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Abstract

New �le systems are critical to obtain good I�O performance on large multiprocessors� Sev�
eral researchers have suggested the use of collective �le�system operations� in which all processes
in an application cooperate in each I�O request� Others have suggested that the traditional low�
level interface �read� write� seek� be augmented with various higher�level requests �e�g�� read
matrix�� allowing the programmer to express a complex transfer in a single �perhaps collective�
request� Collective� high�level requests permit techniques like two�phase I�O and disk�directed
I�O to signi�cantly improve performance over traditional �le systems and interfaces� Neither
of these techniques have been tested on anything other than simple benchmarks that read or
write matrices� Many applications� however� intersperse computation and I�O to work with
data sets that cannot �t in main memory� In this paper� we present the results of experiments
with an �out�of�core� LU�decomposition program� comparing a traditional interface and �le
system with a system that has a high�level� collective interface and disk�directed I�O� We found
that a collective interface was awkward in some places� and forced additional synchronization�
Nonetheless� disk�directed I�O was able to obtain much better performance than the traditional
system�
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� Introduction

Although multiprocessor systems have increased their computational power dramatically in the last

decade� the design of hardware and software for I�O has lagged and become an increasing bottleneck

in the overall performance of parallel applications� The use of disk striping �SGM��� to access many

disks in parallel has alleviated some of the hardware limitations by providing greater capacity�

bandwidth� and throughput� Good parallel �le	system software� however� is critical to a system
s

I�O performance� and early �le systems often had disappointing performance �FPD��� Nit�
��

Recent work shows that if an application could make high	level� collective I�O requests� the

�le system can optimize I�O transfers using disk	directed I�O �Kot��� to improve performance by

orders of magnitude� In �Kot���� however� experiments were limited to simple benchmarks that

read or wrote matrices� In this paper we evaluate the performance of disk	directed I�O on a much

more complex program� an out	of	core LU	decomposition program� This program allows us to

understand the performance bene�ts of disk	directed I�O in the context of a full program� one that

performs computation� reads and writes the same �le �indeed� rereads and rewrites the same �le

many times�� and has interprocess synchronization�

In the next section we provide more detailed background information� Section � discusses the

LU	decomposition program� In Section � we describe a set of experiments used to reinforce our

discussion� and Section � provides the results� We conclude with commentary on the advantages

and disadvantages of high	level� collective requests� and on the underlying technique of disk	directed

I�O�

� Background

File systems� There are many parallel �le systems today� including Bridge �DSE���� Intel CFS

�Pie���� Intel PFS �Roy���� IBM Vesta �CF���� nCUBE �DdR�
�� TMC sfs �LIN���� BGST����

Hurricane File System �Kri���� and SPIFFI �FBD���� There are also several systems intended

for workload clusters� such as PIOUS �MS��� and VIP	FS �dHC���� All of these systems decluster

�le data across many disks to provide parallel access to the data of any �le�

Workload� The CHARISMA project traced production parallel scienti�c computing workloads

on an Intel iPSC���� �KN��� and on a TMC CM	� �PEK���� to characterize their �le	system

activity� In both cases� applications accessed large �les �megabytes or gigabytes in size� using






surprisingly small requests �on the Intel� ��� of read requests were for less than 
�� bytes�� On

further examination� we discovered that most of the �les were accessed in complex yet highly regular

patterns �NK���� most likely due to accessing multidimensional matrices�

Interfaces� Most parallel �le systems present the traditional abstraction of a �le as a sequence

of bytes with Unix interface semantics� and add a few extensions to control the behavior of an

implicit �le pointer shared among the processes� This low	level interface� which restricts each

request to a contiguous portion of the �le� is one reason for the predominance of small requests

found by the CHARISMA project� Higher	level interfaces� such as specifying a strided series of

requests �NK��� Cra��� or accessing data through a mapping function �CF��� DdR�
� Kot��� pro	

vide valuable semantic information to the �le system� which can then be used for optimization

purposes� Interfaces that allow the programmer to express collective I�O activity� in which all

processes cooperate to make a single� large request� provide even more semantic information to the

�le system�

Unfortunately� few multiprocessor �le systems provide a collective interface� CM	Fortran for the

CM	� does provide a collective	I�O interface� which leads to high performance through cooperation

among the compiler� run	time� operating system� and hardware� The MPI message	passing interface

may soon be extended to include I�O �CFH����� including collective I�O� Finally� there are several

libraries for collective matrix I�O �GGL��� BdC��� BBS���� SW����

Two�phase I�O� Two	phase I�O is a technique for optimizing data transfer given a high	level�

collective interface �dBC���� A library implementing the interface breaks the request into two

phases� an I�O phase and a redistribution phase� When reading� the compute processors cooperate

to read a matrix in a �conforming distribution�� chosen for best I�O performance� and then the data

is redistributed to its ultimate destination� When writing� the data is �rst redistributed and then

written in a conforming distribution� There are no published performance results for two	phase

writing� or for an out	of	core application using two	phase I�O�

Disk�directed I�O� Disk	directed I�O is a technique for optimizing data transfer given a high	

level� collective interface �Kot���� In this scheme� the complete collective� high	level request is passed

to the I�O processors� which examine the request� make a list of disk blocks to be transferred� sort

the list� and then use double	bu�ering and special remote	memory �get� and �put� messages to

pipeline the transfer of data between compute	processor memories and the disks� Compared to a
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traditional system with caches at the I�O processors� this strategy optimizes the disk accesses� uses

less memory �no cache at the I�O processors�� and has less CPU and message	passing overhead�

In experiments with reading and writing one	 and two	dimensional matrices� disk	directed I�O

was as much as �� times faster than traditional caching in some access patterns� and was never

slower �Kot����

� LU decomposition

LU decomposition represents the bulk of the e�ort in one technique for solving linear systems of

equations� An N �N matrix M is decomposed into two matrices� a lower	triangular matrix L and

an upper	triangular matrix U � such that LU � M � Typically� these two triangular matrices are

stored in one N � N array� occupying disjoint elements of the array� Indeed� the decomposition

can be done in place� overwriting M � A sequential algorithm �with no pivoting� looks like this�

for i � � to N��

for j � i�� to N �� update rows i�� �� N

mult�j� � M�j�i� � M�i�i�

for k � i�� to N �� each row j� update cols i�� �� N

M�j�k� � M�j�k� � mult�j� 	 M�i�k�

end

end

end

One simple parallelization of this algorithm �although not the best� see �WGWR��� for a better

algorithm� is to distribute responsibility for columns of the matrix among P processors in a cyclic

pattern� that is� column k is handled by processor k mod P �see Figure �� In iteration i� the

multipliers �called mult�j� above� are computed from column i by processor i mod P and then

broadcasted to the other processors� Then each processor updates the columns for which it is

responsible� only in the last few iterations is any processor idle�

When the matrix is moderately large� that is� too large to �t in memory but small enough so that

each processor
s memory can hold at least one column of the matrix� the processors repeatedly read

a subset of their columns from the �le� update those columns� and then write those columns back to

the �le� Thus� it makes sense to store the matrix in column	major order� We call each processor
s

subset of columns a �slab�� Note that because of the cyclic distribution any one processor
s slab

is not contiguous in the �le� but that corresponding sets of slabs for all processors collectively

represent a contiguous set of bytes in the �le�
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first slab second slab

16 columns, 4 processors

2 columns per slab per processor

Figure �� Example of column	cyclic distribution of �� columns across four processors� Each proces	
sor is represented here by a di�erent shade of gray� SLAB COLS is 
 here� meaning each processor
allocates space for two columns in main memory� The combined slab size is eight columns�

The code for parallel� out	of	core LU	decomposition �based on that in �TBC���� is shown in

Figure 
� There are several things to note about this program� First� note the optimization to split

the outer loop into two loops� with the I�O pulled out of the second loop� The second loop begins

once the remaining columns all �t in memory� eliminating many unnecessary I�O transfers� indeed�

when the entire matrix �ts in memory the �rst loop is ignored and we need only load and store

the matrix once� Second� the nodes synchronize as part of the multiplier calculation� because one

node computes the multipliers and broadcasts them to the other nodes� �In my implementation

this broadcast involves a barrier synchronization�� Third� the code is written so that all processors

make the same number of iterations through all loops� even though in the last few iterations some

processors will have ncols � 
� so that collective communication and I�O routines can be used if

desired� The performance cost of extra iterations is negligible� because those processors with fewer

iterations eventually wait for those with more iterations anyway� Finally� the program explicitly

waits for all pending writes to fully complete �sync��� before stopping the clock�

When based on a traditional �le	system interface� the function LU�read looks like that in

Figure �a� LU�write would look similar� Given a collective interface� these functions would be

replaced as shown in Figure �b� Note that no synchronization is necessary with the traditional
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�� run simultaneously by all P processors
�� �le initially contains N � N matrix M in column major order
�� SLAB COLS is the number of columns per processor per slab
float M local�N��SLAB COLS�� �� this processor�s portion of a slab of M�N��N�
float multipliers�N�� �� local copy of multipliers
int colsInMem � P � SLAB COLS� �� number of columns in all P memories

barrier��� start clock�

for �i � � to N 	 colsInMem� f
my first � the first column I will handle� �� processor i mod P handles column i

ncols � the number of columns I will handle
 usually SLAB COLS�

LU read�M local
 my first
 ncols�� �� get that slab from the �le
if �I am responsible for column i� f

find the N	i multipliers�

broadcast them to all other nodes�

g else f
receive the broadcasted multipliers�

g
update the ncols columns in M local using multipliers�

LU write�M local
 my first
 ncols�� �� and write the slab back

�� now update the rest of the columns
leftmost � i�

�� everybody loop until everybody is done
while ��leftmost �� colsInMem� �� N� f

my first �� colsInMem�

ncols � the number of columns I will handle

�usually SLAB COLS
 but could be fewer
 or even ���

LU read�M local
 my first
 ncols�� �� get that slab from the �le
update the ncols columns in M local using multipliers�

LU write�M local
 my first
 ncols�� �� and write the slab back
g

g

�� ok� now do the colsInMem columns not handled above
my first � the first column I will handle�

ncols � the number of columns I will handle �as few as ���

LU read�M local
 my first
 ncols�� �� get that �nal slab from the �le
for �i � i to N	�� f

if �I am responsible for column i� f
find the N	i multipliers�

broadcast them to all other nodes�

g else f
receive the broadcasted multipliers�

g
update the columns in M local using multipliers�

g
LU write�M local
 my first
 ncols�� �� and write the slab back

sync��� �� wait for all disk I�O to complete

barrier��� stop clock�

Figure 
� Pseudo	code for parallel� out	of	core LU	decomposition program�
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interface� whereas the collective interface must synchronize all processors for disk	directed I�O�

This �extraneous� synchronization would in general accentuate temporary load imbalances� but it

can often allow dramatically better I�O performance�

a� the traditional read�write�seek interface�
LU read�array� first col� ncols�

f
int col bytes � N � sizeof�float�� �� size of a column
int col � first col�

�� loop through the desired number of columns
for �i � � to ncols� f

seek��col��� � col bytes�� �� �nd this column in the �le
read�array� col bytes�� �� read one column

array 	� col nbytes� �� skip to next column
col 	� P� �� column cyclic

g
g

b� a collective interface with disk�directed I�O support�
LU read�array� first col� ncols�

f
barrier���

first col � min�first col� over all processors�

ncols � sum�ncols� over all processors�

disk�directed read of �first col� through �first col 	 ncols � ���

barrier���

g

Figure �� Pseudo	code for LU read �LU write is similar��

Finally� we note that code like that in Figure 
 could be written by hand� incorporated in a

parallel matrix library �GGL��� BdC��� BBS���� SW���� or generated by a smart compiler �CC���

TBC��� BTC����

� Experiments

To gain a better understanding of the bene�ts of disk	directed I�O to an application like LU de	

composition� we ran several experiments� In these experiments� we ran the program in Figure 


with both the �traditional caching� �le system �Figure �a� and the disk	directed �le system �Fig	

ure �b�� on top of our parallel �le	system simulator �Kot���� This simulator ran on top of the
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Proteus parallel	architecture simulator �BDCW���� which in turn ran on a DEC	���� workstation�

We con�gured Proteus as in �Kot���� except as noted below�

Simulation overhead limited our experiments to decomposing a ��
� � ��
� matrix of single	

precision numbers� using eight compute processors �CPs�� eight I�O processors �IOPs�� and eight

disks �one on each IOP�� This matrix only represented � MB of data� but when using the smallest

slab size ��� columns per CP� the algorithm moved nearly � GB between disk and memory� Note

that each column required � KB� Our �le systems striped the �le across all eight disks by � KB�

� KB� or � KB blocks� The � KB blocks represent an �easy� case� where each full	column read

and write operation touches precisely one block� and there are no shared blocks or partial	block

requests� The � KB blocks represent a �likely� case� where each column requires several blocks�

With � KB blocks a full	column transfer touches only half of a block� testing the ability of the

cache to manage the subsequent spatial locality� and testing the e�ect of the extraneous disk reads

needed when writing only half a block� Within each disk the blocks were laid out either randomly

or contiguously� representing two interesting endpoints in the choice of block layouts�

We chose a slab size of ��� �
� or �
� columns per processor� With � CPs� these choices re�ect

total application memory sizes of �
�� 
��� or ��
� columns� In the last case� the matrix �t entirely

in memory and so only one round of reading and writing was needed�

In the traditional	caching �le system� the IOPs allocated two one	block bu�ers per compute

processor per disk� or 
 � � � � � �
� blocks of total cache� holding �
� �
�� or 
�� columns

depending on the block size� While this cache may seem small� it is consistent with the size of the

system and problem� and with our previous experiments �Kot���� In the disk	directed �le system�

the IOPs allocated two one	block bu�ers per disk �for double	bu�ering each disk�� or �� blocks of

total bu�er space� Note that disk	directed I�O
s bu�ers used an asymptotic order	of	magnitude

less memory than did traditional caching
s cache�

� Results

We concentrate on two primary metrics in our experiments� the amount of disk I�O �in bytes� and

the total execution time �in seconds�� Given our parameters� however� the values of these measures

spanned several orders of magnitude �e�g�� with �
�	column slabs the matrix �ts in memory and

the program causes � MB of disk tra�c over about one minute� whereas with smaller slabs the

program moves the matrix in and out of memory and causes ��� GB of tra�c lasting for nearly

an hour�� Furthermore� insights come by comparing the performance of two con�gurations� rather
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a) Disk traffic: DDIO/TC with 4 KB
blocks 

0% 20% 40% 60% 80% 100%

contig,16

contig,32

contig,64

contig,128

random,16

random,32

random,64

random,128

b) LU time: DDIO/TC with 4 KB blocks  
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random,128

Figure �� The ratio of disk	directed I�O �DDIO� to traditional caching �TC�� in terms of bytes of
disk tra�c and seconds of execution time� The ratio is expressed as a percentage� Thus� less than
���� indicates that DDIO was better� i�e�� did less I�O or took less time� There are several cases�
using either contiguous or random layouts� and ��	� �
	� ��	� or �
�	column slab size� All used a
� KB block size�

than from the absolute performance of any one con�guration� Thus� we normalize and compare by

charting the ratio of a measure between one con�guration and another��

Figure � displays the ratio of disk	directed I�O
s performance to traditional caching
s perfor	

mance� for a variety of con�gurations using � KB blocks� Figure �a focuses on the disk	I�O tra�c�

Note that the amount of �le	system tra�c generated by the LU	decomposition program depended

only on the slab size� and by using the ratio we normalize for the di�erence between slab sizes so

that any visible di�erences are due to di�erences in the way the �le systems use the disks� Note that

both �le systems caused about the same amount of disk I�O� with the traditional caching system

occasionally making mistakes that caused a little extra I�O� Figure �b shows the total execution

time� and paints a di�erent picture� Disk	directed I�O was never slower� and was faster when using

the random	blocks layout due to its ability to optimize disk	head movement� With the exception

of �
�	column slabs� the improvement of disk	directed I�O over traditional caching increased with

slab size� because the larger disk	directed requests permitted sorting over a larger set of data� With

�
�	column slabs the entire matrix �t in memory� the application was compute	bound� and thus

the improvements had little e�ect on execution time�

In Figure � we examine the performance when the block size was changed from � KB to � KB�

This change increases the disk and network transfer unit� changes the striping unit� and doubles

the size of traditional caching
s cache� The larger block size hardly a�ected disk	directed I�O
s disk

�See the Appendix for the raw data�
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a) Disk traffic: 8k/4k 
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DDIO TC

b) LU time: 8k/4k 
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contig,32
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random,32
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DDIO TC

Figure �� The ratio of LU	decomposition performance with � KB blocks to that with � KB blocks� in
terms of bytes of disk tra�c and seconds of execution time� The ratio is expressed as a percentage�
Thus� less than ���� indicates that � KB was better� i�e�� did less I�O or took less time� There
are several cases� using either contiguous or random layouts� and ��	� �
	� or �
�	column slab size�
For each case there are two bars� one for traditional caching �TC� and one for disk	directed I�O
�DDIO��

tra�c� but �despite the larger caches� dramatically increased the amount of tra�c for traditional

caching in some cases� �The ��	column slabs were an exception� because each slab �t entirely into

the cache� and the necessary blocks remained in the cache between the read and write phases of

each iteration�� The additional tra�c was caused by the � KB �column� writes to � KB blocks�

which caused a disk read when the block was not resident in the cache� Disk	directed I�O� with

its higher	level perspective� recognized that the blocks were to be fully written and avoided these

�installation� reads�

Figure �b shows the performance impact of traditional caching
s excessive installation reads�

Disk	directed I�O was able to make e�cient use of � KB blocks to obtain better performance�

despite a comparable amount of disk tra�c� Traditional caching had mixed results� With �
�	

column slabs� the I�O time was only a small part of execution time� so the performance impact was

small� with �
	column slabs� the e�ect was ampli�ed in the contiguous layout because the extra

I�O caused many costly seeks� and was counteracted in the random layout by the reduction in seeks

needed to reach half as many blocks�

Figure � compares disk	directed I�O and traditional caching on � KB blocks� using the same

data as Figure � and in the same style as Figure �� Here we see the clear dominance of disk	directed

I�O in terms of execution time� despite the extraneous synchronization and �in some cases� extra

disk I�O� Indeed� unless the entire matrix �t in memory ��
�	column slabs� or the slab size was
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a) Disk traffic: DDIO/TC with 8 KB
blocks 
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b) LU time: DDIO/TC with 8 KB blocks  
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Figure �� Just like Figure �� but using an � KB block size�

limited to the cache size ���	column slabs�� disk	directed I�O was 
�� times faster than traditional

caching�

In larger� more realistic problem sizes� that is� with larger matrices� the column size would be

much larger than the block size� rather than smaller� In Figure � we examine the situation when

the block size was � KB� so that each column spans four blocks �spread over four disks�� The

amount of disk tra�c was nearly unchanged� but the execution times were remarkably di�erent�

The compute	bound �
�	column slab cases were barely a�ected� but all other cases were drastically

slower� Much of this slowdown was due to the increased overhead of a smaller transfer unit� In the

contiguous layout the traditional caching system caused much more disk	head movement because

the each CP was active in a slightly di�erent region of the �le� Ultimately� as shown in Figure ��

disk	directed I�O was much faster than traditional caching in the di�cult� but realistic cases where

the the matrix did not �t in memory and the column size was larger than the block size�

Figure � compares the tra�c and execution speed of �
	column slabs with ��	column slabs�

The LU	decomposition program causes less �le	system tra�c with �
	column slabs� as is re�ected

in Figure �a� The chart again shows the cost of installation reads in traditional caching with � KB

blocks� The contiguous layout accentuates the cost of the extraneous I�O� because the additional

seeks remove many of the bene�ts of contiguous layout �Figure �b��

Finally� traditional caching uses more memory on each IOP than does disk	directed I�O� Indeed�

with a � KB block size traditional caching with slab size �� uses nearly the same total amount of

memory ��
� columns in the CPs and �
� columns in the IOP caches� as does disk	directed I�O

with slab size �
 �
�� columns in the CPs and �� columns in the IOP bu�ers�� Comparing these
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a) Disk traffic: 1k/4k  
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b) LU time: 1k/4k  
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Figure �� The ratio of LU	decomposition performance with � KB blocks to that with � KB blocks� in
terms of bytes of disk tra�c and seconds of execution time� The ratio is expressed as a percentage�
Thus� less than ���� indicates that � KB was better� i�e�� did less I�O or took less time� There
are several cases� using either contiguous or random layouts� and ��	� �
	� or �
�	column slab size�
For each case there are two bars� one for traditional caching �TC� and one for disk	directed I�O
�DDIO��

a) Disk traffic: DDIO/TC with 1 KB
blocks 
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b) LU time: DDIO/TC with 1 KB blocks  
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Figure �� Just like Figure �� but using a � KB block size�

two con�gurations� the DDIO�TC execution	time ratio is ��� for contiguous layouts and ��� for

random layouts� Part of this improvement is because the application could make better use of

the memory to reduce I�O demands �many I�O algorithms do asymptotically less I�O given more

memory �CK����� and part is because the larger request sizes enable disk	directed I�O to better

optimize the I�O�

In summary� disk	directed I�O often improved the performance of the LU	decomposition pro	

gram� In a random layout� it was able to optimize the order of disk access within each disk	directed

request� This bene�t should be even larger in larger problem sizes with larger slab sizes� It also
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a) Disk traffic: 32/16 
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b) LU time: 32/16 
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Figure �� The ratio of �
	column slabs to ��	column slabs� in terms of bytes of disk tra�c and
seconds of execution time� Thus� less than ���� indicates that �
	column slabs were better� i�e��
did less I�O or took less time� There are several cases� using either contiguous or random layouts�
disk	directed I�O �DDIO� or traditional caching �TC�� and � KB� � KB� or � KB block size�

used less memory� memory that the application could use to reduce I�O demands� Furthermore�

it avoided the extraneous installation reads� unnecessary prefetches� and occasional cache mistakes

caused by traditional caching� Finally� although disk	directed I�O never made performance worse�

despite the extraneous synchronization� it had little bene�t for � KB blocks on contiguous layouts�

There� traditional caching was able to maintain the same performance as disk	directed I�O largely

because the I�O	request size �� column� was the same as the caching unit �� block�� In a larger

problem� the request size would be larger� and either the caching unit �block size� must also be

larger or each request must span many blocks� The former would require a very large cache� and

the latter would have the e�ect of spreading out simultaneous multi	block requests into multiple

localities� counteracting the bene�ts of the contiguous layout �Kot���� The results of experiments

with � KB blocks support this statement� Overall� the disk	directed �le system would be the faster

choice�

� Conclusions

Until recently most multiprocessor �le systems have provided the programmer with a familiar

Unix	like interface� consisting of read� write� and seek calls� and various �modes� to control the

semantics of a shared �le pointer� While this interface is comfortable to parallel programmers

familiar with sequential programming� it is inadequate for expressing their needs �KN���� Given

this interface and the amount of interprocessor spatial locality arising from interleaving tiny requests

��



from many processors� caching is essential for reasonable performance �KN���� A �le system based

on traditional caching� however� can have terrible performance �Nit�
� and� as we show in this

paper� can have counter	intuitive performance characteristics �increasing the block size from � KB

to � KB� or increasing the slab size from �� to �
 columns� sometimes decreased performance��

As we show here and in �Kot���� disk	directed I�O can lead to much better performance than

traditional caching� This paper shows that disk	directed I�O� using a collective� high	level inter	

face� could be used e�ectively for an out	of	core LU	decomposition computation� The additional

synchronization of the collective interface appeared not to be a signi�cant factor here�

In our LU	decomposition example the code needed some careful structuring to ensure that all

processes participated in all I�O requests� Clearly� a collective interface that supported subsets of

processes would reduce the need to structure the code this way �the MPI	IO proposal �CFH����

appears to have this support�� Otherwise� any of the common collective matrix	I�O interfaces

could be adapted for use� Ultimately� more cases need to be studied to determine an appropriate

general	purpose interface�

Thus disk	directed I�O was successful for out	of	core computations� despite the additional syn	

chronization of a collective interface� The next challenge is to de�ne a speci�c interface and to

experiment with real applications�
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Many of the references below are available via the WWW at URL
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Appendix� Raw data

Figure �� shows the raw data from which the charts are derived� The columns are as follows� left to right


Layout� contiguous or random

Slab� the number of columns in each processor�s slab

Block� �le�system block size �and striping unit� in bytes

FS� DD �disk�directed I�O� or TC �traditional caching�

App read� total read requests to the �le system from the application� in megabytes

App wrote� total write requests to the �le system from the application� in megabytes

App total� the sum of App read and App wrote

Disk read� total read requests to the disks from the �le system� in megabytes

Disk wrote� total write requests to the disks from the �le system� in megabytes

Disk total� the sum of Disk read and Disk wrote

in�ation� the ratio of Disk total to App total� expressed as a percentage

DD�TC� the ratio of Disk total for that DD case to the corresponding TC case� expressed as a percentage

�k��k� the ratio of Disk total for that �k case to the corresponding �k case� expressed as a percentage

�k��k� the ratio of Disk total for that �k case to the corresponding �k case� expressed as a percentage

slab ratio� the ratio of Disk total for that case to the corresponding case with half the slab size �i�e�� �����
or ������� expressed as a percentage

Seconds� total LU�decomposition time in seconds

DD�TC� the ratio of Seconds for that DD case to the corresponding TC case� expressed as a percentage

�k��k� the ratio of Seconds for that �k case to the corresponding �k case� expressed as a percentage

�k��k� the ratio of Seconds for that �k case to the corresponding �k case� expressed as a percentage

slab ratio� the ratio of Seconds for that case to the corresponding case with half the slab size �i�e�� �����
or ������� expressed as a percentage

��
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Figure ��� Raw data for LU	decomposition experiments� See the text for an explanation of columns�
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