represent a challeng�
ing case �several NASA benchmarks on the Intel
Paragon and an SGI cluster were measured with
inter�barrier times of �� ��� or � msec �Nit��	�

Note that our barrier experiment also repre�
sents a computational application that is run�
ning on many processors� only some of which are
involved in serving I�O� while others are left to
run at full speed� All other things being equal�
those without I�O interruptions will always have
to wait for those with I�O interruptions� If those
slow processors run at ��� of full speed� then
the whole application runs at ��� of full speed�
regardless of the number of uninterrupted pro�
cessors�

��� I�O applications

Our I�O applications did nothing but I�O� They
each transferred a one� or two�dimensional ar�
ray of records� but in either case the �le size was
�� MB ����� ��KB blocks	� While �� MB is not a
large �le� preliminary tests showed qualitatively
similar results with ��� and ���� MB �les� Thus�
�� MB was a compromise to save simulation
time� The �le was striped� block by block� across
the �� disks attached to the computational appli�
cation�s processors� The matrix was distributed
across the �� memories of the I�O application ac�
cording to one of the HPF distributions �HPF����
as shown in Figure �� Each matrix element was
either � bytes or � Kbytes� Clearly� patterns that
use ��byte elements and a column�cyclic distri�
bution lead to a �ne�grained data distribution�
and typically to more I�O overhead�

��� File�system implementations

The �le accessed by the I�O applications was
striped across all �� disks� Within each disk the
blocks of the �le were laid out contiguously� that
is� the logical blocks of the �le were laid out in

�

NONE
NONE

(rnn)
cs = 64

1
0

2
3

1
0

2
3

1

0

2

3

0

BLOCK
NONE

(rbn)
cs = 16

CYCLIC
NONE

(rcn)
cs = 8
s = 32

0

NONE
CYCLIC

(rnc)
cs = 1
s = 4

BLOCK
CYCLIC

(rbc)
cs = 1
s = 2

CYCLIC
CYCLIC

(rcc)
cs = 1

s = 2, 10

0
1

2
3

1
2

3

0
1

0
1

0
1

0
1

2
3

2
3

2
3

2
3

0 1
2 3 2 3 2 3 2 3

0 1 0 1 0 1

0 1
2 3 2 3 2 3 2 3

0 1 0 1 0 1

0 1
2 3 2 3 2 3 2 3

0 1 0 1 0 1

0 1
2 3 2 3 2 3 2 3

0 1 0 1 0 1

HPF array-distribution patterns

10 2 30

NONE (rn)
cs = 8

BLOCK (rb)
cs = 2

CYCLIC (rc)
cs = 1, s = 4

10 2 3 10 2 3

NONE
BLOCK

(rnb)
cs = 2
s = 8

BLOCK
BLOCK

(rbb)
cs = 4
s = 8

CYCLIC
BLOCK

(rcb)
cs = 4
s = 16

0
1

2
3

0 1

2 3

0
2

0
2

0
2

0
2

3

3

3

3
1

1

1

1

Figure �� Examples of matrix distributions� which we used as �le�access patterns in our experi�
ments� These examples represent common ways to distribute a �x� vector or an �x� matrix over
four processors� Patterns are named by the distribution method �NONE� BLOCK� or CYCLIC	
in each dimension �rows �rst� in the case of matrices	� Each region of the matrix is labeled with
the number of the compute node responsible for that region� The matrix is stored in row�major
order� both in the �le and in memory� The chunk size �cs	 is the size of the largest contiguous
chunk of the �le that is sent to a single compute node �in units of array elements	� and the stride
�s	 is the �le distance between the beginning of one chunk and the next chunk destined for the
same compute node� where relevant�

consecutive physical blocks on disk� We chose
this layout because it provides the highest I�O
throughput� thus keeping the �le�system code
the most busy� Any other layout would trans�
fer data more slowly� requiring interruptions less
often�

We modeled two di�erent �le systems� tradi�
tional caching and disk�directed I�O� Traditional
caching was meant to simulate a typical paral�
lel �le system where compute nodes� on behalf
of application processes� made independent re�
quests to the appropriate I�O nodes� Each ap�
plication request to a compute node was for some
contiguous range of bytes in the �le� but because
the �le was striped by blocks� each compute�node
request to an I�O node could be for at most
one block� The I�O nodes each maintained a
block cache� with LRU replacement and support
for prefetching and write�behind� The I�O node
was multithreaded� with a new thread created for
each incoming request� Threads shared a data
structure describing the LRU bu�er list� block�
ing when waiting for a bu�er to be �ushed for
re�use� or for a bu�er to be �lled with new data
from disk� This choice led to a clean design with
plenty of concurrency� at the cost of some thread�
switching overhead� More importantly� the dis�
tribution of I�O�request service times was highly
variable� depending on whether it was a cache hit
or miss� could easily locate a free bu�er� and so
forth�

Disk�directed I�O is a new technique that
takes advantage of a collective�I�O interface� and
leads to much better performance than tradi�
tional caching �Kot��� As described above� it
works by giving control over the order and pace
of data transfer to the I�O nodes� who optimize
the transfer for maximum disk performance� Af�
ter an initial burst of CPU activity to deter�
mine the disk schedules� the only ongoing CPU
overhead is to compute the distribution of each
block
s data among the compute�node memories�
When reading� for example� some blocks com�
ing o� of disk must be split into several smaller
pieces� which are sent to the remote compute�
node memories� Some distributions involve sub�
stantial computations to determine the ultimate
location of each element�

��� Measurement methodology

Rather than actually running a computational
application� we measured the fraction of CPU
time available for running a computational ap�
plication on one set of processors� during the
period the I�O application was running on the
other set of processors� Before and after the I�O
application ran� of course� there were no inter�
ruptions and so the computational application
received ���� of the CPU
s time� since we were
interested in the e�ect of the I�O requests� we
only measured the period when the I�O appli�
cation was running� Note that this methodol�
ogy means that the I�O interruptions had prior�
ity over the computation� again� this experiment
was designed to expose the worst�case e�ects on
the computational application�
To make this measurement� we collected traces

of the CPU activity on the I�O nodes of our two
�le systems� under load from one of the I�O ap�
plications� We processed the traces to count idle
cycles as a proportion of total cycles �i�e�� the
inverse of the CPU utilization	� However� not
all idle cycles would be available to a real com�
putation� due to the overhead for switching con�
text between the application and the �le system�
For each interruption� therefore� we deducted
�� �sec�� Idle intervals shorter than �� �sec were
therefore useless to the computation� and so were
not counted�

��� Simulator

Our traces were collected from the STARFISH
parallel �le�system simulator �Kot��� which
ran on top of the Proteus parallel�architecture
simulator �BDCW���� which in turn ran on
a DEC����� workstation� Proteus itself has
been validated against real message�passing ma�
chines �BDCW���� We con�gured Proteus using
the parameters listed in Table �� These parame�
ters are not meant to re�ect any particular ma�
chine� but a generic machine of current technol�
ogy�

�This is a moderate context�switch time �ALBL����
even when cache eects are considered
 In any case� pre�
liminary experiments showed that our results were not
sensitive to this parameter

�

Table �� Parameters for simulator�

Distributed�memory
MIMD �� processors
Compute processors ��
I�O processors ��
CPU speed� type �� MHz� RISC

Disks ��
Disk type HP �����
Disk capacity ��� GB
Disk peak transfer rate ��� Mbytes�s
File�system block size � KB
I�O buses �one per IOP	 ��
I�O bus type SCSI
I�O bus peak bandwidth �� Mbytes�s

Interconnect topology �� � torus
Interconnect bandwidth ���� ��� bytes�s

bidirectional
Interconnect latency �� ns per router
Routing wormhole

We added a disk model� a reimplementation of
Ruemmler and Wilkes
 HP ����� model �RW��
KTR��� We validated our model against disk
traces provided by HP� using the same technique
and measure as Ruemmler and Wilkes� Our im�
plementation had a demerit percentage of �����
which indicates that it modeled the ����� accu�
rately�

��� Results

Figure � compares the impact of all �� I�O ap�
plications on our �rst computational application�
as well as showing the I�O bandwidth achieved
by the I�O application� Ideally� all points
would be in the upper�right corner� indicating
high I�O throughput and computational perfor�
mance� Most of the disk�directed�I�O points
are there� except for six �hard� patterns on the
left� Traditional caching had much poorer I�O
performance� and its CPU needs were slightly
smaller �to some extent the CPU needs appear
smaller because the CPU impact was spread over
a longer physical time� due to the poor I�O per�
formance	�

To get a better understanding of Figure ��
we selected two representative patterns for more
detailed presentation� one that was extremely
easy and fast in both �le systems� and another
that was extremely complex and slow in both
�le systems� The easy pattern �representing
points in the upper right	 distributed a one�
dimensional matrix of ��KB records cyclically
among the memories �recall that � KB was the
�le�system block size	� The hard pattern �rep�
resenting points in the lower left	 distributed a
two�dimensional matrix of ��byte records among
the memories in a BLOCK�CYCLIC layout� to
use HPF terminology� We look at both the read
and write versions of these two patterns� for a
total of four cases��

Table � shows the results in detail for each
of these four access patterns and each �le sys�
tem� The �easy� access patterns took little CPU
time� leaving ������ of the CPU for the com�
putational application� Nonetheless� they sus�
tained �����MB�s� which is ������of the disks

peak bandwidth� Of the two �le systems� disk�
directed I�O had higher I�O throughput and less
CPU demand�

For the �hard� access patterns� however� the
situation was quite di�erent� I�O performance
su�ered� in traditional caching because it man�
aged the disks and cache poorly� and in disk�
directed I�O because of the amount of CPU over�
head in handling thousands of ��byte messages��

Nonetheless� this example points out a situation
where the I�O bene�ts of disk�directed I�O were
enormous� It came at a cost� however� in terms
of the amount of CPU overhead required� which
in the worst case left only ��� of the CPU cy�
cles available for the computational application�
The CPU overhead of traditional caching does
not seem to be so bad� but this was again par�
tially due to the poor I�O performance spreading
out the overhead over many cycles�

When we added barrier synchronizations to
the computational application� the I�O activity

�In �Kot���� the easy patterns are called rc and wc

with ��KB records� and the hard patterns are called rbc

and wbc with ��byte records

�We suspect the latter may be improved with a

gather�scatter message�passing mechanism

�

Table �� Percent of CPU time available to the computational application ����� is ideal	� and the
amount of data throughput achieved by the I�O application�

Traditional Caching Disk�directed I�O

CPU available I�O throughput CPU available I�O throughput
�percent	 �MBytes�s	 �percent	 �MBytes�s	

easy read ��� ���� ��� ����
easy write ��� ��� ��� ����
hard read ��� ��� �� ����
hard write ��� ��� ��� ���

Table �� A comparison of the amount of CPU time usable by the computation� with and without
barrier synchronization� In the presence of load imbalance caused by I�O interruptions� barriers
cause some processors to idle� reducing the percentage of CPU that was �usable��

Traditional Caching Disk�directed I�O
CPU available ��	 CPU available ��	
no barriers barriers no barriers barriers

easy read ��� ��� ��� ���
easy write ��� ��� ��� ���
hard read ��� ��� �� ���
hard write ��� ��� ��� ���

of course had a bigger e�ect� Figure � plots the
e�ect of all �� access patterns on this synchro�
nizing application� Table � focuses on the same
representative cases as before� First� note that
there was only minimal e�ect on the easy ac�
cess patterns� The interruptions were short and
rare� leading to little disturbance� On the �hard�
patterns in the traditional�caching �le system�
however� there was a dramatic e�ect due to the
highly variable amount of computation needed
for cache�management operations �for example�
a cache miss took much more computation than
a cache hit	� leading to load imbalance within
the computational application�

�

�

�

��

��

��

��

��

��

� �� �� �� �� �� �� �� �� 	� ���

I
O

Mbytes
s

Percent of CPU available to computational application

�hard� patterns

Diskdirected I
O
Traditional caching �

�

�
�

�

��

�

��

��
�

�

�
�
�

�

�

��

��

�

�

��

�

��

��

�

�

���

Figure �� I�O throughput vs� computational performance for all �� di�erent access patterns� and
both �le�system implementations� The upper�right corner represents the best cases� there are
actually � points above �� MB�s� many of which overlap in this picture�

�

�

��

��

��

��

��

��

� �� �� �� �� �� �� �� �� 	� ���

I
O

Mbytes
s

Percent of CPU available to computational application

�hard� patterns

Diskdirected I
O
Traditional caching �

�

�
�

�

��

�

��

��
�

�

�
�
�

�

�

��

� �

�

�

��

�

��

� �

�

�

���

Figure �� Similar to Figure �� but with a computational application that includes a barrier
synchronization every � msec of virtual time� Again� many of the points in the upper right
overlap�

�

� Measurement Experiments

The simulations in the previous section allowed
us to examine the e�ects of a variety of work�
loads on two very di�erent �le systems in a con�
trolled setting� To support these results� we have
also measured the e�ects of a real �le system
on a real computation� using a cluster of eight
IBM RS��������� workstations in Dartmouth
s
FLEET lab�� We used a LINPACK benchmark
program as a computational application� We ran
several copies of this program in parallel� one on
each of six workstations� Each process ran ��
iterations of the LINPACK computation� stop�
ping for a barrier at �� points within each it�
eration �on average� after every half second of
computation	�� Needless to say� this synthetic
parallel application is perfectly load balanced�
Then� we had one of the other two workstations
run a simple program that either read or wrote
a �� MB �le with � KB requests� sequentially
or randomly� where the �le was served through
NFS from one of the hosts running the LIN�
PACK program� Due to the periodic barriers�
any slowdown experienced by that node caused
the entire application to slow down� �As a con�
trol� we ran a similar test with six workstations
running the LINPACK program while the other
two did I�O� one as client and one as server� de�
spite the network tra�c� the I�O had no e�ect on
the LINPACK program
s barriers�	 While this
experiment does not directly correspond to any
of the patterns used in Section �� it is slightly
harder than the �easy� pattern examined there�

Table presents the results� Although we can�
not fully explain the di�erences in the e�ects of
the I�O access patterns� it is clear that the ap�
plication was able to run at ������ e�ciency
despite the CPU impact of the I�O� Faster pro�
cessors� which would be found in any substantial
parallel machine� should experience even less im�
pact� Given the heavyweight nature of this op�
erating system and the NFS �le system� these
results corroborate those in the previous section�

�For more information see
http���www�cs�dartmouth�edu�research�fleet�

�We used MPI �Wal��� for the communication support

Table � Execution time of a synthetic parallel
computation� in seconds� In the �No I�O� case�
this application runs alone� and represents the
ideal execution time for this application� In the
other cases one of the nodes is burdened with
heavy NFS tra�c� �E�ciency� represents the
performance relative to the ideal execution time�

Time �sec	 E�ciency

No I�O ����
Sequential read ���� �����
Random read ����� �����
Sequential write ����� �����
Random write ���� �����

� Discussion and conclusions

Large multiprocessors with many processors and
disks have great potential for fast computations
and high I�O throughput� Due to their cost�
however� it is important to use their resources
e�ciently� To provide the high�performance I�O
needed by some applications� many multiproces�
sors today dedicate a subset of their nodes to
I�O� Our results show that for some complex
�le�request patterns� these dedicated nodes were
saturated� For many simpler patterns� however�
the I�O�node CPUs were largely idle� that is�
with ������ available that could be used for
running applications� Furthermore� even appli�
cations that synchronized at a barrier every mil�
lisecond could pro�tably obtain about ������
of the I�O node
s CPU time for computation�
Disk�directed I�O usually needed less CPU time
than a traditional caching �le system� Measure�
ment results from a real �le system on a cluster
of workstations corroborated these results�

Please note that our speci�c experimental re�
sults are dependent on the simulated and real ar�
chitectures and workloads that we used� Indeed�
real multiprocessor con�gurations will have a
di�erent balance between CPU speed and disk
speed� a di�erent mix of �easy� and �hard� work�
loads� and di�erent ratios of compute nodes� I�O
nodes� and disks� Given a similar workload� sys�
tems with fewer I�O nodes or slower I�O�node

�

CPUs will of course appear to have busier CPUs�
No matter what con�guration� however� we ex�
pect that the fundamental conclusion remains�
for any �xed con�guration there will likely be
periods when the I�O�node CPUs are underuti�
lized while some applications are CPU�bound�
and periods when the I�O�node CPUs are fully
utilized� The system should thus be con�gured
with su�cient I�O nodes to sustain the heaviest
I�O load� but the operating and run�time sys�
tems should be �exible enough to allow tolerant
applications to use I�O�node CPUs when avail�
able�

This paper should only be considered a start�
ing point� as we have only considered the im�
pact of I�O service on the CPU utilization of
an I�O node� File�I�O tra�c may also substan�
tially impact the communication performance of
a computation�only application �BBH���� File�
system activity will also compete with a com�
putation for memory bandwidth and cache
space� Finally� e�cient system software would
be needed to provide the �exibility that we pro�
pose� Nonetheless� we feel that the issue is worth
further exploration� An implementation� and ex�
perimentation with a real workload� are neces�
sary�

Acknowledgements

Thanks to Eric Brewer and Chrysanthos Del�
larocas for Proteus� and to Nils Nieuwejaar� Bill
Nitzberg� Mike Harry� and the anonymous re�
viewers for feedback on drafts of this paper�

Availability

The STARFISH simulator can be found at
http���www�cs�dartmouth�edu��dfk�STARFISH�

Information about Dartmouth
s FLEET lab
can be found at
http���www�cs�dartmouth�edu�research�fleet�

Many of the papers below can be found at
http���www�cs�dartmouth�edu�pario�html

References

�ALBL��� Thomas E� Anderson� Henry M�
Levy� Brian N� Bershad� and Ed�
ward D� Lazowska� The interaction
of architecture and operating system
design� In Fourth International Con�
ference on Architectural Support for
Programming Languages and Oper�
ating Systems� pages �������� �����

�BBH��� Sandra Johnson Baylor� Caroline B�
Benveniste� and Yarson Hsu� Perfor�
mance evaluation of a parallel I�O
architecture� In Proceedings of the
�th ACM International Conference
on Supercomputing� July ����� To
appear�

�BBS��� Robert Bennett� Kelvin Bryant�
Alan Sussman� Raja Das� and Joel
Saltz� Jovian� A framework for op�
timizing parallel I�O� In Proceed�
ings of the ���� Scalable Parallel
Libraries Conference� pages ������
IEEE Computer Society Press� Oc�
tober ����

�BdC��� Rajesh Bordawekar� Juan Miguel del
Rosario� and Alok Choudhary� De�
sign and evaluation of primitives
for parallel I�O� In Proceedings of
Supercomputing ���� pages ������
�����

�BDCW��� Eric A� Brewer� Chrysanthos N� Del�
larocas� Adrian Col�
brook� and William E� Weihl� Pro�
teus� A high�performance parallel�
architecture simulator� Technical
Report MIT�LCS�TR����� MIT�
September �����

�CF�� Peter F� Corbett and Dror G� Fei�
telson� Design and implementa�
tion of the Vesta parallel �le sys�
tem� In Proceedings of the Scalable
High�Performance Computing Con�
ference� pages ������ ����

��

�CFPB��� Peter F� Corbett� Dror G� Feitelson�
Jean�Pierre Prost� and Sandra John�
son Baylor� Parallel access to �les in
the Vesta �le system� In Proceedings
of Supercomputing ���� pages ���
��� �����

�DdR��� Erik DeBenedictis and Juan Miguel
del Rosario� nCUBE parallel I�O
software� In Eleventh Annual IEEE
International Phoenix Conference
on Computers and Communications
�IPCCC	� pages ��������� April
�����

�Dib��� Peter C� Dibble� A Parallel Inter�
leaved File System� PhD thesis� Uni�
versity of Rochester� March �����

�DSE��� Peter Dibble� Michael Scott� and
Carla Ellis� Bridge� A high�
performance �le system for paral�
lel processors� In Proceedings of
the Eighth International Conference
on Distributed Computer Systems�
pages ������� June �����

�FPD��� James C� French� Terrence W�
Pratt� and Mriganka Das� Perfor�
mance measurement of the Concur�
rent File System of the Intel iPSC��
hypercube� Journal of Parallel
and Distributed Computing� �����
�	��������� January and February
�����

�GGL��� N� Galbreath� W� Gropp� and
D� Levine� Applications�driven par�
allel I�O� In Proceedings of Super�
computing ���� pages ������ �����

�GL��� Andrew S� Grimshaw and Ed�
mond C� Loyot� Jr� ELFS� object�
oriented extensible �le systems�
Technical Report TR������ Univ� of
Virginia Computer Science Depart�
ment� July �����

�HdC��� Michael Harry� Juan Miguel del
Rosario� and Alok Choudhary� VIP�
FS� A virtual� parallel �le system for

high performance parallel and dis�
tributed computing� In Proceedings
of the Ninth International Parallel
Processing Symposium� April �����
To appear�

�HER���� Jay Huber� Christopher L� Elford�
Daniel A� Reed� Andrew A� Chien�
and David S� Blumenthal� PPFS�
A high performance portable par�
allel �le system� Technical Report
UIUCDCS�R��������� University of
Illinois at Urbana Champaign� Jan�
uary �����

�HPF��� High Performance Fortran Forum�
High Performance Fortran Language
Speci
cation� ��� edition� May �
�����

�Kot�� David Kotz� Disk�directed I�O for
MIMD multiprocessors� In Pro�
ceedings of the ���� Symposium on
Operating Systems Design and Im�
plementation� pages ����� Novem�
ber ���� Updated as Dartmouth
TR PCS�TR����� on November ��
����

�Kri�� Orran Krieger� HFS� A �exible
le
system for shared�memory multipro�
cessors� PhD thesis� University of
Toronto� October ����

�KTR�� David Kotz� Song Bac Toh� and
Sriram Radhakrishnan� A detailed
simulation model of the HP �����
disk drive� Technical Report PCS�
TR������ Dept� of Computer Sci�
ence� Dartmouth College� July ����

�LIN���� Susan J� LoVerso� Marshall Is�
man� Andy Nanopoulos� William
Nesheim� Ewan D� Milne� and
Richard Wheeler� sfs� A parallel �le
system for the CM��� In Proceedings
of the ���� Summer USENIX Con�
ference� pages �������� �����

�LZCZ��� Edward D� Lazowska� John Za�
horjan� David R� Cheriton� and

��

Willy Zwaenepoel� File access
performance of diskless worksta�
tions� ACM Transactions on Com�
puter Systems� ��	��������� Au�
gust �����

�Mas��� Parallel �le I�O routines� MasPar
Computer Corporation� �����

�MCD���� Evangelos Markatos� Mark Crovella�
Prakash Das� Cezary Dubnicki� and
Tom LeBlanc� The e�ects of mul�
tiprogramming on barrier synchro�
nization� In Proceedings of the ����
IEEE Symposium on Parallel and
Distributed Processing� pages ����
���� �����

�MS�� Steven A� Moyer and V� S� Sun�
deram� PIOUS� a scalable paral�
lel I�O system for distributed com�
puting environments� In Proceedings
of the Scalable High�Performance
Computing Conference� pages ���
��� ����

�Nit�� Bill Nitzberg� Time between barri�
ers� Personal communication� ����

�Pie��� Paul Pierce� A concurrent �le sys�
tem for a highly parallel mass stor�
age system� In Fourth Conference
on Hypercube Concurrent Comput�
ers and Applications� pages ��������
Golden Gate Enterprises� Los Altos�
CA� March �����

�Roy��� Paul J� Roy� Unix �le access and
caching in a multicomputer environ�
ment� In Proceedings of the Usenix
Mach III Symposium� pages ������
�����

�RW�� Chris Ruemmler and John Wilkes�
An introduction to disk drive mod�
eling� IEEE Computer� ����	�������
March ����

�SCJ���� K� E� Seamons� Y� Chen� P� Jones�
J� Jozwiak� and M�Winslett� Server�
directed collective I�O in Panda�

Submitted to Supercomputing
���
March �����

�SW�� K� E� Seamons and M� Winslett� An
e�cient abstract interface for multi�
dimensional array I�O� In Proceed�
ings of Supercomputing ���� pages
�������� November ����

�Wal�� D� W� Walker� The design of
a standard message passing inter�
face for distributed memory concur�
rent computers� Parallel Computing�
���	��������� April ����

��

