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Abstract. Wireless networks are an ideal environment for mobile agents, since their mobility allows them to move across an unreliable
link to reside on a wired host, next to or closer to the resources that they need to use. Furthermore, client-specific data transformations
can be moved across the wireless link and run on a wired gateway server, reducing bandwidth demands. In this paper we examine the
tradeoffs faced when deciding whether to use mobile agents in a data-filtering application where numerous wireless clients filter information
from a large data stream arriving across the wired network. We develop an analytical model and use parameters from filtering experiments
conducted during a US Navy Fleet Battle Experiment to explore the model’s implications.
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1. Introduction

Mobile agents are programs that can migrate from host to host
in a network of computers, at times and to places of their own
choosing. Unlike applets, both the code and the execution
state (heap and stack) move with the agent; unlike processes
in process-migration systems, mobile agents move when and
where they choose. They are typically written in a language
that can be interpreted, such as Java, Tcl, or Scheme, and thus,
tend to be independent of the operating system and hardware
architecture. Agent programmers typically structure their ap-
plication so that the agents migrate to the host(s) where they
can find the desired service, data, or resource, so that all inter-
actions occur on the local host, rather than across the network.
In some applications, a single mobile agent migrates sequen-
tially from host to host; in others, an agent spawns one or
more child agents to migrate independently.

A mobile-agent programmer, thus, has an option not avail-
able to the programmer of a traditional distributed applica-
tion: to move the code to the data, rather than moving the
data to the code. In many situations, moving the code may
be faster, if the agent’s state is smaller than the data that
would be moved. Or, it may be more reliable, since the ap-
plication is only vulnerable to network disconnection dur-
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ing the agent transfer, not during the interaction with the
resource. For a survey of the potential of mobile agents,
see [3,5].

These characteristics make mobile-agent technology espe-
cially appealing in wireless networks, which tend to have low
bandwidth and low reliability. A user of a mobile comput-
ing device can launch a mobile agent, which jumps across
the wireless connection into the wired Internet. Once there, it
can safely roam among the sites that host mobile agents, in-
teracting either with local resources or, when necessary, with
resources on remote sites that are not willing to host mobile
agents. Once it has completed its task, it can return to (or send
a message to) its user, using the wireless network.

Clearly, the agent case avoids the transmission of unnec-
essary data, but does require the transmission of agent code
from client to server. The total bandwidth consumed for code
transmission depends on the agent size and arrival rate. For
most reasonable agent code sizes and arrival rates, the sav-
ings in data transmission may be much larger than the code
transmissions. Of course, each client’s code could be prein-
stalled on the server.1 This approach presupposes, however,
that the clients are known in advance. In many of the environ-
ments that we consider, new clients with new code can appear
at any time, and possibly disappear only a short while later.
In scenarios like the one discussed in this paper, we need at
least a dynamic-installation facility, and mobile agents give
us the flexibility to move filtering code to any point in the net-

1 In fact, most mobile-agent systems include, or plan to include, some kind
of code-caching functionality, so that the agent code is transferred only
the first time that an agent visits a machine.
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work, and to move the code again as the situation changes.
Although we do not consider such multi-machine scenarios
in this initial paper, they will be an important part of future
work.

In this paper we analyze the potential performance bene-
fits of mobile agents in a typical data-filtering scenario. The
scenario is based on a filtering experiment that was conducted
during a US Navy Fleet Battle Experiment (FBE). In the FBE
experiment, mobile agents were sent across a wireless link
from the USS Coronado to a shore-based intelligence data-
base, where they filtered incoming intelligence reports to find
and return only those reports relevant to the Coronado’s cur-
rent mission. Although the scenario is drawn from an actual
military exercise, it is sufficiently general to reflect many ap-
plications, from military applications in which soldiers mon-
itor weather, terrain and troop movements, to commercial ap-
plications in which consumers monitor stock reports and news
stories.

In our scenario there are numerous information produc-
ers, each of which pushes out a steady stream of informa-
tion, such as weather observations, stock quotes, news sto-
ries, traffic reports, plane schedules, troop movements, and
the like. Clearly each source has a different data rate and
frequency. There are also numerous information consumers,
whose computers are connected to a wireless network chan-
nel. We assume that the information streams gather at a gate-
way server, which then transmits the data across the wireless
channel to the consumers. Although we model a single server
machine, in a large system we expect that the server would
be a multiprocessor or cluster, such as those used in large In-
ternet servers today. Although we model a single wireless
channel, the results are easily extensible to multiple channels,
each with its own server, whether in separate or overlapping
regions.

The overall picture is shown in figure 1.
Each consumer is interested in a different (but not neces-

sarily disjoint) subset of the data. In particular, each consumer
is interested in only a few information streams, and then only
in some filtered set of items in those streams. For example, a
traveler might monitor the weather stream, but not the stock
stream, and of the weather stream, might care only about the
weather in those locations that she will visit today. The first
step requires no computation; the second may require some
computation related to the size of the data stream. We model
a consumer’s interests as a set of tasks, all running on that
consumer’s single computer client.

We compare two approaches to solving this problem:

1. The server combines and broadcasts all the data streams
over the wireless channel. Each client receives all of the
data, and each task on each client machine filters through
the appropriate streams to obtain the desired data.

2. Each task on each client machine sends one mobile agent
to the server. These “proxy” agents filter the data streams
on the server, sending only the relevant data as a message
to the corresponding task on the client.

Figure 1. The scenario we analyze.

We use two performance metrics to compare these two
techniques: the bandwidth required and the computation re-
quired. We can directly compare the usage of the two tech-
niques, and we can evaluate the capacity needed in the server
or the network. Clearly, the mobile agent approach trades
server computation (and cost) for savings in network band-
width and client computation, a valuable tradeoff if band-
width is limited or if it is important to keep client weight and
power requirements (and cost) low.

In the next section, we present the FBE experiment in more
detail. Then, in two subsequent sections, we define the para-
meters that arise during the analysis, derive the basic equa-
tions, and interpret their significance. In section 4, we review
the parameter values that we were able to obtain from the ac-
tual FBE experiment, and describe the experiments that we
performed to obtain values for other key parameters. In sec-
tion 5, we use these values to explore the performance space
given by our model. We describe some related work in sec-
tion 6 and summarize in section 7.

2. The Fleet Battle Experiment

In practice, the United States Navy (USN) Fleet Battle Exper-
iment (FBE) series involves information-flow architectures
that exemplify the general scenario described in the introduc-
tion. In FBE-Echo, the fifth in the series, Lockheed Martin
Advanced Technology Laboratories (LM ATL) fielded CAST,
a mobile-agent application that optimized the flow of critical
information through bandwidth-limited, congested, and un-
reliable wireless networks [2]. As the results later in this
paper indicate, the mobile-agent solution lowers bandwidth
consumption in the limited experiment scenario and promises
to be even more beneficial in a realistic, high-intensity opera-
tion.

The USN Maritime Battle Center in Newport, Rhode Is-
land, conducts semi-annual FBEs in cooperation with the
numbered USN fleets with the goal of streamlining and in-
vigorating the Navy’s warfare concept development, doctrine
refinement and warfare innovation process. FBE-Echo was
held in March 1999 in the San Francisco Bay area, and
examined operational and tactical requirements for warfare
in the years 2005–2010. More than 15 ships and 12,000
sailors and Marines from southern California participated.
The FBE-Echo hypothesis was that “warfighting processes
supported by new concepts and technology allow the Navy to
enter and remain in the [coastal region] indefinitely with the
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ability to provide protection, weapons fires and C4I2 support
to forces ashore.”3

At FBE-Echo, CAST was integrated into the Full Dimen-
sion Protection Cell aboard the command ship, the USS Coro-
nado. CAST spawned a set of mobile “scout” agents to corre-
late events indicative of impending Theater Ballistic Missile
(TBM) launches and send filtered reports back to the USS
Coronado. CAST then supplied alerts on TBM activity to the
Air Operations Commander, who tasked fleet surveillance as-
sets and launched a simulated preemptive strike. The scout
agents traveled across the SIPRNET, the secure military In-
ternet, from the USS Coronado to a simulated shore-based
intelligence feed. The SIPRNET link between the USS Coro-
nado and the shore was a wireless Super High Frequency
(SHF) satellite communications link, whose bandwidth was
768 kbps.4 Intelligence reports were approximately 150 bytes
in size and arrived in bursts spaced about every four minutes,
with each burst containing five to ten reports at a rate of one
report every four seconds. The CAST scout agents were about
1 KByte in size.

The main benefit of CAST was that agents selectively
scanned and filtered the incoming intelligence reports, for-
warding only those that correlated to a significant event. The
mobile scout agents carried selection specifications from the
USS Coronado across the wireless link to the remote infor-
mation sources, stayed there to monitor new information, and
periodically sent back a much reduced set of data, saving
both bandwidth and operator attention to irrelevant data. Each
TBM event differs by the location, the initiating event, the sets
of reports, and the timelines, so that an implementation with-
out mobile filtering logic embodied in a mobile scout agent
would have been cumbersome and complex.

Another benefit of CAST’s mobile-agent approach was its
ability to handle network outages. The satellite connection
disconnected frequently, for a few seconds to an hour at a
time. With a mobile-agent approach, the task of monitoring
the database was uninterrupted once agents were resident on
shore, although, of course, reports that passed the agents’ fil-
ters had to be buffered until the link came back up. New
agents were programmed to repeatedly attempt the ship-to-
shore leap as long as the satellite connection was down.

In the exercise, the ratio of relevant to irrelevant reports
was only about 0.5, since the simulated intelligence feed did
not create a realistic number of extraneous “noise” events, and
a scout agent was spawned approximately every 4 minutes. In
an actual high-intensity operation, the number of extraneous
reports will be much higher and drive the ratio of relevant
to irrelevant reports down to at least 0.005. Especially in an
urban scenario, a large number of reports would be generated

2 C4I is a military abbreviation for Command, Control, Communications,
Computers and Intelligence.

3 Fleet Battle Experiment Echo, Asymmetric Urban Threat, http:
//www.nwdc.navy.mil/navigation/mbc.htm, last modified
8/31/00, last accessed 9/17/00.

4 In this paper, we use K and M to mean powers of two (10 and 20, respec-
tively) and k and m to mean powers of 10 (3 and 6, respectively). Thus
kbps means 103 bits per second.

by MTI (Moving Target Indicator) and ELINT (Electronic In-
telligence) sources. The JSTARS MTI sensor, for example,
is capable of reporting on 100 targets every second. A real
conflict would involve several JSTARS and other sensor plat-
forms. In such a situation, CAST would launch a larger num-
ber of scouts, up to a rate of 10 per second. The remaining
parameters are identical for exercise and actual scenarios.

LM ATL has tailored the CAST mobile agents to several
other military applications, including the DARPA Small Unit
Operations program and US Army intelligence operations [8].
In each case, mobile agents proved to be effective in mitigat-
ing the effects of bandwidth-limited, unreliable, wireless net-
works.

To fully explore the general scenario presented by the
FBE-Echo CAST experiments, we developed an analytic
model. The model considers a more general scenario involv-
ing multiple clients (whereas CAST had one, the USS Coron-
ado) and multiple independent streams of reports. In the rest
of this paper we present our model and sample some of the
performance space using specific parameters.

3. The model

Since the data is arriving constantly, we think of the system
as a pipeline; see figure 2. We imagine that, during a time
interval t , one chunk of data is accumulating in the incom-
ing network buffers, another chunk is being processed on the
server, another chunk is being transmitted across the wireless
network, and another chunk is being processed by the clients.
If the data arrives at an average rate of d bits per second, the
average chunk size is td bits.

For the pipeline to be stable, then, each stage must be able
to complete its processing of data chunks in less than t time,
on average (figure 3). That is, TI � t , TS � t , TW � t ,
and TC � t . In the analysis that follows we work with these
steady-state assumptions; as future work, we would like to
explore the use of a queueing model to better understand the

Figure 2. The scenario viewed as a pipeline.

Figure 3. The pipeline timing diagram. The letters represent data chunks. For
example, between time 3t and 4t chunk A is being processed by the clients,
chunk B is being transmitted from the server to the clients, chunk C is being

processed by the server, and chunk D is being received by the server.
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dynamic properties of this system, such as the buffer require-
ments (queue lengths).

3.1. The parameters

Below we define all of the parameters used in our model, for
easy reference:

• d = input data streams’ speed (bits/s);

• t = time interval (s);

• D = td , the size of a data chunk arriving during time
period t (bits);

• B = wireless channel’s total physical bandwidth (bits/s);

• βb = communication overhead factor for broadcast
(βb < 1);

• Bb = Bβb, the effective bandwidth available for broadcast
(bits/s);

• βa = communication overhead factor for agents (βa < 1);

• Ba = Bβa, the effective bandwidth available for agent
messages (bits/s);

• BI = the bandwidth available in the server’s wired Inter-
net connection, for receiving data streams (bits/s); pre-
sumably BI � B;

• n = number of client machines;

• i = index of a client machine (1 � i � n);

• mi = number of tasks on each client machine i,
1 � i � n;

• j = index of a task (1 � j � mi);

• m = ∑
mi , total number of tasks;

• r = arrival rate of new agents uploaded from the clients to
the server (per second);

• K = average agent size (bits);

• F ′
ij = the fraction of the total data D that task j on client i

chooses to process (by choosing to process only certain
data streams);

• Fij = the fraction of the data processed by task j on
client i, produced as output;

• cij (D,F ′
ij , Fij ) = computational complexity of task j on

client i (operations);5

• µ = the average computational complexity, for a given D

(µ = (1/m)
∑

ij cij (D, F ′
ij , Fij )); it is a convenient

shorthand;

• Cinit = average number of operations needed for a new
agent to start and to exit;

• Sc
i = performance of client machine i (operations/s);

• αc
i = performance efficiency of the software platform on

the client machine i (αc
i < 1);

• Ss = performance of the server machine (operations/s);6

5 We expect that c( ) will have little dependence on D, directly, but more on
DF ′

ij .
6 We assume that all agents get equal-priority access to server cycles.

• αs = performance efficiency of the software platform on
the server (αs < 1).

Notes. B is the raw bandwidth of the wireless channel, but
that bandwidth is never fully available to application commu-
nication. We assume that a broadcast protocol would actually
achieve bandwidth Bb and a mobile-agent messaging proto-
col would achieve bandwidth Ba after including the overhead
of protocol and retransmissions. In section 4 we discuss our
measurements of Ba and Bb.

When comparing a mobile-agent approach to a more tra-
ditional approach, it is most fair to expect that a traditional
system would use compiled code on the client (such as com-
piled C code), whereas a mobile-agent system would use in-
terpreted code on the server (because most mobile-agent sys-
tems only support interpreted languages like Java or Tcl). The
client and server will likely be different hardware and have
different speeds, Sc and Ss, respectively. Because the lan-
guage, compiler, and run-time system impose overhead, the
client runs at a fraction αc of the full speed Sc, and the server
runs at a fraction αs of the full speed Ss. Of course, α < 1,
and we expect αs < αc, since filtering agents on the server
will be interpreted, whereas filtering code on the clients will
be compiled. On the other hand, we expect Ss � Sc.

Computed values. As hinted in the figures above, the fol-
lowing values are computed as a result of the other parame-
ters:

• TI: the time for transmission across the Internet to the
server;

• TS: the time for processing on the server;

• TW: the time for transmission across the wireless network;

• TC: the time for processing on the client.

Most of these have two variants, i.e., TSA, TWA and TCA

for the agent case, and TSB, TWB and TCB for the broadcast
case.

3.2. Computing the constraints

As mentioned above, each stage of the pipeline must complete
in less than time t , that is, TI � t , TS � t , TW � t , and
TC � t .

Internet, TI. Since we are concerned with alternatives for
the portion of the system spanning the wireless network, we
do not specifically model the Internet portion. We assume that
the Internet is not the bottleneck, that is, it is sufficiently fast
to deliver all data streams on schedule:

TI = D

BI
� t, (1)

d � BI, (2)

of course.
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Server, TS. In the broadcast case, the server simply merges
the data streams arriving from the Internet. This step is trivial,
and in any case TSB < t almost certainly.

In the agent case, data filtering happens on the server. The
server’s time is a combination of the filtering costs plus the
time spent initializing newly arrived agents:

TSA =
n∑

i=1

mi∑
j=1

cij (D,F ′
ij , Fij )

αsSs + rtCinit

αsSs . (3)

If we know that the expected value of the computing com-
plexity cij is µ, then we can simplify and obtain a bound on
the number of client tasks (agents), m. That is, we assume
that ∑

i,j cij (D, F ′
ij , Fij )

αsSs ≈ mµ

αsSs . (4)

Now TSA � t ,

mµ + rtCinit

αsSs � t, (5)

m �
(
αsSs − rCinit

) t

µ
. (6)

Wireless network, TW. The broadcast case is relatively sim-
ple, since all of the chunk data D is sent over the channel:

TWB = D

Bb
� t, (7)

d � Bb. (8)

Recall that Bb = Bβb, and that D = td .
In the agent case, agents filter out most of the data and

send a subset of the data items across the wireless network, as
messages back to their task on the client. Agentij sends, on
average, DF ′

ij Fij bits from a chunk. The total time to transfer
all agents’ messages is, thus,

TWA =
∑

i,j DF ′
ij Fij

Ba
� t . (9)

If we consider the average agent and define

F ′F ≡ 1

m

∑
i,j

F ′
ij Fij , (10)

then, since there are m agents,

mDF ′F
Ba

� t . (11)

It is not quite that simple, however.
The wireless channel also carries agents from the clients

to the server, so we must adjust for the bandwidth occupied
by traffic in the reverse direction.7 Recall that new agents
of size K jump to the server at a rate r per second. This

7 Unless the channel is full duplex, in which case there is no impact on the
downlink bandwidth. Here we assume a half-duplex channel.

activity adds rK bits per second (rtK bits per chunk) to the
total traffic. So, updating equation (11) we have

mDF ′F + rtK

Ba
� t, (12)

which leads to a bound on the number of agents (tasks):

m � Ba − rK

dF ′F
. (13)

When does the mobile-agent approach require less wire-
less bandwidth? We can compute the bandwidth needed
from the amount of data transmitted for one chunk, expanded
by 1/β to account for the protocol overhead, then divide by
the time t for one chunk:

1

t

(
1

βa

(
mDF ′F + rtK

))
<

1

t

(
1

βb
D

)
, (14)

mdF ′F + rK <
βa

βb
d, (15)

m <
1

F ′F

(
Ba

Bb
− rK

d

)
. (16)

Note that inequality (16) is nearly the same as inequality (13).
If broadcast is possible (d � Bb), then we should use broad-
cast iff m exceeds the limit provided in inequality (16). If
broadcast is impossible (d > Bb), then of course the mobile-
agent approach is the only choice, but the number of agents
must be kept within the limit specified in (13).

Note that in the broadcast case the wireless bandwidth
must scale with the input stream rate, while in the agent case
the wireless bandwidth must scale with the number of agents
and the relevance of the data. Since we expect that most of
the data will be filtered out by agents (i.e., F ′F < 0.01), the
agent approach should scale well to systems with large data-
flow rates and moderate client populations.

Client, TC. We consider only the processing needed to filter
the data stream, and assume that the clients have additional
power and time needed for an application-specific consump-
tion of the data. Also, we assume the client has sufficient
processing power to launch agents at rate r/n.

In the broadcast case, the data filtering happens on the
clients. We must design for the slowest client, i.e.,

TCB = max
i

mi∑
j=1

cij (D,F ′
ij , Fij )

αc
i S

c
i

. (17)

If all n client hosts were the same, we could write simply

TCB = m

n

µ

αcSc , (18)

and since TCB � t is required,

m � nαcSc t

µ
. (19)

In the agent case there is no data filtering on the clients, so
TCA = 0.
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Table 1
Summary of the constraints derived earlier, along with simplified constraints that assume r = 0. TI and TC are not affected by r . At

the bottom, we show the comparison where agents require less wireless bandwidth than the broadcast approach.

Stage Limits Simplified limits

Broadcast Agent Broadcast Agent

Internet, TI d � BI d � BI d � BI d � BI

Server, TS negligible m �
(
αsSs − rCinit

) t

µ
negligible m �

(
αsSs) t

µ

Wireless, TW d � Bb m � Ba − rK

dF ′F d � Bb m � Ba

dF ′F
Client, TC m � n

(
αcSc) t

µ
negligible m � n

(
αcSc) t

µ
negligible

Comparison Simplified comparison

Wireless, TW m <
1

F ′F

(
Ba

Bb
− rK

d

)
m <

1

F ′F
Ba

Bb

3.3. Commentary

The results are summarized in table 1.
We can see that the agent approach fits within the con-

straints of the wireless network if the number (m and r) and
size (K) of agents is small, or the filtering ratios (F ′F ) are
low.

We believe that, in many realistic applications, most agents
will remain on the server for a long time, and new agents will
be installed rarely. Thus, r is small. Most of the time, r = 0.
This assumption simplifies some of the equations into a more
readable form, as shown in the right side of the table.

Notice that the broadcast case scales infinitely with the
number of clients, but to add tasks to a client or to add data to
the input stream requires the client processor to be faster. On
every client i

mi∑
j=1

cij (D,F ′
ij , Fij )

αc
i S

c
i

� t, (20)

Sc
i �

mi∑
j=1

cij (D,F ′
ij , Fij )

αc
i t

, (21)

so, as d or t increases or as mi (the range of j ) increases,
Sc

i must increase.
The mobile-agent case, on the other hand, requires little

from the client processor (for filtering), but requires a lot more
from the server processor. That processor must scale with the
input data rate, the number of clients, and the number of tasks
per client:

Ss � mµ + rtCinit

tαs . (22)

On the other hand, it may be easier to scale a server in a
fixed facility than to increase the speed of individual client
machines, especially if the server lives in a comfortable ma-
chine room while the clients are mobile, battery-operated field
machines.

Buffers in the pipeline. Since we model our application as
a pipeline, we are primarily concerned with throughput and
bandwidth, rather than response time and latency. As long as

the pipeline is stable in the steady state, i.e., no component’s
capacity is exceeded, the system works. All of our above cal-
culations are based on that approach.

In a real system, of course, the data flow fluctuates over
time. Buffers between each stage of the pipeline hold data
when one stage produces data faster than the next stage can
process it. In a more complete analysis we would use a full
queuing model to analyze the distribution of buffer sizes at
each stage of the pipeline, given distributions for parame-
ters like d , r , and c( ). We leave this analysis for future
work.

Latency. Although we are most concerned with through-
put, in our application some clients may also be concerned
about latency. In other words, it would be a shame if time-
critical data were delayed from reaching the client. Which
approach leads to less latency, say, from the time it reaches
the server until the time it reaches the client application? Con-
sider the flow of a specific data item through the pipeline: it is
processed on the server, transmitted on the wireless network,
and processed on the client. It must share each of these re-
sources with other data items in its chunk, and it must share
the server and wireless network with other clients. On av-
erage, each of m agents may require only TSA/m CPU time
on the shared server. If the server divides its time finely and
evenly, all tasks will complete their computation at time TSA.
If the server divides its time coarsely, the average task com-
pletes in half that time, at time TSA/2. A similar analysis can
be made for the wireless network.

Assuming fine-grain sharing of the server and network, the
latencies are

LA = TSA + TWA + TCA, (23)

LB = TSB + TWB + TCB. (24)

If we ignore the arrival of new agents (i.e., r = 0), and assume
that all clients are identical, we have

LA = mµ

αsSs + mDF ′F
Ba

+ 0, (25)

LB = 0 + D

Bb
+ mµ

nαcSc . (26)
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Unfortunately, it is difficult to compare these two without
specific parameter values.

We wonder, however, about the value of such a latency
analysis. Given a specific data rate d , one must choose a
server speed, wireless network bandwidth, and client speed,
that can just keep up with the data flow. That is, in time in-
terval t two of those three components must each be able to
process D data. Their combined latency is 2t . With suffi-
ciently small t , say, 1–10 s, it seems likely this latency would
suffice for most applications. Although one approach may
have a little less latency than the other, the data flow rate re-
mains the same. One could reduce latency by making bal-
anced improvements to the two components with non-zero la-
tency; this improvement may be easier in the agent approach,
because it may be easier to upgrade the server than thousands
of clients.

4. Model parameters

To explore some of the performance space represented by the
model, we need reasonable values for key parameters. In the
context of the Fleet Battle Experiment (section 2) we have
B = 768 kbps and K = 8192 bits. Using the extrapolation
to a realistic situation, FBE-Echo anticipates F ′F = 0.005,
r = 10/s, and d = 600 kbps (based on 5 sensors, each
generating 100 reports per second, at 150 bytes per report).
This combination of parameters is realistic and conservative,
in that it allows the broadcast approach to succeed (because
d < B).8 Let us presume that an average agent monitors 2
of the 5 sensors, that is, F ′ = 0.4. Thus, if we accumu-
late reports for a t = 10 s interval, the total amount of data
D = 6 mbits, and the agent must process DF ′ = 2.4 mbits.

Unfortunately, CAST was not instrumented to record any
specific information about the computational cost or software
overhead α of the CAST agents. Thus, to measure the value
of the other model parameters, we constructed a small test
environment consisting of two Linux laptops, a Linux work-
station cluster, and a wireless network. One laptop served as
the wireless client machine. The other laptop ran routed
to serve as a gateway between the 2 Mbps wireless network
and the 10 mbps wired network. Our server cluster contained
14 Linux workstations. We treated the 14 machines as a sin-
gle logical server, because we needed that many to effectively
measure βa, as we describe below. The platform can be envi-
sioned as shown in figure 4.9

8 In practice, the SHF satellite network was congested due to other traffic;
although we do not model this congestion, it would only lead to a stronger
case for mobile agents since they require less bandwidth.

9 Client: Gateway Solo 2300 laptop; Intel Pentium MMX 200 MHz, 48 MB
RAM, running Linux 2.0.36. Gateway: Tecra 500CS laptop; Intel Pen-
tium 120 MHz, 16 MB RAM, running Linux 2.2.6. Servers: VA Linux
VarStation 28, Model 2871E; Pentium II at 450 MHz, 512K ECC L2
Cache, 256 MB RAM, running Linux 2.0.36. Wired network: the gate-
way was connected to a 10 mbps Ethernet, through a hub, a 10 mbps
switch, and a 100 mbps switch, to the server cluster. Wireless network:
2 Mbps Lucent WaveLAN “Bronze Turbo” 802.11b PC cards configured
at 2 Mbps.

Figure 4. The experimental platform, in which the server is a cluster of work-
stations, sending its data through a wireless gateway machine to the wireless

network.

When measuring parameters related to mobile agents, we
used the Dartmouth mobile-agent system D’Agents [6,7] as
an example of a canonical mobile-agent platform. Although
the CAST application used a different mobile-agent platform,
it was sufficiently similar to D’Agents for the purposes of the
experiments here.

4.1. Measuring α

Because the language, compiler, and run-time system impose
overhead, the client runs at a fraction αc of the full speed Sc,
and the server runs at a fraction αs of the full speed Ss. Un-
fortunately, we do not know and cannot directly measure S.10

On a single host of speed S, though, we can run a compiled C
program and a comparable Java program, to obtain αcS and
αsS, and divide to obtain αc/αs.

We wrote a simple image-processing application (an edge
detector) in C, and then ported it to Java. We ran them both
on one of our servers, using a sample image;11 averaged over
100 runs, the Java program took 111 ms and the C program
took 83 ms. In this measurement, we include only the com-
putational portion of the application, rather than the time to
read and write the image files, since in our modeled applica-
tion the data will be streaming through memory, rather than
on disk. These numbers give αs/αc = 0.75, i.e., C was 25%
faster than Java.

4.2. Measuring β

The raw bandwidth of our WaveLAN wireless network was
2 Mbps (that is, 2,097,152 bps). To obtain β values, we mea-
sured the transmission speed of sample applications transmit-
ting data across that network, and divided by 2 Mbps.

To compute βb for the broadcast case, we wrote a simple
pair of programs; one broadcast 4999 data blocks of 50,000
bytes each across the wireless link, for the other to receive.
The transmission completed in 1135 s, which implies that

Bb = 4999 × 50,000 Bytes × 8 bits/Bytes

1135 s
, (27)

βb = Bb

B
= 1,761,762 bps

2,097,152 bps
= 0.840. (28)

10 Recall the difficulty of measuring the “peak performance” of an architec-
ture, and all the discussions about the value of MHz and MIPS as metrics
of performance.

11 The image size was 308,378 bytes, or 2,467,024 bits, approximately the
value DF ′ = 2.4 mbits we mentioned above.
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In other words, broadcast of these reasonably large chunks of
data is 84% efficient.

To compute βa for the agent case, we wrote a simple agent
program that visits the server, and sends about 50 KB of doc-
uments every 3 s. The agent completes after sending 500 of
these 50 KB messages. The effective bandwidth is computed
as the total amount of data transmitted divided by the time
required to transmit the data, including the time sleeping. To
better reflect the modeled application, we actually sent out
several agents to different hosts within our server cluster, and
increased the number of agents and hosts until we reached the
highest possible total bandwidth. We found that 14 agents,
running on separate hosts within the server cluster, reached
almost 1.5 mbps. Specifically,

βa = Ba

B
= 1,484,144 bps

2,097,152 bps
= 0.708. (29)

4.3. Measuring Cinit

When hosting agents, the server needs to support all of their
computational needs. In addition to the processing time re-
quired to filter the data, new agents come and old agents exit.
In our model, r agents come and go, per second, on average.
We model the computational overhead of each agent’s start
and exit as Cinit. We wrote a trivial agent and arranged for
one of our server hosts to rapidly submit agents to another
server host. After 5000 submit/exit pairs in 204 s, we con-
clude that the overhead Cinit is about 40 ms (actually, it is the
number of operations corresponding to 40 ms). It may be less,
because our measurement was based on wall-clock time, not
CPU time, and this experiment did not max out the CPU.

5. Results

We now use these parameters in our equations to get a sense
of how they react under specific conditions.

Unfortunately, it is difficult to get actual µ, α, and S pa-
rameters, although we did measure some ratios above. If we
assume, however, that our edge-detection algorithm is repre-
sentative of one sort of filtering operation, we do know the
time it took to execute that operation. On our client laptop we
measured

µ

αcSc = 236 ms. (30)

That represents the time needed to process one 308 KByte
(precisely, 2,467,024 bit) image; that is, approximately
DF ′ = 2.4 mbits for t = 10 s. Equation (19) tells us that

m

n
� αcSc t

µ
= 10

0.236
= 42, (31)

that is, about 42 tasks per client, for an arbitrary number
of clients n. Seen another way, if the filter requires 2.36%
(236 ms of the 10 s interval) of the client’s CPU, the client
could support 42 such filters. Of course, the client machine
should reserve some power for consuming the data after fil-
tering, so it should not run anywhere close to 42 filters.

Figure 5. The number of agents that can effectively be supported, as the
server power grows relative to the client’s power. We show four curves,
representing different possible computations; 2.36% represents our image-
processing sample application. In the broadcast case, each client could sup-
port 100 tasks (1%), 42 tasks (2.36%), 10 tasks (10%), or 2 tasks (50%), for

an arbitrary number of clients.

Similarly, on the server, if we ignore r , equation (6) tells
us that

m �
(
αsSs) t

µ
. (32)

The machines we used as “servers” in our experiments were
not particularly speedy. It is more interesting to derive an
equation for m in terms of the relative power of the server and
client, using quantities that we already have measured:

m � αsSs

µ
t = αcSc

µ

αs

αc

Ss

Sc t

= 1

0.236 s
(0.75)

Ss

Sc (10 s) = 31.7
Ss

Sc . (33)

Figure 5 shows the total number of agents (for all clients)
that could be supported as the power of the server Ss grows
relative to the power of the clients Sc, for our 236 ms sample
task as well as three other possibilities. The plot shows ra-
tios Ss/Sc reaching up to 20, which is easily obtainable when
clients are portable computers.

In figure 6 we show the constraints on m, in the agent case.
This graph plots the two constraints from table 1, as d varies.
The actual constraint is the minimum of the two curves. For
lower F ′F , the server’s computation is the tighter constraint;
for higher F ′F , the wireless network bandwidth limits us
more. As a basis for drawing these curves, we reconsider
the example inspired by FBE-Echo – that is, d = 600 kbps,
t = 10 s, and F ′ = 0.4 – and measure the image-processing
application running on the server (µ/αsSs = 111 ms, as de-
scribed earlier). Of course, in nearly any application µ will
vary with D (and thus, with d and t); for the purposes of
this illustrative graph we assume the computation is linear. In
other words, we imagine that µ may behave as follows:

µ

αsSs = 111 ms × D

10 s × 600 kbps
. (34)
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Figure 6. The maximum number of agents m we can support, given the
constraints in table 1. Here B = 768 kbps, r = 0, βa = 0.708, t = 10 s, and
µ is proportional to D, as described in the text. The computational limit is

coincidentally the same as the bandwidth limit for F ′F = 0.010.

In figure 7 we look at similar results when we vary r (the
previous graph assumed r = 0). In section 4.3 we measured

Cinit

αsSs = 40 ms, (35)

and in section 4.1 we measured
µ

αsSs = 111 ms, (36)

and for a fixed t = 10 s, the computational constraint from
equation (6) is

m �
(

αsSs

µ
− rCinit

µ

)
t

=
(

1

111 ms
− r

40 ms

111 ms

)
(10 s). (37)

Again, the actual constraint is the minimum of the two
curves. For lower F ′F , the server’s computation is the tighter
constraint; for higher F ′F , the wireless network bandwidth
limits us more.

In figure 7 the bandwidth-constraint lines are close to hor-
izontal, since in FBE-Echo the 1 KByte agents are small
enough that the transmission of the agents does not have a sig-
nificant effect on the wireless network. As shown in figure 8,
on the other hand, the behavior is dramatically different when
the agents are larger. For large agents and high birth/death
rates, the traffic induced by the jumping agents (rK) con-
sumes the available bandwidth Ba, leaving nothing for agents
to transmit their data. Clearly, such a system can support few
agents when the agent size is large or when the birth/death
rate is high. This result emphasizes the need to include some
kind of code caching in any mobile-code system, so that the
same agent code is not transmitted repeatedly across the wire-
less link.

Another useful way to look at the results is to graph the
bandwidth required by either the agent approach or the broad-
cast approach, given certain parameters. In figure 9 we vary
the filtering ratio, since it clearly has a large impact on the

Figure 7. The maximum number of agents m we can support, given the
constraints in table 1, as we vary r . Here we use parameters K = 1 KByte,
B = 768 kbps, d = 600 kbps, βa = 0.708, t = 10 s, Cinit/(α

sSs) = 40 ms,
and µ/(αsSs) = 111 ms.

Figure 8. For comparison with figure 7, we fix F ′F = 0.005 as in FBE-Echo,
and instead display the bandwidth limit with K = 1, 10, or 50 KBytes. Other

parameters are the same as in the preceding figure.

bandwidth required by the agent approach. For low filter-
ing ratios, the agent approach needs less bandwidth than the
broadcast approach. If d > B (not shown), of course the
broadcast approach cannot work at all, and the agent approach
is the only solution.

In figure 10 we show the relationship between the number
of agents and the necessary filtering ratio. Another view on
the earlier charts, this clearly shows that, to support a large
number of agents, those agents must be aggressively filtering
the input stream.

In all, it is clear that there is a wide range of situations
in which mobile agents are more efficient than the broadcast
approach. Unless the number of clients is very large, the fil-
tering ratio of each task is high, or the size or computational
demands of each task is high, the mobile-agent approach has
promise.
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Figure 9. The bandwidth requirements for agent and broadcast approaches.
Here d = 600 kbps, B = 768 kbps, r = 10/s, K = 1 KByte, βa = 0.708,
and βb = 0.840. Note that the bandwidth required by the broadcast approach

is d/βb, and appears above d.

Figure 10. The relationship between the filtering ratio and the number of
agents in the server. Other parameters are as before: B = 768 kbps,

d = 600 kbps, K = 1 KByte, r = 10/s.

6. Related work

Performance modeling of computer networks and distributed
applications is an old field, and our approach and resulting
equations are similar to many previous analyses of distrib-
uted systems [10]. In addition, there has been some similar
modeling work specifically for mobile-agent systems.

Strasser and Schwehm [16] develop a general model
for comparing the performance of Remote Procedure Calls
(RPC) with the performance of migrating agents. Using their
model, which is best-suited for information-retrieval appli-
cations, they derive equations for the total number of bytes
transferred across the network, as well as the total completion
time of the task. The equations include such parameters as
the expected result size and the “selectivity” of the agent (i.e.,
how much irrelevant information the agent filters out at the
data site, rather than carrying with it for future examination).
Their byte equations are similar to our bandwidth equations,
although their time equations are not directly applicable to our

scenario, since we are interested only in whether the server
can keep up with the incoming data streams, not with the to-
tal completion time.

Küpper and Park [11] examine a signaling application in-
side a telecommunications network, and compare a mobile-
agent approach with a stationary-agent (or client–server) ap-
proach. Starting with a queuing model of a hierarchical sig-
naling network, they produce equations that specify the ex-
pected load on each network node in both the mobile and sta-
tionary cases. These equations are similar to our server-load
equations (from which we derive the constraint on how many
agents the server machine can handle simultaneously).

Picco, Fuggetta and Vigna [4,12] identify three main de-
sign paradigms that exploit code mobility: remote evaluation,
code on demand, and mobile agents. Within the context of
a network-management application, i.e., the polling of man-
agement information from a pool of network devices, they an-
alyze these three paradigms and the traditional client–server
paradigm. They develop analytical models to compare the
amount of traffic around the network-management server, as
well as the total traffic on the managed network. These mod-
els are similar to our bandwidth models.

More recently, Puliafito et al. [13] used Petri nets to com-
pare the mobile-agent, remote-evaluation and client–server
paradigms. The key parameters to the models are transition
probabilities that specify (1) whether a traditional client or
agent will need to redo an operation, and (2) whether a client
or agent will need to perform another operation to continue
with the overall task. Using the models, they compare the
mean time to task completion for the three paradigms. Like
the the work of Strasser and Schwehm [16], these Petri-net
models are well suited for information-retrieval applications,
are more general than the models in the other papers, and are
not directly applicable to our scenario, which involves con-
tinuous filtering of an incoming data stream, rather than a
multi-step retrieval task. Petri nets, however, could be a useful
analysis technique for our scenario.

In addition to the mathematical analyses above, there has
been a range of simulation and experimental work for mobile-
agent systems. Recent simulation work includes [15], which
considers the use of mobile agents for search operations on re-
mote file systems (such as the standard substring search of the
Unix grep command), and [1], which examines the use of mo-
bile agents for message delivery in ad hoc wireless networks.
Recent experimental work includes [14], which compares dif-
ferent strategies for accessing a Web database, and [5], which
compares RPC and mobile-agent approaches for accessing a
document database. Although we have not done simulation
or experimental validation of our model yet, such validation
is an essential part of future work.

In our broadcast scenario all of the data are broadcast. In
our agent scenario each agent sends its own copy of the fil-
tered data to its client, regardless of whether other clients may
also want the data. We may be able to use techniques from the
domain of “broadcast publishing” to obtain a more efficient
compromise approach [9].
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7. Summary and future work

The FBE-Echo experiment is a good example of an applica-
tion in which only a small portion of the available information
is relevant to the task at hand. Although the FBE-Echo ex-
perimental results suggested that mobile agents were achiev-
ing significant bandwidth savings, the aggressive FBE testing
schedule did not allow a direct comparison with a traditional
client/server implementation. For this reason, we developed
the model described in this paper, which confirms that mo-
bile agents will often have a significant performance benefit
in filtering applications. With small filtering ratios (F ′F ) or a
small numbers of agents, a mobile-agent approach can get by
with less bandwidth or slower (i.e., cheaper or lighter) clients.
At the same time, our analysis reinforces the importance of
the engineering challenge of keeping αs and βa large, that is,
reducing the overhead of mobile-agent computation and com-
munication.

To further develop this performance analysis and to use it
in a wider range of applications, we need to better understand
several issues: How variable is the input data stream in terms
of its flow rate? In other words, how much buffering would
be necessary in the server and the clients? How many differ-
ent agent/task types are there in typical applications, and how
widely do these types vary? How much CPU time is needed
to support the network protocols? Are average or expected
numbers acceptable, or do we need worst-case analysis?

Furthermore, we need to address a few limitations: (1) the
broadcast case assumes that nobody misses any transmis-
sions, or that they do not care if they miss it, so there are
no retransmissions; (2) both cases ignore the client process-
ing consumed by the end application; and (3) we consider
only one application scenario. While the application scenario
is widely representative, there are certainly other application
types worth analyzing. In particular, we would like to con-
sider scenarios in which the mobile agents move up and down
a hierarchy of gateway machines. We are also interested in the
use of mobile agents as a dynamically distributed, and redis-
tributed, cooperative cache to support mobile computers in a
wireless network.
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