
Appeared in ’Computer Science Education’, Copyright 1996 Ablex Publishing. doi:10.1080/0899340950060203�
THIS COPY IS THE AUTHORS’ PRE-PUBLICATION VERSION; �
it may differ slightly from the official published version.�

A DAta�Parallel Programming Library for Education �DAPPLE�

David Kotz

Department of Computer Science

Dartmouth College

Hanover� NH ����������

dfk�cs�dartmouth�edu

Running head� DAPPLE

Acknowledgements� Many thanks to all of those who made suggestions about the language

or this paper� or helped with subtle points of C�� technique� including Owen Astrachan� Tom

Cormen� Fillia Makedon� Takis Metaxas� Nils Nieuwejaar� Sam Rebelsky� Scott Silver� and Cli�

Stein� Thanks to Naval Ravikant for developing the wonderful animations� and to Prasad Jayanti

and Cli� Stein for letting me experiment with their classes�

This research was supported under grant DUE�����	�
 by the National Science Foundation

ILI�LLD program�

Abstract

In the context of our goal to bring parallel computing into the undergraduate curriculum� we needed

a parallel�programming language that was accessible to students and independent of any particular

hardware platform� Finding nothing appropriate� we chose to design our own language� The result�

DAPPLE� is a C�� class library designed to provide the illusion of a data�parallel programming

language on conventional hardware and with conventional compilers� DAPPLE de�nes Vector

and Matrix classes� with most C�� operators overloaded to provide elementwise arithmetic� and

supports data�parallel operations like scans� permutations� and reductions� DAPPLE also provides

a parallel if�then�else statement to restrict the scope of the above operations to partial vectors or

matrices� In this paper we describe the DAPPLE language� the pedagogical decisions that went

into its design� and our experience using DAPPLE in the classroom� DAPPLE is freely available

on the Internet�

� Introduction

Parallel computing� having been considered an advanced topic suitable only for graduate students� is

slowly migrating into the undergraduate curriculum �
�� We believe parallelism should be introduced

early in the curriculum� before the habits of sequential thinking are ingrained� Indeed� some have

had success teaching the elementary concepts to high�school students ���� When limited resources

constrained our original plan to replace our CS� data�structures and programming course with a

course centered on parallel computing ���� we focused on the addition of a week�long module about

parallel computing to the existing CS� course� We used the techniques described in this paper to

teach parallel computing to �rst�year undergraduates in CS��

When teaching parallel computing to �rst�year undergraduates� one must carefully consider the

approach� We believe that it is important for the students to study parallel programs as well as

parallel algorithms� and to have hands�on experience with parallel programming� We used a data�

parallel programming model� whose single thread of control allowed students to explore issues in

parallel algorithms without the complexities of asynchrony� deadlock� and communication� �While

these are important issues in parallel computing� we felt that it was best to allow the students to

focus on the underlying parallelism �rst� and to postpone these other issues to a later course��

We wanted a programming language that allowed students to experiment with parallel com�

puting concepts without being distracted by the mechanics of parallel programming� In addition�

we wanted a parallel programming language that was essentially the same as the language used

by students for their sequential programming �preferably C���� was available on the computers

they use� was easy to learn by beginners� and was usable by students at all levels in many kinds

of courses� Although many data�parallel languages exist� including C�� Fortran��� NESL ���� and

HPF ���� they are di�cult to use� are not similar to C��� or are not easily portable to student

computers�

We found many research projects designing parallel C�� variants� C�� �
� is perhaps the

closest candidate� in that it supports a data�parallel model� but it requires a new compiler and

is not yet available� pC�� �	� can also provide a data�parallel model� using only a preprocessor

and library� but its syntax is a little complicated for beginners� Other data�parallel options like

Presto�� ��� and Compositional C�� ��� are also rather complex for beginners� Others� like

Mentat �
��� CHARM�� �

�� and COOL �
��� are more task�parallel than data�parallel� Recent

e�orts �
��
��
�� are only in early stages of development�

Finding no suitable existing language� we decided to design and implement our own language

as a set of macros and classes that extended C��� The result is DAPPLE� a DAta�Parallel

Programming Library for Education� DAPPLE gains its strength from its simplicity� portability�

and versatility� rather than from performance or ease of implementation on real parallel hardware�

In other words� DAPPLE was optimized for pedagogical use�

After a quick review of the data�parallel programming model in Section �� we give an overview

of the DAPPLE language in Section �� including a discussion of the pedagogical decisions involved

in the language�s design� Section � comments on some interesting implementation issues� Section �

describes our experience using DAPPLE in the classroom� We conclude in Section
 and point out

how to obtain DAPPLE for your own classroom�

� Data�parallel programming

The data�parallel programming model gives the programmer a single thread of control� much as in

sequential programming languages� but allows certain operations to be applied to large collections

of data simultaneously� For example� the sum of two arrays may be assigned to a third array by

using many virtual processors in parallel� each responsible for computing one �scalar� sum and

storing it in the appropriate element of the result array�

When the conditional expression of an if�� statement refers to collections� the expression is

independently evaluated by every virtual processor� Those virtual processors where the condition

is true execute the �then� clause �simultaneously�� and those where the condition is false execute

the �else� clause �simultaneously�� Because non�parallel code may also be part of these clauses� the

semantics say that the �then� clause executes �rst� and then the �else� clause executes� Within each

clause� only a subset of the processors are active� and only active processors participate in operations

on collections� In other words� a parallel if�� reduces the context of collection operations within

each clause� Finally� there are other operations on entire collections� such as reducing a collection

to a scalar by summing all the elements� or printing the collection�

� DAPPLE programming

DAPPLE adds data�parallel concepts to C�� programming� allowing the programmer to manipu�

late collections of data �vectors and matrices� as described above� To illustrate these concepts and

the language� we present four examples and a summary of the language�

�

��� Pascal�s triangle

Pascal�s triangle is a set of rows� where the �rst row contains one �
� followed by an in�nite number

of ���s� Each entry in the next row is the sum of the entry above it and the entry above and to

the left� Inductively� row i has i non�zero entries� The result �one row per line� not showing the

zeros� is
�

� �

� � �

� � � �

� � � � �

� � �� �� � �

and so forth� Figure
 shows part of a DAPPLE program to compute Pascal�s triangle� The

second statement de�nes an integer vector called arow� with N elements numbered ��
� � � � � N �

� �DAPPLE supports new classes intVector� charVector	 floatVector	 doubleVector	 and

booleanVector��� This vector will soon contain one row of the triangle� but for now the elements

are uninitialized� Vectors may also be initialized when de�ned� to a scalar� an array� another vector�

or a function of the index� The third and fourth statements of Figure
 de�ne an N �element integer

vector called VP� initialized so that element i has value i�

Figure
 uses a parallel�if statement� ifp��� to initialize arow �for comparison� it also presents

the equivalent sequential code�� The �then� clause executes only for those virtual processors where

the condition �VP �� �� is true� in this case� only virtual processor �� Thus� it assigns and prints

only arow
��� This one element is of course the entire �rst row of Pascal�s triangle� The �else�

clause executes for the remaining virtual processors�

The for loop of Figure
 computes and prints N �
 more rows� Each time through the loop

we compute a new row of the triangle� in parallel� by adding the current row to itself� shifted one

to the right �a zero is shifted in at the left side��� Then� we print out the vector� but only elements

� through i� i�e�� the non�zero elements of this row�

�We chose not to use templates because current compilers vary in their ability to support templates�

�Purists of object�oriented programming note that we chose a functional rather than object�oriented style for most

operations� The functional style makes it easier to compose operations� e�g�� B � shift�B��� � B � shift�B�����

than if shift�� modi�ed B� Recommended by the ARM ���� page ��	
� the functional syntax shift�B��� makes

it clear that the operand B is not modi�ed� while in B�shift��� it is not as clear� Similarly� we believe that x �

sum�A�B�C� is clearer than x � �A�B�C��sum���

�

��� Computing �

Another simple example shows students the power of data�parallel computing on a familiar problem�

numerical integration� In Figure � we use the rectangle rule to estimate � as
R
�

�

�

��x�
� There are

N rectangles of width �

N
� with rectangle i �� � i � N� located at position xi � �i�

�

�
� �
N
� After

computing the x values in parallel� it is then easy to compute the function yi �
�

��x�
i

in parallel�

Each rectangle�s height y is multiplied by its width �

N
to get its area� and then the sum�� reduction

provides the total area� our estimate for �� This program prints �pi �
 ���������

��� Matrix�matrix multiply

In addition to vectors� DAPPLE supports a set of Matrix classes� Figure � shows most of a

program to multiply two integer matrices�� Three matrices are de�ned as type intMatrix�r	c��

where integers r and c specify the number of rows and columns� Note that A and B are initialized

from user input using the standard iostream operator ��� overloaded by DAPPLE for matrix �or

vector� input�

A nested loop computes each element of the result matrix C as an inner product �dot product�

of the appropriate row of A and the appropriate column of B� demonstrating DAPPLE�s capability

to work with matrix slices �
�� Here� A
r�
�� is a row slice� representing row r of matrix A� and

B
��
c� is a column slice� representing column c of matrix B� Slices may be used anywhere vectors

may be used� including on the left�hand side of an assignment operator�

The function inner�v�	 v�� is provided by DAPPLE� but the same operation could also be

expressed as sum�v� � v��� using DAPPLE�s built�in reduction function called sum���

The �nal if�� statement demonstrates a handy reduction� any��� which returns �scalar� true

if and only if some element of its vector or matrix argument is non�zero� Here� its argument is

the boolean matrix representing the condition �C �
 D�� so any�C �
 D� is true if there is any

position �i� j� where Cij �� Dij � Although one might be tempted to write ifp�C �
 D� instead� that

would have a di�erent e�ect� the �rst message would be printed once for every virtual processor

where Cij �� Dij � and the second message would be printed once for every virtual processor where

Cij � Dij �

�Of course� there are better algorithms� but this serves to demonstrate DAPPLE� For consistency� we decided that

all overloaded operators would be elementwise operators� so C�A�B for three matrices A� B� and C does an elementwise

multiplication and not a matrix multiplication�

�

��� Quicksort

To demonstrate DAPPLE�s ability to manipulate data within a vector� and in particular its ability

to dynamically narrow context to a subset of the virtual processors� we devised a simple recursive

implementation of quicksort �Figure ���� The quicksort procedure recursively sorts the active

portion of its vector argument� �Initially� quicksort is called with all processors active�� It begins

by using the reduction n active�� to �nd the size of the subvector it is to sort� Then� it dispenses

with two special cases� subvectors of size � or
 are trivially sorted� and a subvector of size �

may require a swap� �We use reductions min value��	 max value��	 and first��� to compute

the minimum and maximum values and assign them to the appropriate element�� Otherwise�

we partition and recurse� To partition� it chooses a splitter value �here� the value at the �rst

active processor�� builds a permutation subvector that speci�es the destination of every element in

the repartitioned subvector� and then permutes� It restricts the context to the left partition and

recurses� and then restricts the context to the right partition and recurses�

The quicksort example demonstrates one weakness of DAPPLE� its inability to support nested

data parallelism ���� The two recursive calls to quicksort�� must be done sequentially� each with

only a small subset of the virtual processors active� Given this model� other sorting algorithms

would be more appropriate� Exploring this issue makes a valuable lesson for students�

��� DAPPLE design

The DAPPLE extensions to C��� most of which are exhibited in the above examples� are summa�

rized in Table
� In the course of designing the DAPPLE language� we encountered many decisions�

small and large� that a�ect the syntax and semantics of the language� Some of the more interesting

design decisions follow�

Early on� we decided to expose the notion of virtual processors to the students� In this way

DAPPLE is more like C�� which de�nes operations on parallel variables with �xed �shapes�� than

like NESL� which de�nes abstract operations on variable�length lists� Although NESL provides a

higher�level abstraction� we felt that it was important to give the students a small connection to the

hypothetical parallel execution environment� DAPPLE�s conceptual model makes a virtual pro�

cessor responsible for executing elementwise operations at corresponding positions of two operands

�In a classroom setting� of course� we ensure the students are familiar with sequential quicksort before exposing

them to parallel quicksort� Also� there are more e�cient ways to program quicksort in DAPPLE �not shown
�

�

with the same shape� This concept is re�ected more strongly in the semantics of the ifp statement�

which makes some virtual processors inactive during the execution of its �then� and �else� clauses�

This construction makes it clear to students that there are times when some processors are inactive�

and makes students aware of the ine�ciencies that occur in some parallel programs�

Once we decided to base our conceptual model on virtual processors that were either active

or inactive� we needed to de�ne the semantics of all operations over active subsets of vectors

and matrices� Because an active subset is de�ned by a ifp statement using a boolean collection

�usually the result of a boolean expression�� the active subset itself has a shape� Within the

dynamic context of the ifp statement� only collections whose shape matches that of the active set

may be manipulated� Although occasionally inconvenient� it is a direct result of semantics based

on �active� and �inactive� virtual processors� and is a feature of all languages like C��

As mentioned earlier� we chose a functional notation for our operators� rather than an object

notation� Functions of collections always return new collections� a notion that is convenient for

common expressions like the following�
intMatrix A�n��

���

�� add each elements� neighbors to itself

A �
 shift�A	 ��	 ��� � shift�A	 ��	 �� � shift�A	 �	 ��� � shift�A	 �	 ���

This functional notation makes the functional behavior more obvious� and consistent with operators�

than does the pure object form below�
intMatrix A�n��

���

�� add each elements� neighbors to itself

A �
 A�shift���	 ��� � A�shift���	 �� � A�shift��	 ��� � A�shift��	 ���

We always tried to choose the semantics that would be intuitive to most students� In some

cases� intuition clashes with consistency� While it would be consistent for all collection operations

to be only a�ect elements corresponding to active virtual processors� we found a few operations

that should be insensitive to the active set� For example� initialization� shift��� and rotate���
floatVector A�n��

���

ifp �A � �� �

�� average of three neighbors	 but do it only where A � �

A
 �shift�A	 ��� � A � shift�A	 ��� � ��

�

ifp �A � �� �

floatVector X�n	 ��� �� a vector of n integers	 initialized to �

���

A
 rotate�X	 ����

�

In the �rst ifp statement� each shift�� shifts the entire vector left or right� regardless of the

active set� Of course� the addition and assignment only occur on active elements of the vector�

The alternative would have shift�A	i� move each active element over by i active positions� We

found little use for these semantics� and plenty of use for those above� In the second ifp we see the

new vector X used as the argument to a rotate� Since inactive elements of X may be rotated into

active positions� and assigned to A� it was important to initialize all elements of a collection� This

decision had the undesired e�ect of making initialization di�erent from assignment� but makes it

harder for uninitialized variables to sneak into student�s programs�

The permutation operator required a similar decision� We decided that the result of

permute�X	P� would be initialized to X� and then the active elements of X would be copied ac�

cording to the permutation vector P� Thus� the active set determines which elements are sent� not

which elements are written� in the result vector�

In making all of these decisions� we found it valuable to compare existing languages� to consult

experienced data�parallel programmers� and to write many example programs��

� DAPPLE implementation notes

There were also several interesting implementation decisions made during the design of DAPPLE�

While a complete description of the DAPPLE implementation is beyond the scope of this paper�

there are some highlights worth reporting here�

�See the examples at URL http	

www�cs�dartmouth�edu
ILI
dapple
examples
�

	

Templates� It seems clear that C�� templates would have been perfect for implementing generic

Vector and Matrix classes� allowing easy generalization over primitive element classes like int and

float� At the time we developed DAPPLE �May
����� however� templates were poorly supported

by C�� compilers available to us� Furthermore� the compilation model for templates would have

required that the entire DAPPLE implementation code ����� lines of C��� be recompiled for

each small student example� Even in our non�template implementation� the overhead of compiling

include �les and of linking makes DAPPLE slow to use on the Macintosh� Furthermore� there are

several operators that are de�ned for one elemental class and not another� for example� boolean

operators are de�ned for booleanVectors but not for �oatVectors� and the mod operator ��� is only

de�ned for intVectors and intMatrices� These variations would be di�cult to express in a template

class�

Active sets and ifp� The active set is represented internally by a stack of booleanVectors� each

representing the active set at that level of ifp nesting� We implement ifp as a macro that expands

into a two�iteration loop� which updates the active�set stack before and after each iteration� The

loop contains an if statement that chooses the �then� clause on the �rst iteration� and the �else�

clause on the second iteration� As a result� the active set remains meaningful across function calls

embedded in ifp clauses� so ifp statements may be dynamically nested�
main��

�

intVector A�n��

���

ifp �A � ��

do�A��

�

do�intVector A�

�

intVector B�n��

���

ifp �B

 ��

cout �� A� �� only where A � � and B

 �

else

cout �� B� �� only where A � � and B �
 �

�

Shapes� Every Vector and Matrix is given a shape when declared� through parameters to the

constructor� In our implementation� Vector and Matrix are both subclasses of Collection� so that

�

the simpler methods �such as the elementwise operators� can be de�ned once for Collection and

be usable either for Vectors or Matrices� The Collection contains a description of its shape� Each

Collection method checks to make sure its operands are the same shape� and creates a result

Collection of the same shape�

Matrix slices� A matrix slice �e�g�� M
��
�� representing column � of matrix M� behaves exactly

like a vector� We overloaded the
� operator for matrices to return a new collection that had the

shape of a vector �so that slice�vector operations were possible�� but which contained a pointer to

the original matrix so that assignment to a slice would update the original matrix� We de�ned a

global variable of a special type and the name � �underscore�� allowing us to de�ne three types

of matrix subscripting� �int��int� �element�� �int���� �row slice�� and ����int� �column slice�� through

di�erent overloads of the
� operator�

� Classroom experience

We taught parallel�computing concepts and DAPPLE to a group of �rst�year students near the

end of Dartmouth�s second course in computer science �i�e�� CS��� The students had learned

C�� programming in this and the preceding course� and had learned the basic data structures

�dictionaries� trees� lists� arrays� etc�� and algorithms �sorting� searching� etc��� The four lectures

are outlined in Figure �� In the �rst lecture� we motivated parallel computing and introduced some

basic concepts� including the notions of parallel complexity� work� speedup� and e�ciency� In the

second lecture we introduced DAPPLE through a combination of description and simple examples�

The third and fourth lectures examined two larger examples in more detail� The �rst introduced

the topic of image processing� speci�cally edge �nding� The second visited the familiar topic of

quicksort� by presenting a parallel version of quicksort�

The program to use Canny�s algorithm for edge �nding demonstrated an embarrassingly par�

allel program with nearest�neighbor communication� Many students were excited to see a simple

program with obvious real�world applications� They were able to appreciate the parallelism and

the fact that computer science applies to the real world� often forgotten in the collection of abstract

programming problems typical in this course� We developed a colorful animation of this inherently

visual application that helped to explain some of the mathematics in the program�

The quicksort program� much like that in Figure �� demonstrated the complexity of parallel

programming� and more sophisticated techniques like scans� permutations� and recursively nested

�

active sets� We used two demonstrations to help students understand the algorithm� First� we used

live demonstrations where the students acted as virtual processors� and second� we used a detailed

computer animation to follow the algorithm through an example�

For homework the students were asked to do two small exercises� First� the students were asked

to comment on the e�ciency of the quicksort algorithm� which clearly loses parallelism in the lower

levels of the recursion� Then the students were asked to write a new DAPPLE program to simulate

Conway�s Game of Life �
	�
��� as in Figure
� As this program has a structure similar to Canny�s

algorithm� most students had little di�culty� Students used DAPPLE on the Macintosh� in the

same programming environment they had used for all of their previous programming�

We presented our class lectures using an overhead projection of a Macintosh computer screen�

allowing us to show the animations� view code� compile and run programs� and show lecture notes�

All of the lecture notes and examples were formatted in HTML and viewed with Netscape� so they

were available to students after class��

Student response� We surveyed the students at the end of the lectures� and examined the

DAPPLE programs they submitted� Of �
 students in the class� �� returned the survey� All found

the module to be interesting and useful� They particularly enjoyed the way it made them look at

computing in a di�erent way� and the way we were able to relate it to real�world computing needs�

Several felt that it would have been better if we had used a real parallel computer� despite the fact

that the language and concepts would have been no di�erent�

Most found our pace too slow� we clearly underestimated their ability to follow complex material�

The animations were �extremely� useful� even �vital�� to understanding the algorithms� While

it is not surprising that these animations were useful to help students visualize the algorithms� a

student assistant spent about �fty hours building the animations� More interestingly� the class was

divided on whether the �live� demonstrations� where students acted out algorithms� were useful�

Other researchers have successfully used such live demonstrations to teach parallel computing �
���

even to high�school students ���� Most of our students liked the demonstrations� but one even said

they were �degrading�� yet another example of how students prefer to learn in di�erent ways�

Students were also mixed on the use of HTML�Netscape lecture notes� Some found it useful

to have the lecture notes easily available after class from anywhere on campus� Others requested

printed notes� Several pointed out that what works best in class �outline form with little detail�

�And to you� see URL http	

www�cs�dartmouth�edu
ILI
dapple
lectures
�

�

is not what is needed outside of class �details�� Perhaps an outline format for lectures� with more

links to details that can be viewed outside class� would be best�

Several students were excited by the material and requested that we expand the module into

a full class� Others recommended that we spread the same amount of material over several weeks�

with small DAPPLE exercises interspersed so they could get a better feel for the concepts and

language� Finally� some wanted to use real parallel computers and to see performance charts of

speedup on real applications�

We also examined the �Game of Life� DAPPLE programs completed by �� students� most of

which were similar to Figure
� They had no trouble using the �� and �� operators to input and

output their boards� to use nested ifps� and to use a reduction to compute the number of live

cells� Some used more advanced features� such as type casting and matrix slices� Unfortunately�

four students seemed to miss the point� using a doubly�nested for loop to sequentially update

individual matrix elements� One student used recursion instead of iteration to step through the

generations ���� although it seems this problem was not related to parallel concepts� The only major

complaint had to do with the long compilation times �due to the large DAPPLE �include� �les��

� Summary and conclusions

We set out to teach parallel computing to �rst�year students� because we believe that it is important

to teach the concepts of parallel computing throughout the curriculum� Since we felt that it

was important to provide a hands�on programming experience� we needed a parallel�programming

language that was conceptually simple� easy to learn� not too di�erent from the students� existing

language� free� and available on the students� computers� In this paper we survey some of the

potential languages� and then describe our e�orts to design and implement a suitable language�

The object�oriented capabilities of C��� which was the language students were using� allowed

us to build a reasonable parallel�programming language from macros and a class library� We

describe some of the design decisions involved in the language and its implementation� and then

our experiences using the language in the classroom�

We decided that it was important to expose some aspects of parallelism to the students� but

not all of the complexities� Thus� we decided to use a data�parallel programming model that

was based on the concept of virtual processors� but �due to the single thread of control� does

not require students to deal with asynchrony� deadlock� or even explicit communication� Our

language� DAPPLE� is based on C�� �which the students know� and provides parallel operations

on collections and a parallel if statement�

The students universally found the material interesting and useful� and were able to complete

simple parallel�programming assignments after four lectures� We found that computer animations

and live demonstrations contributed signi�cantly to student understanding and interest� Since

many students commented on how much they enjoyed the opportunity to look at computing from

a di�erent perspective� we feel that the addition of this module to the curriculum may actually

increase the entry of students into the computer�science major� Since our biggest mistake in the

classroom experiments was in underestimating the ability of the students to pick up new material

quickly� we are con�dent that �rst�year students could use DAPPLE for deeper explorations of

parallel computing�

Availability

DAPPLE currently runs on Unix workstations �at least Sun� SGI� DEC Ultrix� and DEC Alpha�

using the g�� compiler� and on the Macintosh using Symantec C�� 	���� The animations run only

on the Macintosh� The complete package �code� documentation� tutorial� examples� lecture notes�

and animations� is available on the WWW at URL http���www�cs�dartmouth�edu�ILI�dapple��

�

References

�
� R� Miller� �The status of parallel processing education� IEEE Computer� Vol� �	� No� ��

August
���� pp� ������

��� A� Rifkin� �Teaching parallel programming and software engineering concepts to high school

students�� SIGCSE Technical Symposium on Computer Science Education�
���� pp� �
����

��� D� Johnson� D� Kotz� and F� Makedon� �Teaching parallel computing to freshmen�� Conference

on Parallel Computing for Undergraduates� Edited by C� Nevison� Colgate University� June

����

��� G� E� Blelloch� �NESL� a nested data�parallel language�� Technical Report CMU�CS����
���

Carnegie Mellon University� Pittsburgh� PA� April
����

��� D� B� Loveman� �High Performance Fortran� IEEE Parallel and Distributed Technology� Vol�

� No�
� February
���� pp� ������

�
� J� R� Larus� B� Richards� and G� Viswanathan� �C��� A large�grain� object�oriented� data�

parallel programming language�� Technical Report

�
� University of Wisconsin�Madison�

November
����

�	� F� Bodin� P� Beckman� D� Gannon� S� Narayana� and S� X� Yang� �Distributed pC��� basic

ideas for an object parallel language� Scienti�c Programming� Vol� �� No� �� Fall
���� pp�

	����

��� M� F� Kilian� Parallel Sets� An Object�oriented Methodology for Massively Parallel Program�

ming� PhD thesis� Harvard University� Cambridge� MA�
����

��� K� M� Chandy and C� Kesselman� �Compositional C��� Compositional parallel program�

ming�� Technical Report CS�TR����
�� California Institute of Technology� Pasadena� CA�

����

�
�� A� S� Grimshaw� �Easy�to�use object�oriented parallel processing with Mentat� IEEE Com�

puter� Vol� �
� No� �� May
���� pp� ����
�

�

� L� Kale and S� Krishnan� �CHARM��� A portable concurrent object oriented system based

on C���� Proceedings of the Conference on Object Oriented Programming Systems� Languages

and Applications�
����

�

�
�� R� Chandra� A� Gupta� and J� L� Hennessey� �COOL� an object�based language for parallel

programming� IEEE Computer� Vol� �	� No� �� August
���� pp�
���
�

�
�� E� A� West and A� S� Grimshaw� �Braid� Integrating task and data parallelism�� Proceedings

of the Fifth Symposium on the Frontiers of Massively Parallel Computation� February
����

pp� �

��
��

�
�� T� J� She!er and S� Chatterjee� �An object�oriented approach to nested data parallelism�� Pro�

ceedings of the Fifth Symposium on the Frontiers of Massively Parallel Computation� February

���� pp� �����
��

�
�� T� J� She!er� �A portable MPI�based parallel vector template library�� Technical Report

������ RIACS� NASA Ames Research Center� Mo�ett Field� CA�
����

�

� M� A� Ellis and B� Stroustrup� The Annotated C�� Reference Manual� Addison�Wesley�

Reading� MA�
���� Ninth printing�

�
	� M� Gardner� �Mathematical games� Scienti�c American� Vol� ���� No�
�� October
�	�� pp�

���
���

�
�� M� Gardner� �Mathematical games� Scienti�c American� Vol� ���� No� �� February
�	
� pp�

��

	�

�
�� A� T� Kitchen� N� Shaller� and P� Tymann� �Game playing as a technique for teaching parallel

computing concepts� SIGCSE Bulletin� September
���� pp� ������ ��� ���

�

const int N
 �� �� we compute N rows of the triangle

intVector arow�N�� �� N elements	 uninitialized

extern int Identity�int i�� �� defined by DAPPLE� returns i

const intVector VP�N	 Identity��

�� first row �� Sequential equivalent

ifp �VP

 �� f ��

arow
 �� �� arow
��
 ��

cout �� arow �� endl� �� cout �� arow
�� �� endl�

g else �� for �int i
 �� i � N� i���

arow
 �� �� arow
i�
 ��

�� N�� remaining rows

for �int i
 �� i � N� i��� f �� for �int i
 �� i � N� i��� f
�� for �int j
 i� j � �� j���

arow �
 shift�arow	 ��� �� arow
j� �
 arow
j����

ifp �VP �
 i� �� for �int j
 �� j � i� j���

cout �� arow �� endl� �� cout �� arow
j� �� �nt��
�� cout �� arow
i� �� endl�

g �� g

Figure
� A DAPPLE program to compute Pascal�s triangle�

�

�� we divide the x range up into N intervals	

�� computing the function at N points

const int N
 �����

�� which virtual processor am I ��	 �	 �	 ��� N����

const intVector VP�N	 Identity��

const double width
 ��� � N� �� width of each interval

doubleVector X�N�	 Y�N�� �� X points	 Y
f�X�

�� we compute pi as the integral of � � �� � x��� for x from � to �

�� we do this by using the rectangle rule to approximate the integral

X
 �floatVector�VP� � ���� � width� �� find the midpoint of each interval

Y
 ��� � ���� � X � X�� �� compute the function there

�� sum the area of each rectangle �Y is the height of the rectangle�

cout �� pi �
 �� sum �width � Y� �� endl�

Figure �� A DAPPLE program to estimate � as
R
�

�

�

��x�
�

�� we�ll multiply a PxQ matrix by a QxR matrix to get a PxR matrix

int P	 Q	 R�

cin �� P �� Q �� R�

�� we�ll compute C
 A � B

intMatrix A�P	Q�	 B�Q	R�	 C�P	R��

�� load matrices� row�major order	 whitespace�separated integers

cin �� A�

cin �� B�

�� loop through the result locations

for �int r
 �� r � P� r���

for �int c
 �� c � R� c���

C
r�
c�
 inner�A
r�
��	 B
��
c���

cout �� C�

intMatrix D�P	R�� �� D is what C should be

cin �� D�

if �any�C �
 D��

cout �� The answers are different� �� endl�

else

cout �� The answers are the same� �� endl�

Figure �� A matrix�matrix multiplication program in DAPPLE�

	

void quicksort�intVector� X� �� the sort is done in place� ie� X is updated

�

�� check the number of active processors �ie� size of our sublist�

int n � n�active�X�� �� how big is this sublist	

if �n
� �� � �� do nothing

else if �n �� �� � �� possibly swap them

int largest � max�value�X��

int smallest � min�value�X��

ifp �VP �� first�VP��

X � smallest� �� first one get smallest

else

X � largest� �� second one gets largest

 else � �� n �� �

intVector P�N�� �� permutation vector

const intVector ONE�N���� �� constant vector of all �s

int splitter� �� splitter value

int left� middle� right� �� first VP� in each subset

�� pick a splitter� I�ll just use the first value

splitter � first�X��

left � first�index�X�� �� which VP holds the splitter	

�� find the left half� those less than or equal to splitter

�� �except for that first one����

ifp �X
� splitter �� VP �� left� �

�� compute our destination in the result vector

P � left � plus�scan�ONE�� �� i�e�� left� left��� left�����

middle � left � n�active�X�� �� the rest will begin here

�� move the splitter into the middle

ifp �VP �� left� �

P � middle� �� route it there later

right � middle � �� �� the rest will begin here

�� do the right half� those greater than the splitter

ifp �X � splitter� �

�� compute our destination in the result vector

P � right � plus�scan�ONE�� �� i�e�� right� right��� right�����

X � permute�X� P�� �� partition the data

ifp �VP
 middle�

quicksort�X�� �� sort the left half

ifp �VP � middle�

quicksort�X�� �� sort the right half

Figure �� A quicksort function in DAPPLE�

�

Lecture �� Parallel computing

Motivation for parallel computing
high�performance computing
limitations of current hardware development trends

What kinds of problems are naturally parallel"
What kinds of problems are not parallel"
Live demo� students as processors
Data parallelism and task parallelism
Parallel complexity

work� speedup� e�ciency
Amdahl�s Law

Lecture �� DAPPLE

Vector and Matrix
virtual processors
assignment� arithmetic� reductions
ifp

many examples� including Figure
 and Figure �

Lecture �� Canny�s algorithm example

importance of image processing
digital representation of an image
edge �nding
Canny�s algorithm for edge �nding

explanation
visual animation
DAPPLE program

preparation for next lecture� odd�even sorting
live class demo

Lecture �� Quicksort

review sequential quicksort
parallel quicksort method

live class demo
visual animation
DAPPLE program� Figure �

Homework�

Conway�s Game of Life

Figure �� A four�lecture module on parallel computing and DAPPLE for Dartmouth�s second
computer�science course�

�

cout

 �Enter number of rows��

 endl�

int n� cin �� n�

cout

 �Enter number of columns��

 endl�

int m� cin �� m�

cout

 �Enter initial state ��

 n

 � rows by �

 m

 � columns� ��

cout

 �using �O� for a live cell� ��� for an empty cell���

 endl�

charMatrix printable�n�m��

cin �� printable�

�� note that because we use shift��� we assume boundaries of �

�� if we used rotate� we would get periodic boundary conditions �torus�

int gen � ��

while �true� �

�� � means life there� � means nothing

intMatrix cells�n�m�� neighbors�n�m��

ifp �printable �� ����

cells � ��

else

cells � ��

neighbors � � shift�cells� �� ��� � shift�cells� �� ��

� shift�cells� ��� ��� � shift�cells� ��� ��

� shift�cells� ��� �� � shift�cells� �� ���

� shift�cells� �� �� � shift�cells� �� ����

�� The Rules�

�� If an organism has � or � neighbors� it dies of loneliness�

�� If an organism has � or � neighbors� it survives�

�� If an organism has � or more neighbors� it dies of overcrowding�

�� If an empty cell has exactly � neighbors� a new organism is born�

ifp �neighbors �� ��

ifp �neighbors �� ��

cells � �� �� either existing survives� or new is born

else

cells � �� �� either lonely or overcrowded

else

� �� no change with two neighbors

cout

 �Generation �

 ��gen

 �� �

 sum�cells�

 � alive�

 endl�

ifp �cells �� ��

printable � �O��

else

printable � ����

cout

 printable

 endl�

Figure
� A DAPPLE program for Conway�s game of Life� This game simulates a simple cellular
automaton� in which each cell in a ��d matrix is either occupied by an organism or unoccupied� and
in each generation organisms are born or killed according to simple localized rules� The program
here is a typical solution� similar to most student programs�

��

Table
� Summary of DAPPLE extensions to C���

Vectors Matrices

Types int� char� �oat� double� boolean same
Initializations �none�� scalar� array� function same

another vector another matrix
Subscripting V�i� M�i��j�� M�i�� �� M� ��j�

Vector products scalar � inner�VA�VB�
matrix � outer�VA�VB�

Elementwise�

Arithmetic operators � � � � � same
Relational operators

� �� �� �� � same
Boolean operators �� �� � same
Assignment operators � �� �� �� �� �� �� �� same
Function application apply�function� vector� apply�function� matrix�

Reductions�

sum x � sum�V�� same
are any nonzero� b � any�V�� same
are all nonzero� b � all�V�� same
number of nonzeros n � n nonzeros�V�� same
number active n � n active�V�� same
value of �rst active x � �rst�V�� N�A
index of �rst active n � �rst index�V�� N�A
maximum value x � max value�V�� same
minimum value x � min value�V�� same
index of max n � max index�V�� N�A
index of min n � min index�V�� N�A
Scans� VA � plus scan�VB�� plus scan rows� plus scan cols

VA � max scan�VB�� max scan rows� max scan cols
VA � min scan�VB�� min scan rows� min scan cols
VA � or scan�VB�� or scan rows� or scan cols
VA � and scan�VB�� and scan rows� and scan cols

Moving data� VA � shift�VB� distance�� MA � shift�MB� rows� cols��
MA � shift rows�MB� distance per row��
MA � shift cols�MB� distance per column��

VA � rotate�VB� distance�� MA � rotate�MB� rows� cols��
MA � rotate rows�MB� distance per row��
MA � rotate cols�MB� distance per column��

VA � pack�VB�� N�A
VA � permute�VB� P�� N�A
VA � permute�VB� function�� N�A

Input and output�

input cin �� V� same
output cout

 V� same

cerr

 V� same
Parallel if statement�

ifp�� ��� else ���

�

