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Abstract

In the context of our goal to bring parallel computing into the undergraduate curriculum, we needed
a parallel-programming language that was accessible to students and independent of any particular
hardware platform. Finding nothing appropriate, we chose to design our own language. The result,
DAPPLE, is a C4++ class library designed to provide the illusion of a data-parallel programming
language on conventional hardware and with conventional compilers. DAPPLE defines Vector
and Matriz classes, with most C4++4 operators overloaded to provide elementwise arithmetic, and
supports data-parallel operations like scans, permutations, and reductions. DAPPLE also provides
a parallel if-then-else statement to restrict the scope of the above operations to partial vectors or
matrices. In this paper we describe the DAPPLE language, the pedagogical decisions that went
into its design, and our experience using DAPPLE in the classroom. DAPPLE is freely available

on the Internet.



1 Introduction

Parallel computing, having been considered an advanced topic suitable only for graduate students, is
slowly migrating into the undergraduate curriculum [1]. We believe parallelism should be introduced
early in the curriculum, before the habits of sequential thinking are ingrained. Indeed, some have
had success teaching the elementary concepts to high-school students [2]. When limited resources
constrained our original plan to replace our CS2 data-structures and programming course with a
course centered on parallel computing [3], we focused on the addition of a week-long module about
parallel computing to the existing CS2 course. We used the techniques described in this paper to
teach parallel computing to first-year undergraduates in CS2.

When teaching parallel computing to first-year undergraduates, one must carefully consider the
approach. We believe that it is important for the students to study parallel programs as well as
parallel algorithms, and to have hands-on experience with parallel programming. We used a data-
parallel programming model, whose single thread of control allowed students to explore issues in
parallel algorithms without the complexities of asynchrony, deadlock, and communication. (While
these are important issues in parallel computing, we felt that it was best to allow the students to
focus on the underlying parallelism first, and to postpone these other issues to a later course.)

We wanted a programming language that allowed students to experiment with parallel com-
puting concepts without being distracted by the mechanics of parallel programming. In addition,
we wanted a parallel programming language that was essentially the same as the language used
by students for their sequential programming (preferably C++), was available on the computers
they use, was easy to learn by beginners, and was usable by students at all levels in many kinds
of courses. Although many data-parallel languages exist, including C*, Fortran90, NESL [4], and
HPF [5], they are difficult to use, are not similar to C+4, or are not easily portable to student
computers.

We found many research projects designing parallel C++ variants. C** [6] is perhaps the
closest candidate, in that it supports a data-parallel model, but it requires a new compiler and
is not yet available. pC+4+ [7] can also provide a data-parallel model, using only a preprocessor
and library, but its syntax is a little complicated for beginners. Other data-parallel options like
Presto++ [8] and Compositional C4++ [9] are also rather complex for beginners. Others, like
Mentat [10], CHARM++ [11], and COOL [12], are more task-parallel than data-parallel. Recent

efforts [13, 14, 15] are only in early stages of development.



Finding no suitable existing language, we decided to design and implement our own language
as a set of macros and classes that extended C++. The result is DAPPLE, a DAta-Parallel
Programming Library for Education. DAPPLE gains its strength from its simplicity, portability,
and versatility, rather than from performance or ease of implementation on real parallel hardware.
In other words, DAPPLE was optimized for pedagogical use.

After a quick review of the data-parallel programming model in Section 2, we give an overview
of the DAPPLE language in Section 3, including a discussion of the pedagogical decisions involved
in the language’s design. Section 4 comments on some interesting implementation issues. Section 5
describes our experience using DAPPLE in the classroom. We conclude in Section 6 and point out

how to obtain DAPPLE for your own classroom.

2 Data-parallel programming

The data-parallel programming model gives the programmer a single thread of control, much as in
sequential programming languages, but allows certain operations to be applied to large collections
of data simultaneously. For example, the sum of two arrays may be assigned to a third array by
using many virtual processors in parallel, each responsible for computing one (scalar) sum and
storing it in the appropriate element of the result array.

When the conditional expression of an if () statement refers to collections, the expression is
independently evaluated by every virtual processor. Those virtual processors where the condition
is true execute the “then” clause (simultaneously), and those where the condition is false execute
the “else” clause (simultaneously). Because non-parallel code may also be part of these clauses, the
semantics say that the “then” clause executes first, and then the “else” clause executes. Within each
clause, only a subset of the processors are active, and only active processors participate in operations
on collections. In other words, a parallel if () reduces the context of collection operations within
each clause. Finally, there are other operations on entire collections, such as reducing a collection

to a scalar by summing all the elements, or printing the collection.

3 DAPPLE programming

DAPPLE adds data-parallel concepts to C++ programming, allowing the programmer to manipu-
late collections of data (vectors and matrices) as described above. To illustrate these concepts and

the language, we present four examples and a summary of the language.



3.1 Pascal’s triangle

Pascal’s triangle is a set of rows, where the first row contains one “1” followed by an infinite number
of “0”s. Each entry in the next row is the sum of the entry above it and the entry above and to

the left. Inductively, row ¢ has ¢ non-zero entries. The result (one row per line, not showing the

zeros) is
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

and so forth. Figure 1 shows part of a DAPPLE program to compute Pascal’s triangle. The
second statement defines an integer vector called arow, with N elements numbered 0,1,..., N —
1. (DAPPLE supports new classes intVector, charVector, floatVector, doubleVector, and
booleanVector).! This vector will soon contain one row of the triangle, but for now the elements
are uninitialized. Vectors may also be initialized when defined, to a scalar, an array, another vector,
or a function of the index. The third and fourth statements of Figure 1 define an N-element integer
vector called VP, initialized so that element ¢ has value 1.

Figure 1 uses a parallel-if statement, ifp(), to initialize arow (for comparison, it also presents
the equivalent sequential code). The “then” clause executes only for those virtual processors where
the condition (VP == 0) is true, in this case, only virtual processor 0. Thus, it assigns and prints
only arow[0]. This one element is of course the entire first row of Pascal’s triangle. The “else”
clause executes for the remaining virtual processors.

The for loop of Figure 1 computes and prints N — 1 more rows. Fach time through the loop
we compute a new row of the triangle, in parallel, by adding the current row to itself, shifted one
to the right (a zero is shifted in at the left side).? Then, we print out the vector, but only elements

0 through %, i.e., the non-zero elements of this row.

1We chose not to use templates because current compilers vary in their ability to support templates.

2Purists of object-oriented programming note that we chose a functional rather than object-oriented style for most
operations. The functional style makes it easier to compose operations, e.g., B = shift(B,1) + B + shift(B,-1),
than if shift() modified B. Recommended by the ARM [16, page 249], the functional syntax shift(B,1) makes
it clear that the operand B is not modified, while in B.ghift (1) it is not as clear. Similarly, we believe that x =

sum (A*B+C) is clearer than x = (A*B+C).sum().



3.2 Computing 7

Another simple example shows students the power of data-parallel computing on a familiar problem:

4
1422

numerical integration. In Figure 2 we use the rectangle rule to estimate 7 as fol There are
N rectangles of width 3, with rectangle ¢ (0 < ¢ < N) located at position 2; = (i 4+ 3)%. After
computing the z values in parallel, it is then easy to compute the function y; = ﬁ in parallel.

Each rectangle’s height y is multiplied by its width % to get its area, and then the sum() reduction

provides the total area, our estimate for 7. This program prints “pi “= 3.14159”.

3.3 Matrix-matrix multiply

In addition to vectors, DAPPLE supports a set of Matrix classes. Figure 3 shows most of a
program to multiply two integer matrices.> Three matrices are defined as type intMatrix(r,c),
where integers r and ¢ specify the number of rows and columns. Note that A and B are initialized
from user input using the standard iostream operator >>, overloaded by DAPPLE for matrix (or
vector) input.

A nested loop computes each element of the result matrix C as an inner product (dot product)
of the appropriate row of A and the appropriate column of B, demonstrating DAPPLE’s capability
to work with matriz slices [6]. Here, A[r][_] is a row slice, representing row r of matrix A, and
B[_]1[c] is a column slice, representing column ¢ of matrix B. Slices may be used anywhere vectors
may be used, including on the left-hand side of an assignment operator.

The function inner(v1l, v2) is provided by DAPPLE, but the same operation could also be
expressed as sum(vl * v2), using DAPPLE’s built-in reduction function called sum().

The final 1f () statement demonstrates a handy reduction, any (), which returns (scalar) true
if and only if some element of its vector or matrix argument is non-zero. Here, its argument is
the boolean matrix representing the condition (C !'= D), so any(C != D) is true if there is any
position (¢, j) where C;; # D;;. Although one might be tempted to write ifp(C != D) instead, that
would have a different effect: the first message would be printed once for every virtual processor

where C;; # D;;, and the second message would be printed once for every virtual processor where

Cij = Di]‘.

?0f course, there are better algorithms, but this serves to demonstrate DAPPLE. For consistency, we decided that
all overloaded operators would be elementwise operators, so C=A*B for three matrices A, B, and C does an elementwise

multiplication and not a matrix multiplication.



3.4 Quicksort

To demonstrate DAPPLE’s ability to manipulate data within a vector, and in particular its ability
to dynamically narrow context to a subset of the virtual processors, we devised a simple recursive
implementation of quicksort (Figure 4).* The quicksort procedure recursively sorts the active
portion of its vector argument. (Initially, quicksort is called with all processors active.) It begins
by using the reduction n_active() to find the size of the subvector it is to sort. Then, it dispenses
with two special cases: subvectors of size 0 or 1 are trivially sorted, and a subvector of size 2
may require a swap. (We use reductions min_value(), max_value(), and first(), to compute
the minimum and maximum values and assign them to the appropriate element.) Otherwise,
we partition and recurse. To partition, it chooses a splitter value (here, the value at the first
active processor), builds a permutation subvector that specifies the destination of every element in
the repartitioned subvector, and then permutes. It restricts the context to the left partition and
recurses, and then restricts the context to the right partition and recurses.

The quicksort example demonstrates one weakness of DAPPLE, its inability to support nested
data parallelism [4]. The two recursive calls to quicksort() must be done sequentially, each with
only a small subset of the virtual processors active. Given this model, other sorting algorithms

would be more appropriate. Exploring this issue makes a valuable lesson for students.

3.5 DAPPLE design

The DAPPLE extensions to C+4, most of which are exhibited in the above examples, are summa-
rized in Table 1. In the course of designing the DAPPLE language, we encountered many decisions,
small and large, that affect the syntax and semantics of the language. Some of the more interesting
design decisions follow.

Early on, we decided to expose the notion of virtual processors to the students. In this way
DAPPLE is more like C*, which defines operations on parallel variables with fixed “shapes”, than
like NESL, which defines abstract operations on variable-length lists. Although NESL provides a
higher-level abstraction, we felt that it was important to give the students a small connection to the
hypothetical parallel execution environment. DAPPLE’s conceptual model makes a virtual pro-

cessor responsible for executing elementwise operations at corresponding positions of two operands

*In a classroom setting, of course, we ensure the students are familiar with sequential quicksort before exposing

them to parallel quicksort. Also, there are more efficient ways to program quicksort in DAPPLE (not shown).



with the same shape. This concept is reflected more strongly in the semantics of the ifp statement,
which makes some virtual processors inactive during the execution of its “then” and “else” clauses.
This construction makes it clear to students that there are times when some processors are inactive,
and makes students aware of the inefliciencies that occur in some parallel programs.

Once we decided to base our conceptual model on virtual processors that were either active
or inactive, we needed to define the semantics of all operations over active subsets of vectors
and matrices. Because an active subset is defined by a ifp statement using a boolean collection
(usually the result of a boolean expression), the active subset itself has a shape. Within the
dynamic context of the ifp statement, only collections whose shape matches that of the active set
may be manipulated. Although occasionally inconvenient, it is a direct result of semantics based
on “active” and “inactive” virtual processors, and is a feature of all languages like C*.

As mentioned earlier, we chose a functional notation for our operators, rather than an object
notation. Functions of collections always return new collections, a notion that is convenient for
common expressions like the following:

intMatrix A(n);

// add each elements’ neighbors to itself

A += shift(A, -1, -1) + shift(A, -1, 1) + shift(A, 1, -1) + shift(A, 1, 1);
This functional notation makes the functional behavior more obvious, and consistent with operators,
than does the pure object form below:

intMatrix A(n);

// add each elements’ neighbors to itself
A += A.shift(-1, -1) + A.shift(-1, 1) + A.shift(1, -1) + A.shift(1, 1);



We always tried to choose the semantics that would be intuitive to most students. In some
cases, intuition clashes with consistency. While it would be consistent for all collection operations
to be only affect elements corresponding to active virtual processors, we found a few operations
that should be insensitive to the active set. For example, initialization, shift(), and rotate():

floatVector A(n);

ifp (A > 0) {
// average of three neighbors, but do it only where 4 > O
A = (shift(A, -1) + A + shift(a, 1)) / 3;

¥

ifp (A > 0) {
floatVector X(n, 0); // a vector of n integers, initialized to O

A = rotate(X, -1);
¥

In the first ifp statement, each shift() shifts the entire vector left or right, regardless of the
active set. Of course, the addition and assignment only occur on active elements of the vector.
The alternative would have shift(A,i) move each active element over by ¢ active positions. We
found little use for these semantics, and plenty of use for those above. In the second ifp we see the
new vector X used as the argument to a rotate. Since inactive elements of X may be rotated into
active positions, and assigned to A, it was important to initialize all elements of a collection. This
decision had the undesired effect of making initialization different from assignment, but makes it
harder for uninitialized variables to sneak into student’s programs.

The permutation operator required a similar decision. We decided that the result of
permute(X,P) would be initialized to X, and then the active elements of X would be copied ac-
cording to the permutation vector P. Thus, the active set determines which elements are sent, not
which elements are written, in the result vector.

In making all of these decisions, we found it valuable to compare existing languages, to consult

experienced data-parallel programmers, and to write many example programs.®

4 DAPPLE implementation notes

There were also several interesting implementation decisions made during the design of DAPPLE.
While a complete description of the DAPPLE implementation is beyond the scope of this paper,

there are some highlights worth reporting here.

®See the examples at URL http://www.cs.dartmouth.edu/ILI/dapple/examples/.



Templates. It seems clear that C++ templates would have been perfect for implementing generic
Vector and Matrix classes, allowing easy generalization over primitive element classes like int and
float. At the time we developed DAPPLE (May 1994), however, templates were poorly supported
by C++ compilers available to us. Furthermore, the compilation model for templates would have
required that the entire DAPPLE implementation code (4500 lines of C++) be recompiled for
each small student example. Even in our non-template implementation, the overhead of compiling
include files and of linking makes DAPPLE slow to use on the Macintosh. Furthermore, there are
several operators that are defined for one elemental class and not another; for example, boolean
operators are defined for booleanVectors but not for floatVectors, and the mod operator (%) is only
defined for intVectors and intMatrices. These variations would be difficult to express in a template

class.

Active sets and ifp. The active set is represented internally by a stack of booleanVectors, each
representing the active set at that level of ifp nesting. We implement ifp as a macro that expands
into a two-iteration loop, which updates the active-set stack before and after each iteration. The
loop contains an if statement that chooses the “then” clause on the first iteration, and the “else”
clause on the second iteration. As a result, the active set remains meaningful across function calls

embedded in ifp clauses, so ifp statements may be dynamically nested:

main()
{
intVector A(n);
ifp (A > 0)
do(A);
}
do(intVector A)
{
intVector B(n);
ifp (B == 0)
cout << A; // only where A > 0 and B == 0
else
cout << B; // only where A > 0 and B '= 0
}

Shapes. FEvery Vector and Matrix is given a shape when declared, through parameters to the

constructor. In our implementation, Vector and Matrix are both subclasses of Collection, so that



the simpler methods (such as the elementwise operators) can be defined once for Collection and
be usable either for Vectors or Matrices. The Collection contains a description of its shape. Each
Collection method checks to make sure its operands are the same shape, and creates a result

Collection of the same shape.

Matrix slices. A matrix slice (e.g., M[_][4] representing column 4 of matrix M) behaves exactly
like a vector. We overloaded the [] operator for matrices to return a new collection that had the
shape of a vector (so that slice-vector operations were possible), but which contained a pointer to
the original matrix so that assignment to a slice would update the original matrix. We defined a
global variable of a special type and the name _ (underscore), allowing us to define three types
of matrix subscripting: [int][int] (element), [int][_] (row slice), and [_][int] (column slice), through

different overloads of the [] operator.

5 Classroom experience

We taught parallel-computing concepts and DAPPLE to a group of first-year students near the
end of Dartmouth’s second course in computer science (i.e., CS2). The students had learned
C++ programming in this and the preceding course, and had learned the basic data structures
(dictionaries, trees, lists, arrays, efc.) and algorithms (sorting, searching, etc.). The four lectures
are outlined in Figure 5. In the first lecture, we motivated parallel computing and introduced some
basic concepts, including the notions of parallel complexity, work, speedup, and efficiency. In the
second lecture we introduced DAPPLE through a combination of description and simple examples.
The third and fourth lectures examined two larger examples in more detail. The first introduced
the topic of image processing, specifically edge finding. The second visited the familiar topic of
quicksort, by presenting a parallel version of quicksort.

The program to use Canny’s algorithm for edge finding demonstrated an embarrassingly par-
allel program with nearest-neighbor communication. Many students were excited to see a simple
program with obvious real-world applications. They were able to appreciate the parallelism and
the fact that computer science applies to the real world, often forgotten in the collection of abstract
programming problems typical in this course. We developed a colorful animation of this inherently
visual application that helped to explain some of the mathematics in the program.

The quicksort program, much like that in Figure 4, demonstrated the complexity of parallel

programming, and more sophisticated techniques like scans, permutations, and recursively nested



active sets. We used two demonstrations to help students understand the algorithm. First, we used
live demonstrations where the students acted as virtual processors, and second, we used a detailed
computer animation to follow the algorithm through an example.

For homework the students were asked to do two small exercises. First, the students were asked
to comment on the efficiency of the quicksort algorithm, which clearly loses parallelism in the lower
levels of the recursion. Then the students were asked to write a new DAPPLE program to simulate
Conway’s Game of Life [17, 18], as in Figure 6. As this program has a structure similar to Canny’s
algorithm, most students had little difficulty. Students used DAPPLE on the Macintosh, in the
same programming environment they had used for all of their previous programming.

We presented our class lectures using an overhead projection of a Macintosh computer screen,
allowing us to show the animations, view code, compile and run programs, and show lecture notes.
All of the lecture notes and examples were formatted in HIT'ML and viewed with Netscape, so they

were available to students after class.®

Student response. We surveyed the students at the end of the lectures, and examined the
DAPPLE programs they submitted. Of 26 students in the class, 20 returned the survey. All found
the module to be interesting and useful. They particularly enjoyed the way it made them look at
computing in a different way, and the way we were able to relate it to real-world computing needs.
Several felt that it would have been better if we had used a real parallel computer, despite the fact
that the language and concepts would have been no different.

Most found our pace too slow; we clearly underestimated their ability to follow complex material.

The animations were “extremely” useful, even “vital,” to understanding the algorithms. While
it is not surprising that these animations were useful to help students visualize the algorithms, a
student assistant spent about fifty hours building the animations. More interestingly, the class was
divided on whether the “live” demonstrations, where students acted out algorithms, were useful.
Other researchers have successfully used such live demonstrations to teach parallel computing [19],
even to high-school students [2]. Most of our students liked the demonstrations, but one even said
they were “degrading,” yet another example of how students prefer to learn in different ways.

Students were also mixed on the use of HI'ML/Netscape lecture notes. Some found it useful
to have the lecture notes easily available after class from anywhere on campus. Others requested

printed notes. Several pointed out that what works best in class (outline form with little detail)

5And to you: see URL http://www.cs.dartmouth.edu/ILI/dapple/lectures/.
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is not what is needed outside of class (details). Perhaps an outline format for lectures, with more
links to details that can be viewed outside class, would be best.

Several students were excited by the material and requested that we expand the module into
a full class. Others recommended that we spread the same amount of material over several weeks,
with small DAPPLE exercises interspersed so they could get a better feel for the concepts and
language. Finally, some wanted to use real parallel computers and to see performance charts of
speedup on real applications.

We also examined the “Game of Life” DAPPLE programs completed by 23 students, most of
which were similar to Figure 6. They had no trouble using the << and >> operators to input and
output their boards, to use nested ifps, and to use a reduction to compute the number of live
cells. Some used more advanced features, such as type casting and matrix slices. Unfortunately,
four students seemed to miss the point, using a doubly-nested for loop to sequentially update
individual matrix elements. One student used recursion instead of iteration to step through the
generations (1), although it seems this problem was not related to parallel concepts. The only major

complaint had to do with the long compilation times (due to the large DAPPLE “include” files).

6 Summary and conclusions

We set out to teach parallel computing to first-year students, because we believe that it is important
to teach the concepts of parallel computing throughout the curriculum. Since we felt that it
was important to provide a hands-on programming experience, we needed a parallel-programming
language that was conceptually simple, easy to learn, not too different from the students’ existing
language, free, and available on the students’ computers. In this paper we survey some of the
potential languages, and then describe our efforts to design and implement a suitable language.
The object-oriented capabilities of C+4, which was the language students were using, allowed
us to build a reasonable parallel-programming language from macros and a class library. We
describe some of the design decisions involved in the language and its implementation, and then
our experiences using the language in the classroom.

We decided that it was important to expose some aspects of parallelism to the students, but
not all of the complexities. Thus, we decided to use a data-parallel programming model that
was based on the concept of virtual processors, but (due to the single thread of control) does
not require students to deal with asynchrony, deadlock, or even explicit communication. Our

language, DAPPLE, is based on C+4 (which the students know) and provides parallel operations

11



on collections and a parallel if statement.

The students universally found the material interesting and useful, and were able to complete
simple parallel-programming assignments after four lectures. We found that computer animations
and live demonstrations contributed significantly to student understanding and interest. Since
many students commented on how much they enjoyed the opportunity to look at computing from
a different perspective, we feel that the addition of this module to the curriculum may actually
increase the entry of students into the computer-science major. Since our biggest mistake in the
classroom experiments was in underestimating the ability of the students to pick up new material
quickly, we are confident that first-year students could use DAPPLE for deeper explorations of

parallel computing.

Availability

DAPPLE currently runs on Unix workstations (at least Sun, SGI, DEC Ultrix, and DEC Alpha)
using the g++ compiler, and on the Macintosh using Symantec C+4 7.04. The animations run only
on the Macintosh. The complete package (code, documentation, tutorial, examples, lecture notes,

and animations) is available on the WWW at URL http://www.cs.dartmouth.edu/ILI/dapple/.
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const int N = 6; // we compute N rows of the triangle
intVector arow(N); // N elements, uninitialized

extern int Identity(int i); // defined by DAPPLE; returns i
const intVector VP(N, Identity);

// first row // Sequential equivalent
ifp (VP == 0) { /1
arow = 1; // arow[0] = 1;
cout << arow << endl; // cout << arow[0] << endl;
} else // for (int 1 = 1; i < N; i++)
arow = 0; // arow[i] = 0;

// N-1 remaining rows

for (int i = 1; i < N; i++) { // for (int i = 1; i < N; i++) {
// for (int j = i; j > 0; j--)
arow += shift(arow, 1); // arow[j] += arow[j-1];
ifp (VP <= i) // for (int j = 0; j < 1i; j++)
cout << arow << endl; // cout << arow[j] << ’\t’;
// cout << arow[i] << endl;

} /13

Figure 1: A DAPPLE program to compute Pascal’s triangle.
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// we divide the x range up into N intervals,
// computing the function at N points
const int N = 1000;

// which virtual processor am I (0, 1, 2, ... N-1)7
const intVector VP(N, Identity);

const double width = 1.0 / N; // width of each interval
doubleVector X(N), Y(N); // X points, Y=£f(X)

// we compute pi as the integral of 4 / (1 + x~2) for x from O to 1

// we do this by using the rectangle rule to approximate the integral

X = (floatVector(VP) + 0.5) * width; // find the midpoint of each interval
Y=4.0/ (1.0 + X * X); // compute the function there

// sum the area of each rectangle (Y is the height of the rectangle)
cout << '"pi "= " << sum (width * Y) << endl;

Figure 2: A DAPPLE program to estimate 7 as fol ﬁ.
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// we’ll multiply a PxQ matrix by a QxR matrix to get a PxR matrix
int P, Q, R;
cin >> P >> Q >> R;

// we’ll compute C = A * B
intMatrix A(P,Q), B(Q,R), C(P,R);

// load matrices; row-major order, whitespace-separated integers
cin >> A;
cin >> B;

// loop through the result locations
for (int r = 0; Tt < P; r++)
for (int ¢ = 0; c < R; c++)

Clr]l[c] = inner(A[r][_1, BL_1LlcD);
cout << C;

intMatrix D(P,R); // D is what C should be
cin >> D;

if (any(C '= D))
cout << "The answers are different!" << endl;

else
cout << "The answers are the same.'" << endl;

Figure 3: A matrix-matrix multiplication program in DAPPLE
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void quicksort(intVector& X) // the sort is done in place, ie, X is updated

{

// check the number of active processors (ie, size of our sublist)

int n = n_active(X); // how big is this sublist?
if (n <= 1) ; // do nothing
else if (n == 2) { // possibly swap them

int largest = max_value(X);
int smallest = min_value(X);

ifp (VP == first(VP))

X = smallest; // first one get smallest
else
X = largest; // second one gets largest
} else { // n>= 3
intVector P(N); // permutation vector
const intVector ONE(N,1); // constant vector of all 1s
int splitter; // splitter value

int left, middle, right; // first VP# in each subset

// pick a splitter; I’1l just use the first value
splitter = first(X);
left = first_index(X); // which VP holds the splitter?

// find the left half, those less than or equal to splitter

// (except for that first one)...

ifp (X <= splitter && VP != left) {
// compute our destination in the result vector
P = left + plus_scan(ONE); // i.e., left, left+l, left+2...
middle = left + n_active(X); // the rest will begin here

}

// move the splitter into the middle
ifp (VP == left) {
P = middle; // route it there later
right = middle + 1; // the rest will begin here
}

// do the right half, those greater than the splitter
ifp (X > splitter) {
// compute our destination in the result vector
P = right + plus_scan(ONE); // i.e., right, right+1, right+2...

}
X = permute(X, P); // partition the data
ifp (VP < middle)

quicksort(X); // sort the left half
ifp (VP > middle)

quicksort(X); // sort the right half

Figure 4: A quicksort function in DAPPLE.
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Lecture 1: Parallel computing
Motivation for parallel computing
high-performance computing
limitations of current hardware development trends
What kinds of problems are naturally parallel?
What kinds of problems are not parallel?
Live demo: students as processors
Data parallelism and task parallelism
Parallel complexity

work, speedup, efficiency
Amdahl’s Law

Lecture 2: DAPPLE
Vector and Matrix
virtual processors
assignment, arithmetic, reductions
ifp
many examples, including Figure 1 and Figure 2

Lecture 3: Canny’s algorithm example

importance of image processing

digital representation of an image

edge finding

Canny’s algorithm for edge finding
explanation
visual animation
DAPPLE program

preparation for next lecture: odd-even sorting
live class demo

Lecture 4: Quicksort
review sequential quicksort
parallel quicksort method
live class demo
visual animation

DAPPLE program, Figure 4

Homework:
Conway’s Game of Life

Figure 5: A four-lecture module on parallel computing and DAPPLE for Dartmouth’s second
computer-science course.
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cout << "Enter number of rows:'" << endl;
int n; c¢in >> n;

cout << "Enter number of columns:'" << endl;
int m; c¢in >> m;

cout << "Enter initial state (" << n << " rows by " << m << " columns, ";
cout << "using ’0’ for a live cell, ’.’ for an empty cell):" << endl;
charMatrix printable(n,m);

cin >> printable;

// note that because we use shift(), we assume boundaries of 0
// if we used rotate, we would get periodic boundary conditions (torus)
int gen = 0;
while (true) {
// 1 means life there, O means nothing
intMatrix cells(n,m), neighbors(n,m);

ifp (printable == ’.°)
cells = 0;

else
cells = 1;

neighbors = ( shift(cells, 0, -1)
+ shift(cells, -1, -1)
+ shift(cells, -1, 1)
+ shift(cells, 1, 0)

shift(cells, 0, 1)
shift(cells, -1, 0)
shift(cells, 1, -1)
shift(cells, 1, 1));

+ + + +

// The Rules:
// If an organism has O or 1 neighbors, it dies of loneliness.
// If an organism has 2 or 3 neighbors, it survives.
// If an organism has 4 or more neighbors, it dies of overcrowding.
// If an empty cell has exactly 3 neighbors, a new organism is bormn.
ifp (neighbors != 2)

ifp (neighbors == 3)

cells = 1; // either existing survives, or new is born
else
cells = 0; // either lonely or overcrowded
else

; // no change with two neighbors

cout << "Generation " << ++gen << ", " << sum(cells) << " alive" << endl;
ifp (cells == 1)
printable 07
else
printable Ly
cout << printable << endl;

Figure 6: A DAPPLE program for Conway’s game of Life. This game simulates a simple cellular
automaton, in which each cell in a 2-d matrix is either occupied by an organism or unoccupied, and
in each generation organisms are born or killed according to simple localized rules. The program
here is a typical solution, similar to most student programs.
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Table 1: Summary of DAPPLE extensions to C++.

Vectors Matrices
Types int, char, float, double, boolean same
Initializations (none), scalar, array, function same
another vector another matrix
Subscripting vIi] ML[i1 031, MOi1C, MLIL5]

Vector products

scalar = inner(VA,VB)
matrix = outer(VA,VB)

Elementwise:
Arithmetic operators
Relational operators
Boolean operators
Assignment operators
Function application

+ —-*x /%

< <= == 1= >= >

&& || !

= 4= —= %= /:%:++ J——

apply (function, vector)

same
same
same
same
apply (function, matriz)

Reductions:

sum

are any nonzero?
are all nonzero?
number of nonzeros
number active
value of first active
index of first active
maximum value
minimum value
index of max
index of min

= sum(V);
any(V);
all(V);
n_nonzeros(V);
= n_active(V);
first(V);
first_index(V);
= max._value(V);
= min_value(V);
= max.index(V);
= min.index(V);

BB X KB ®XBD oo
[

same
same
same
same
same
N/A
N/A
same
same
N/A
N/A

Scans:

VA = plus_scan(VB);
VA = maxscan(VB);
VA = minscan(VB);
VA = or_scan(VB);

VA = and_scan(VB);

plus_scan_rows, plus_scan_cols
max_scan_rows, max_scan_cols
min_scan_rows, min_scan_cols
or_scan_rows, or_scan_cols
and_scan_rows, and_scan_cols

Moving data:

VA = shift(VB, distance);

VA = rotate(VB, distance);

VA = pack(VB);

MA = shift(MB, rows, cols);

MA = shift_rows(MB, distance per row);
MA = shift_cols(MB, distance per column);
MA = rotate(MB, rows, cols);

MA = rotate_rows(MB, distance per row);

MA = rotate_cols(MB, distance per column);
N/A

VA = permute(VB, P); N/A
VA = permute(VB, function); N/A
Input and output:
input cin >> V; same
output cout << V; same
cerr <K V; same

Parallel if statement:

ifp() else ...
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