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Abstract

New file systems are critical to obtain good I/O performance on large multiprocessors. Sev-
eral researchers have suggested the use of collective file-system operations, in which all processes
in an application cooperate in each I/O request. Others have suggested that the traditional low-
level interface (read, write, seek) be augmented with various higher-level requests (e.g., read
matriz), allowing the programmer to express a complex transfer in a single (perhaps collective)
request. Collective, high-level requests permit techniques like two-phase I/0 and disk-directed
I/0 to significantly improve performance over traditional file systems and interfaces. Neither
of these techniques have been tested on anything other than simple benchmarks that read or
write matrices. Many applications, however, intersperse computation and I/O to work with
data sets that cannot fit in main memory. In this paper, we present the results of experiments
with an “out-of-core” LU-decomposition program, comparing a traditional interface and file
system with a system that has a high-level, collective interface and disk-directed I/O. We found
that a collective interface was awkward in some places, and forced additional synchronization.
Nonetheless, disk-directed I/O was able to obtain much better performance than the traditional
system.
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1 Introduction

Although multiprocessor systems have increased their computational power dramatically in the last
decade, the design of hardware and software for I/O has lagged and become an increasing bottleneck
in the overall performance of parallel applications. The use of disk striping [SGM8&6] to access many
disks in parallel has alleviated some of the hardware limitations by providing greater capacity,
bandwidth, and throughput. Good parallel file-system software, however, is critical to a system’s
I/O performance, and early file systems often had disappointing performance [FPD93, Nit92].

Recent work shows that if an application could make high-level, collective 1/O requests, the
file system can optimize I/O transfers using disk-directed 1/0O [Kot94] to improve performance by
orders of magnitude. In [Kot94], however, experiments were limited to simple benchmarks that
read or wrote matrices. In this paper we evaluate the performance of disk-directed I/O on a much
more complex program, an out-of-core LU-decomposition program. This program allows us to
understand the performance benefits of disk-directed 1/0 in the context of a full program, one that
performs computation, reads and writes the same file (indeed, rereads and rewrites the same file
many times), and has interprocess synchronization.

In the next section we provide more detailed background information. Section 3 discusses the
LU-decomposition program. In Section 4 we describe a set of experiments used to reinforce our
discussion, and Section 5 provides the results. We conclude with commentary on the advantages

and disadvantages of high-level, collective requests, and on the underlying technique of disk-directed

1/0.
2 Background

File systems. There are many parallel file systems today, including Bridge [DSE88], Intel CFS
[PieR9], Intel PFS [Roy93], IBM Vesta [CF94], nCUBE [DdR92], TMC sfs [LINT93, BGST93],
HurrIicANE File System [Kri94], and SPIFFI [FBD95]. There are also several systems intended
for workload clusters, such as PIOUS [MS94] and VIP-FS [dHC94]. All of these systems decluster

file data across many disks to provide parallel access to the data of any file.

Workload. The CHARISMA project traced production parallel scientific computing workloads
on an Intel iPSC/860 [KN94] and on a TMC CM-5 [PEK"94] to characterize their file-system

activity. In both cases, applications accessed large files (megabytes or gigabytes in size) using



surprisingly small requests (on the Intel, 96% of read requests were for less than 200 bytes). On
further examination, we discovered that most of the files were accessed in complex yet highly regular

patterns [NK94], most likely due to accessing multidimensional matrices.

Interfaces. Most parallel file systems present the traditional abstraction of a file as a sequence
of bytes with Unix interface semantics, and add a few extensions to control the behavior of an
implicit file pointer shared among the processes. This low-level interface, which restricts each
request to a contiguous portion of the file, is one reason for the predominance of small requests
found by the CHARISMA project. Higher-level interfaces, such as specifying a strided series of
requests [NK94, Cra94] or accessing data through a mapping function [CF94, DdR92, Kot93] pro-
vide valuable semantic information to the file system, which can then be used for optimization
purposes. Interfaces that allow the programmer to express collective 1/O activity, in which all
processes cooperate to make a single, large request, provide even more semantic information to the
file system.

Unfortunately, few multiprocessor file systems provide a collective interface. CM-Fortran for the
CM-5 does provide a collective-1/O interface, which leads to high performance through cooperation
among the compiler, run-time, operating system, and hardware. The MPI message-passing interface
may soon be extended to include I/O [CFHT94], including collective I/O. Finally, there are several
libraries for collective matrix 1/0 [GGL93, BAC93, BBST94, SW94].

Two-phase I/0. Two-phase I/0 is a technique for optimizing data transfer given a high-level,
collective interface [dBC93]. A library implementing the interface breaks the request into two
phases, an I/O phase and a redistribution phase. When reading, the compute processors cooperate
to read a matrix in a “conforming distribution”, chosen for best 1/O performance, and then the data
is redistributed to its ultimate destination. When writing, the data is first redistributed and then
written in a conforming distribution. There are no published performance results for two-phase

writing, or for an out-of-core application using two-phase 1/0.

Disk-directed I/O. Disk-directed I/0 is a technique for optimizing data transfer given a high-
level, collective interface [Kot94]. In this scheme, the complete collective, high-level request is passed
to the I/O processors, which examine the request, make a list of disk blocks to be transferred, sort
the list, and then use double-buffering and special remote-memory “get” and “put” messages to

pipeline the transfer of data between compute-processor memories and the disks. Compared to a



traditional system with caches at the I/O processors, this strategy optimizes the disk accesses, uses
less memory (no cache at the I/O processors), and has less CPU and message-passing overhead.
In experiments with reading and writing one- and two-dimensional matrices, disk-directed 1/0
was as much as 18 times faster than traditional caching in some access patterns, and was never

slower [Kot94].

3 LU decomposition

LU decomposition represents the bulk of the effort in one technique for solving linear systems of
equations. An N x N matrix M is decomposed into two matrices, a lower-triangular matrix L and
an upper-triangular matrix U, such that LU = M. Typically, these two triangular matrices are
stored in one N X N array, occupying disjoint elements of the array. Indeed, the decomposition

can be done in place, overwriting M. A sequential algorithm (with no pivoting) looks like this:

for i = 1 to N-1

for j = i+1 to N // update rows i+1 .. N
mult(j) = M(j,i) / M(i,i)
for k = i+1 to N // each row j, update cols i+l .. N
M(j,k) = M(j,k) - mult(j) * M(i,k)
end
end
end

One simple parallelization of this algorithm (although not the best; see [WGWRO3] for a better
algorithm) is to distribute responsibility for columns of the matrix among P processors in a cyclic
pattern; that is, column & is handled by processor £ mod P (see Figure 1. In iteration ¢, the
multipliers (called mult(j) above) are computed from column ¢ by processor ¢ mod P and then
broadcasted to the other processors. Then each processor updates the columns for which it is
responsible; only in the last few iterations is any processor idle.

When the matrix is moderately large, that is, too large to fit in memory but small enough so that
each processor’s memory can hold at least one column of the matrix, the processors repeatedly read
a subset of their columns from the file, update those columns, and then write those columns back to
the file. Thus, it makes sense to store the matrix in column-major order. We call each processor’s
subset of columns a “slab.” Note that because of the cyclic distribution any one processor’s slab
is not contiguous in the file, but that corresponding sets of slabs for all processors collectively

represent a contiguous set of bytes in the file.



16 columns, 4 processors

N~
first slab second slab

2 columns per slab per processor

Figure 1: Example of column-cyclic distribution of 16 columns across four processors. Each proces-
sor is represented here by a different shade of gray. SLAB_COLS is 2 here, meaning each processor
allocates space for two columns in main memory. The combined slab size is eight columns.

The code for parallel, out-of-core L.U-decomposition (based on that in [TBC94]) is shown in
Figure 2. There are several things to note about this program. First, note the optimization to split
the outer loop into two loops, with the I/O pulled out of the second loop. The second loop begins
once the remaining columns all fit in memory, eliminating many unnecessary 1/0 transfers; indeed,
when the entire matrix fits in memory the first loop is ignored and we need only load and store
the matrix once. Second, the nodes synchronize as part of the multiplier calculation, because one
node computes the multipliers and broadcasts them to the other nodes. (In my implementation
this broadcast involves a barrier synchronization). Third, the code is written so that all processors
make the same number of iterations through all loops, even though in the last few iterations some
processors will have ncols = 0, so that collective communication and I/O routines can be used if
desired. The performance cost of extra iterations is negligible, because those processors with fewer
iterations eventually wait for those with more iterations anyway. Finally, the program explicitly
waits for all pending writes to fully complete (sync()) before stopping the clock.

When based on a traditional file-system interface, the function LU_read looks like that in
Figure 3a. LU_write would look similar. Given a collective interface, these functions would be

replaced as shown in Figure 3b. Note that no synchronization is necessary with the traditional



//  run stmultaneously by all P processors
//  file initially contains N x N matrix M in column magjor order
// SLAB_COLS is the number of columns per processor per slab

float M_local[N][SLAB COLS]; // this processor’s portion of a slab of M{N][N]
float multipliers[N]; //  local copy of multipliers
int colsInMem = P * SLAB_COLS; //  number of columns in all P memories

barrier(); start clock;

for (i = 1 to N - colsInMem) {
my first = the first column I will handle; // processor ¢ mod P handles column @
ncols = the number of columns I will handle, usually SLAB_COLS;

LUread(Mlocal, my_first, ncols); // get that slab from the file
if (I am responsible for column i) {
find the N-i multipliers;
broadcast them to all other nodes;
} else {
receive the broadcasted multipliers;
}

update the ncols columns in M_local using multipliers;
LUwrite(Mlocal, my_first, ncols); // and write the slab back

// now update the rest of the columns
leftmost = i;

//  everybody loop until everybody ts done
while ((leftmost += colsInlMem) <= N) {
ny_first += colsInMem;
ncols = the number of columns I will handle
(usually SLAB_COLS, but could be fewer, or even 0);

LU_read(Mlocal, my first, ncols); // get that slab from the file
update the ncols columns in M_local using multipliers;
LU write(Mlocal, my_first, ncols); // and write the slab back

}

// ok, now do the colsInMem columns not handled above
ny_first = the first column I will handle;
ncols = the number of columns I will handle (as few as 0);

LU read(Mlocal, my first, ncols); // get that final slab from the file
for (i =i to N-1) {
if (I am responsible for column i) {
find the N-i multipliers;
broadcast them to all other nodes;
} else {
receive the broadcasted multipliers;
}

update the columns in M_local using multipliers;
}

LU write(Mlocal, my_first, ncols); // and write the slab back

sync(); // wait for all disk I/0 to complete
barrier(); stop clock;

Figure 2: Pseudo-code for parallel, out-of-core LU-decomposition program.
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interface, whereas the collective interface must synchronize all processors for disk-directed 1/0.
This “extraneous” synchronization would in general accentuate temporary load imbalances, but it

can often allow dramatically better I/O performance.

a) the traditional read/write/seek interface:
LUread(array, first_col, ncols)

{
int col bytes = N * sizeof(float); // size of a column
int col = first_col;
// loop through the desired number of columns
for (i = 1 to ncols) {
seek((col-1) * col bytes); // find this column in the file
read(array, col_bytes); // read one column
array += colnbytes; // skip to next column
col += P; //  column cyclic
}
}

b) a collective interface with disk-directed 1/0 support:
LUread(array, first_col, ncols)

{ barrier();
first col = min(first_col) over all processors;
ncols = sum(ncols) over all processors;
disk-directed read of (first_col) through (first._col + ncols - 1);
barrier();
1

Figure 3: Pseudo-code for LU_read (LU_write is similar).

Finally, we note that code like that in Figure 2 could be written by hand, incorporated in a
parallel matrix library [GGL93, BAC93, BBST94, SW94], or generated by a smart compiler [CC94,
TBC94, BTC94].

4 Experiments

To gain a better understanding of the benefits of disk-directed 1/O to an application like LU de-
composition, we ran several experiments. In these experiments, we ran the program in Figure 2
with both the “traditional caching” file system (Figure 3a) and the disk-directed file system (Fig-

ure 3b), on top of our parallel file-system simulator [Kot94]. This simulator ran on top of the



Proteus parallel-architecture simulator [BDCW91], which in turn ran on a DEC-5000 workstation.
We configured Proteus as in [Kot94], except as noted below.

Simulation overhead limited our experiments to decomposing a 1024 x 1024 matrix of single-
precision numbers, using eight compute processors (CPs), eight 1/O processors (I0Ps), and eight
disks (one on each IOP). This matrix only represented 4 MB of data, but when using the smallest
slab size (16 columns per CP) the algorithm moved nearly 4 GB between disk and memory. Note
that each column required 4 KB. Our file systems striped the file across all eight disks by 1 KB,
4 KB, or 8 KB blocks. The 4 KB blocks represent an “easy” case, where each full-column read
and write operation touches precisely one block, and there are no shared blocks or partial-block
requests. The 1 KB blocks represent a “likely” case, where each column requires several blocks.
With 8 KB blocks a full-column transfer touches only half of a block, testing the ability of the
cache to manage the subsequent spatial locality, and testing the effect of the extraneous disk reads
needed when writing only half a block. Within each disk the blocks were laid out either randomly
or contiguously, representing two interesting endpoints in the choice of block layouts.

We chose a slab size of 16, 32, or 128 columns per processor. With 8 CPs, these choices reflect
total application memory sizes of 128, 256, or 1024 columns. In the last case, the matrix fit entirely
in memory and so only one round of reading and writing was needed.

In the traditional-caching file system, the IOPs allocated two one-block buffers per compute
processor per disk, or 2 x 8 x 8 = 128 blocks of total cache, holding 32, 128, or 256 columns
depending on the block size. While this cache may seem small, it is consistent with the size of the
system and problem, and with our previous experiments [Kot94]. In the disk-directed file system,
the I0Ps allocated two one-block buffers per disk (for double-buffering each disk), or 16 blocks of
total buffer space. Note that disk-directed 1/O’s buffers used an asymptotic order-of-magnitude

less memory than did traditional caching’s cache.

5 Results

We concentrate on two primary metrics in our experiments: the amount of disk I/O (in bytes) and
the total execution time (in seconds). Given our parameters, however, the values of these measures
spanned several orders of magnitude (e.g., with 128-column slabs the matrix fits in memory and
the program causes 8 MB of disk traffic over about one minute, whereas with smaller slabs the
program moves the matrix in and out of memory and causes 3-4 GB of traffic lasting for nearly

an hour). Furthermore, insights come by comparing the performance of two configurations, rather



a) Disk traffic: DDIO/TC with 4 KB b) LU time: DDIO/TC with 4 KB blocks
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Figure 4: The ratio of disk-directed I/O (DDIO) to traditional caching (TC), in terms of bytes of
disk traffic and seconds of execution time. The ratio is expressed as a percentage. Thus, less than
100% indicates that DDIO was better, i.e., did less I/O or took less time. There are several cases,
using either contiguous or random layouts, and 16-, 32-, 64-, or 128-column slab size. All used a
4 KB block size.

than from the absolute performance of any one configuration. Thus, we normalize and compare by
charting the ratio of a measure between one configuration and another.!

Figure 4 displays the ratio of disk-directed 1/0’s performance to traditional caching’s perfor-
mance, for a variety of configurations using 4 KB blocks. Figure 4a focuses on the disk-1/0 traffic.
Note that the amount of file-system traffic generated by the LU-decomposition program depended
only on the slab size, and by using the ratio we normalize for the difference between slab sizes so
that any visible differences are due to differences in the way the file systems use the disks. Note that
both file systems caused about the same amount of disk I/0, with the traditional caching system
occasionally making mistakes that caused a little extra 1/O. Figure 4b shows the total execution
time, and paints a different picture. Disk-directed 1/O was never slower, and was faster when using
the random-blocks layout due to its ability to optimize disk-head movement. With the exception
of 128-column slabs, the improvement of disk-directed I/O over traditional caching increased with
slab size, because the larger disk-directed requests permitted sorting over a larger set of data. With
128-column slabs the entire matrix fit in memory, the application was compute-bound, and thus
the improvements had little effect on execution time.

In Figure 5 we examine the performance when the block size was changed from 4 KB to 8 KB.
This change increases the disk and network transfer unit, changes the striping unit, and doubles

the size of traditional caching’s cache. The larger block size hardly affected disk-directed 1/0’s disk

1See the Appendix for the raw data.



a) Disk traffic: 8k/4k b) LU time: 8k/4k
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Figure 5: The ratio of LU-decomposition performance with 8 KB blocks to that with 4 KB blocks, in
terms of bytes of disk traffic and seconds of execution time. The ratio is expressed as a percentage.
Thus, less than 100% indicates that 8 KB was better, i.e., did less 1/O or took less time. There
are several cases, using either contiguous or random layouts, and 16-, 32-, or 128-column slab size.
For each case there are two bars, one for traditional caching (TC) and one for disk-directed 1/0

(DDIO).

traffic, but (despite the larger caches) dramatically increased the amount of traffic for traditional
caching in some cases. (The 16-column slabs were an exception, because each slab fit entirely into
the cache, and the necessary blocks remained in the cache between the read and write phases of
each iteration.) The additional traffic was caused by the 4 KB (column) writes to 8 KB blocks,
which caused a disk read when the block was not resident in the cache. Disk-directed 1/0, with
its higher-level perspective, recognized that the blocks were to be fully written and avoided these
“installation” reads.

Figure 5b shows the performance impact of traditional caching’s excessive installation reads.
Disk-directed 1/O was able to make efficient use of 8 KB blocks to obtain better performance,
despite a comparable amount of disk traffic. Traditional caching had mixed results. With 128-
column slabs, the I/O time was only a small part of execution time, so the performance impact was
small; with 32-column slabs, the effect was amplified in the contiguous layout because the extra
I/0 caused many costly seeks, and was counteracted in the random layout by the reduction in seeks
needed to reach half as many blocks.

Figure 6 compares disk-directed I/O and traditional caching on 8 KB blocks, using the same
data as Figure 5 and in the same style as Figure 4. Here we see the clear dominance of disk-directed
I/O in terms of execution time, despite the extraneous synchronization and (in some cases) extra

disk I/O. Indeed, unless the entire matrix fit in memory (128-column slabs) or the slab size was
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a) Disk traffic: DDIO/TC with 8 KB b) LU time: DDIO/TC with 8 KB blocks
blocks
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Figure 6: Just like Figure 4, but using an 8 KB block size.

limited to the cache size (16-column slabs), disk-directed I/O was 2-3 times faster than traditional
caching.

In larger, more realistic problem sizes, that is, with larger matrices, the column size would be
much larger than the block size, rather than smaller. In Figure 7 we examine the situation when
the block size was 1 KB, so that each column spans four blocks (spread over four disks). The
amount of disk traffic was nearly unchanged, but the execution times were remarkably different.
The compute-bound 128-column slab cases were barely affected, but all other cases were drastically
slower. Much of this slowdown was due to the increased overhead of a smaller transfer unit. In the
contiguous layout the traditional caching system caused much more disk-head movement because
the each CP was active in a slightly different region of the file. Ultimately, as shown in Figure 8,
disk-directed 1/O was much faster than traditional caching in the difficult, but realistic cases where
the the matrix did not fit in memory and the column size was larger than the block size.

Figure 9 compares the traflic and execution speed of 32-column slabs with 16-column slabs.
The LU-decomposition program causes less file-system traflic with 32-column slabs, as is reflected
in Figure 9a. The chart again shows the cost of installation reads in traditional caching with 8 KB
blocks. The contiguous layout accentuates the cost of the extraneous I/0, because the additional
seeks remove many of the benefits of contiguous layout (Figure 9b).

Finally, traditional caching uses more memory on each IOP than does disk-directed I/O. Indeed,
with a 4 KB block size traditional caching with slab size 16 uses nearly the same total amount of
memory (128 columns in the CPs and 128 columns in the IOP caches) as does disk-directed 1/0
with slab size 32 (256 columns in the CPs and 16 columns in the IOP buffers). Comparing these
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a) Disk traffic: 1k/4k b) LU time: 1k/4k
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Figure 7: The ratio of LU-decomposition performance with 1 KB blocks to that with 4 KB blocks, in
terms of bytes of disk traffic and seconds of execution time. The ratio is expressed as a percentage.
Thus, less than 100% indicates that 1 KB was better, i.e., did less 1/O or took less time. There
are several cases, using either contiguous or random layouts, and 16-, 32-, or 128-column slab size.
For each case there are two bars, one for traditional caching (TC) and one for disk-directed 1/0

(DDIO).

a) Disk traffic: DDIO/TC with 1 KB b) LU time: DDIO/TC with 1 KB blocks
blocks
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Figure 8: Just like Figure 4, but using a 1 KB block size.

two configurations, the DDIO/TC execution-time ratio is 90% for contiguous layouts and 70% for
random layouts. Part of this improvement is because the application could make better use of
the memory to reduce I/O demands (many I/O algorithms do asymptotically less I/O given more
memory [CK93]), and part is because the larger request sizes enable disk-directed 1/O to better
optimize the 1/0.

In summary, disk-directed I/O often improved the performance of the L.U-decomposition pro-
gram. In a random layout, it was able to optimize the order of disk access within each disk-directed

request. This benefit should be even larger in larger problem sizes with larger slab sizes. It also
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a) Disk traffic: 32/16 b) LU time: 32/16
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Figure 9: The ratio of 32-column slabs to 16-column slabs, in terms of bytes of disk traffic and
seconds of execution time. Thus, less than 100% indicates that 32-column slabs were better, i.e.,

did less I/O or took less time. There are several cases, using either contiguous or random layouts,
disk-directed I/O (DDIO) or traditional caching (TC), and 1 KB, 4 KB, or 8 KB block size.

used less memory— memory that the application could use to reduce I/O demands. Furthermore,
it avoided the extraneous installation reads, unnecessary prefetches, and occasional cache mistakes
caused by traditional caching. Finally, although disk-directed 1/O never made performance worse,
despite the extraneous synchronization, it had little benefit for 4 KB blocks on contiguous layouts.
There, traditional caching was able to maintain the same performance as disk-directed 1/0 largely
because the I/O-request size (1 column) was the same as the caching unit (1 block). In a larger
problem, the request size would be larger, and either the caching unit (block size) must also be
larger or each request must span many blocks. The former would require a very large cache, and
the latter would have the effect of spreading out simultaneous multi-block requests into multiple
localities, counteracting the benefits of the contiguous layout [Kot94]. The results of experiments
with 1 KB blocks support this statement. Overall, the disk-directed file system would be the faster

choice.

6 Conclusions

Until recently most multiprocessor file systems have provided the programmer with a familiar
Unix-like interface, consisting of read, write, and seek calls, and various “modes” to control the
semantics of a shared file pointer. While this interface is comfortable to parallel programmers
familiar with sequential programming, it is inadequate for expressing their needs [KN94]. Given

this interface and the amount of interprocessor spatial locality arising from interleaving tiny requests
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from many processors, caching is essential for reasonable performance [KN94]. A file system based
on traditional caching, however, can have terrible performance [Nit92] and, as we show in this
paper, can have counter-intuitive performance characteristics (increasing the block size from 4 KB
to 8 KB, or increasing the slab size from 16 to 32 columns, sometimes decreased performance).

As we show here and in [Kot94], disk-directed I/O can lead to much better performance than
traditional caching. This paper shows that disk-directed 1/0, using a collective, high-level inter-
face, could be used effectively for an out-of-core LU-decomposition computation. The additional
synchronization of the collective interface appeared not to be a significant factor here.

In our LU-decomposition example the code needed some careful structuring to ensure that all
processes participated in all I/O requests. Clearly, a collective interface that supported subsets of
processes would reduce the need to structure the code this way (the MPI-IO proposal [CFHT94]
appears to have this support). Otherwise, any of the common collective matrix-I/O interfaces
could be adapted for use. Ultimately, more cases need to be studied to determine an appropriate
general-purpose interface.

Thus disk-directed 1/O was successful for out-of-core computations, despite the additional syn-
chronization of a collective interface. The next challenge is to define a specific interface and to

experiment with real applications.
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Availability
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The simulator source code will be available there in early 1995.
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Appendix: Raw data

Figure 10 shows the raw data from which the charts are derived. The columns are as follows, left to right:
Layout: contiguous or random

Slab: the number of columns in each processor’s slab

Block: file-system block size (and striping unit) in bytes

FS: DD (disk-directed 1/0) or TC (traditional caching)

App read: total read requests to the file system from the application, in megabytes

App wrote: total write requests to the file system from the application, in megabytes

App total: the sum of App read and App wrote

Disk read: total read requests to the disks from the file system, in megabytes

Disk wrote: total write requests to the disks from the file system, in megabytes

Disk total: the sum of Disk read and Disk wrote

inflation: the ratio of Disk total to App total, expressed as a percentage

DD/TC: the ratio of Disk total for that DD case to the corresponding TC case, expressed as a percentage
8k /4k: the ratio of Disk total for that 8k case to the corresponding 4k case, expressed as a percentage
1k/4k: the ratio of Disk total for that 1k case to the corresponding 4k case, expressed as a percentage

slab ratio: the ratio of Disk total for that case to the corresponding case with half the slab size (i.e., 32/16
or 64/32), expressed as a percentage

Seconds: total LU-decomposition time in seconds

DD/TC: the ratio of Seconds for that DD case to the corresponding TC case, expressed as a percentage
8k /4k: the ratio of Seconds for that 8k case to the corresponding 4k case, expressed as a percentage
1k/4k: the ratio of Seconds for that 1k case to the corresponding 4k case, expressed as a percentage

slab ratio: the ratio of Seconds for that case to the corresponding case with half the slab size (i.e., 32/16
or 64/32), expressed as a percentage
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Layout Slab Block FS| App read App wrote App total| Disk read Disk wrote Disk totalinflation DD/TC| 8k/4k 1k/4kslab ratiojSeconds DD/TC 8k/4k 1k/4k slab ratio
contig 16 1024 TC 2018.3  2018.3 4036.5| 2043.6 2018.3 4061.9| 100.6% 5189.8
contig 16 1024 DD 2018.3  2018.3 4036.5| 2018.3 2018.3 4036.5| 100.0%  99.4% 1339.4 25.8%
16 4096 TC 2018.3  2018.3 4036.5| 2127.2 2018.3  4145.5| 102.7% 98.0% 466.0 1113.8%
contig 16 4096 DD 2018.3 2018.3 4036.5| 2018.3 2018.3 4036.5| 100.0% 97.4% 100.0% 462.9 99.3% 289.3%
contig 16 8192 TC 2018.3  2018.3 4036.5| 1916.0 1933.3 3849.3| 95.4% 92.9% 502.6 107.9%
contig 16 8192 DD 2018.3  2018.3 4036.5| 2065.5 2034.0 4099.5| 101.6% 106.5%| 101.6% 464.5 92.4% 100.4%
32 1024 TC 1922.5 1922.5 3845.0/ 1992.6 1922.5 3915.1| 101.8% 96.4%] 5181.0 99.8%
contig 32 1024 DD 1922.5 1922.5 3845.0/ 1922.5 1922.5 3845.0| 100.0% 98.2% 95.3%| 1264.4 24.4% 94.4%
contig 32 4096 TC 1922.5 1922.5 3845.0/ 1970.2 1922.5 3892.7| 101.2% 100.6% 93.9% 423.3 1224.1% 90.8%
contig 32 4096 DD 1922.5 1922.5 3845.0/ 19225 1922.5 3845.0| 100.0% 98.8% 100.0% 95.3% 419.7  99.2% 301.2% 90.7%
contig 32 8192 TC 1922.5 1922.5 3845.0| 3442.8 1927.7 5370.5| 139.7% 138.0% 139.5%| 1139.0 269.1% 226.6%
contig 32 8192 DD 1922.5 1922.5 3845.0| 1945.0 1930.0 3875.0| 100.8%  72.2%| 100.8% 94.5% 377.8 33.2% 90.0% 81.3%
contig 64 4096 TC 1539.0 1539.0 3078.0| 1554.9 1539.0 3093.9| 100.5% 79.5% 339.0 80.1%
contig 64 4096 DD 1539.0 1539.0 3078.0| 1539.0 1539.0 3078.0| 100.0%  99.5% 80.1% 336.4 99.2% 80.2%
128 1024 TC 4.0 4.0 8.0 4.0 4.0 8.0/ 100.0% 57.1
contig 128 1024 DD 4.0 4.0 8.0 4.0 4.0 8.0/ 100.0% 100.0% 57.1 100.0%
contig 128 4096 TC 4.0 4.0 8.0 4.0 4.0 8.0/ 100.0% 100.0% 0.3% 55.4 103.2% 16.3%
contig 128 4096 DD 4.0 4.0 8.0 4.0 4.0 8.0/ 100.0% 100.0% 100.0% 0.3% 55.4 100.0% 103.2% 16.5%
contig 128 8192 TC 4.0 4.0 8.0 8.0 4.0 12.0| 150.0% 150.0% 57.1 103.1%
contig 128 8192 DD 4.0 4.0 8.0 4.0 4.0 8.0| 100.0% 66.7%| 100.0% 55.1 96.6% 99.6%
random 16 1024 TC 2018.3  2018.3 4036.5| 2049.8 2018.3  4068.1| 100.8% 11722.0
random 16 1024 DD 2018.3  2018.3 4036.5| 2018.3 2018.3 4036.5| 100.0% 99.2% 7973.8  68.0%
random 16 4096 TC 2018.3  2018.3 4036.5| 2127.2 2018.3  4145.5| 102.7% 98.1% 3254.3 360.2%
random 16 4096 DD 2018.3  2018.3 4036.5| 2018.3 2018.3 4036.5| 100.0% 97.4% 100.0% 2624.6  80.7% 303.8%
random 16 8192 TC 2018.3  2018.3 4036.5| 1916.0 1931.4 3847.3| 95.3% 92.8% 2513.9 77.2%
random 16 8192 DD 2018.3  2018.3 4036.5| 2065.5 2034.0 4099.5| 101.6% 106.6%| 101.6% 1732.2 68.9% 66.0%
random 32 1024 TC 1922.5 1922.5 3845.0/ 1970.3 1922.5 3892.8| 101.2% 95.7%] 11290.6 96.3%
random 32 1024 DD 1922.5 1922.5 3845.0/ 1922.5 1922.5 3845.0| 100.0% 98.8% 95.3%|] 7159.6 63.4% 89.8%
random 32 4096 TC 1922.5 1922.5 3845.0/ 1970.2 1922.5 3892.7| 101.2% 100.0% 93.9%] 3054.9 369.6% 93.9%
random 32 4096 DD 1922.5 1922.5 3845.0/ 19225 1922.5 3845.0| 100.0% 98.8% 100.0% 95.3%| 2280.6 74.7% 313.9% 86.9%
random 32 8192 TC 1922.5 1922.5 3845.0| 3442.8 1927.1 5369.9| 139.7% 137.9% 139.6%| 3262.7 106.8% 129.8%
random 32 8192 DD 1922.5 1922.5 3845.0/ 1945.0 1930.0 3875.0| 100.8%  72.2%| 100.8% 94.5%| 1434.1 44.0% 62.9% 82.8%
random 64 4096 TC 1539.0 1539.0 3078.0| 1554.9 1539.0 3093.9| 100.5% 79.5%] 2451.9 80.3%
random 64 4096 DD 1539.0 1539.0 3078.0| 1539.0 1539.0 3078.0| 100.0%  99.5% 80.1%| 1719.4 70.1% 75.4%
random 128 1024 TC 4.0 4.0 8.0 4.0 4.0 8.0/ 100.0% 77.4
random 128 1024 DD 4.0 4.0 8.0 4.0 4.0 8.0/ 100.0% 100.0% 68.2  88.0%
random 128 4096 TC 4.0 4.0 8.0 4.0 4.0 8.0/ 100.0% 100.0% 0.3% 60.9 127.2% 2.5%
random 128 4096 DD 4.0 4.0 8.0 4.0 4.0 8.0/ 100.0% 100.0% 100.0% 0.3% 58.7 96.4% 116.1% 3.4%
random 128 8192 TC 4.0 4.0 8.0 8.0 4.0 12.0| 150.0% 150.0% 60.2 98.9%
random 128 8192 DD 4.0 4.0 8.0 4.0 4.0 8.0] 100.0%  66.7%| 100.0% 57.0  94.8% 97.2%

ts. See the text for an explanation of columns.
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