
CS��������

Prefetching and Caching Techniques

in File Systems
for MIMD Multiprocessors

David F� Kotz

Department of Computer Science

Duke University

Durham� North Carolina �����

April �� ����

David Kotz
© Copyright 1991 by the author�

�

NOTE	 this report is meant to be printed �
sided� For best e�ect� make a copy this report using
a copier that can produce �
sided output�

You might want to substitute a blank page for this page�

Prefetching and Caching Techniques

in File Systems

for MIMD Multiprocessors

David F� Kotz

April �� ����

Supervised by Carla S� Ellis

Dissertation submitted in partial ful�llment
of the requirements for the degree

of Doctor of Philosophy
in the Department of Computer Science

in the Graduate School of
Duke University

This document is a reformatted version of the disseration� and equivalent in content�

Copyright c� ���� by David F� Kotz

All rights reserved

Abstract

The increasing speed of the most powerful computers� especially multiprocessors� makes it dicult
to provide sucient I�O bandwidth to keep them running at full speed for the largest problems�
Trends show that the di�erence in the speed of disk hardware and the speed of processors is
increasing� with I�O severely limiting the performance of otherwise fast machines� This widening
access
time gap is known as the �I�O bottleneck crisis�� One solution to the crisis� suggested by
many researchers� is to use many disks in parallel to increase the overall bandwidth�

This dissertation studies some of the �le system issues needed to get high performance from
parallel disk systems� since parallel hardware alone cannot guarantee good performance� The
target systems are large MIMD multiprocessors used for scienti�c applications� with large �les
spread over multiple disks attached in parallel� The focus is on automatic caching and prefetching
techniques� We show that caching and prefetching can transparently provide the power of parallel
disk hardware to both sequential and parallel applications using a conventional �le system interface�
We also propose a new �le system interface �compatible with the conventional interface� that could
make it easier to use parallel disks e�ectively�

Our methodology is a mixture of implementation and simulation� using a software testbed that
we built to run on a BBN GP���� multiprocessor� The testbed simulates the disks and fully
implements the caching and prefetching policies� Using a synthetic workload as input� we use the
testbed in an extensive set of experiments� The results show that prefetching and caching improved
the performance of parallel �le systems� often dramatically�

i

ii

Acknowledgements

Needless to say� a Ph�D� cannot be obtained without the support of many other people� The
signi�cance of my parents� love� encouragement� and support cannot be understated� having helped
me through twenty years of schooling�

My advisor Carla Ellis has been a wonderful mentor� colleague� and yes� �mom�� over the last
four years� She has guided me into the world of experimental research� and through many dicult
new experiences� She has eased me through my failures and encouraged my successes� Best of all�
she has allowed me �exibility while still cracking the whip when I needed it�

Pamela Jenkins has been a solid support for me throughout� She has helped me keep my sanity�
boosted my motivation when it failed� and shared all the highs and lows of a graduate student�s
life� In particular� her caring and incredible strength got me through the roughest period of my
life� recovering from a broken neck�

Thanks to everyone in the department for their encouragement while I walked around with a
�halo� neck brace� looking like an alien in a bad sci
� movie� Thanks especially to all of my friends
in the department� including Owen� Vick� Rick� and many others� What would life be without
wasting time in Owen�s oce� on frisbee golf expeditions� or at lunch
time bridge games�

Thanks to the BUG group and Rick Floyd for helping with Chapter �� and for listening to
many practice talks� Thanks to my committee for their helpful suggestions� Finally� thanks to
the organizations that paid the tuition and put food on my table	 this research was supported by
an MCNC graduate fellowship� two NSF research assistantships �under grants CCR������� and
CCR��������� and two DARPA�UMIACS�NASA Parallel Processing Research Assistantships�

iii

iv

Contents

Abstract i

Acknowledgements iii

� Introduction �
��� The I�O Crisis �
��� I�O Parallelism as a Solution �
��� How to Use Parallel I�O �

� Literature Survey �
��� Parallel I�O Hardware �

����� Commercial Products �
��� Caching �
��� Prefetching �

����� Prefetching in Disk Caches �
����� Prepaging in Virtual Memory ��
����� Prefetching in Memory Caches ��
����� Prefetching Summary ��

��� File System Workload ��
��� File System Interface ��

� Models and Assumptions ��

��� Workload ��
����� Parallel File Access Patterns ��

��� Processor and I�O Architecture ��
��� I�O Architecture ��
��� File System Control ��

� Methods ��
��� The RAPID
Transit Testbed ��

����� Cache Management ��
����� Prefetching Issues ��
����� Workload ��
����� Experimental Parameters ��
����� Measures ��
����� The Ideal Execution Time ��

��� The Bene�ts of Caching Alone ��

v

vi CONTENTS

� The Potential of Prefetching ��
��� Prefetching Support for One Processor ��
��� Prefetching in Multi
process Patterns ��

����� Average Block Read Time and Hit Ratio ��
����� E�ect on the Total Execution Time ��
����� The Balance between Computation and I�O ��
����� Attempts to Improve Prefetching ��
����� The Importance of Synchronization Points ��
����� Di�erences Between the Patterns ��
����� The High Cost of Prefetching Overhead ��
����� Balancing the Bene�ts of Prefetching ��
����� Summary of Multi
process prefetching ��

� Automatic Prediction in Local Patterns ��
��� Introduction ��
��� The Predictors ��

����� OBL � One
Block Look
ahead ��
����� IBL � In�nite
Block Look
ahead ��
����� PORT � Portion Recognition ��
����� ADAPT � Adaptive ��
����� IOBL � IBL�OBL ��
����� IPORT � IBL�PORT ��
����� IOPORT � IBL�OBL�PORT ��

��� Experiments and Methods ��
��� Results and Discussion for each Pattern ��

����� Choosing a General
purpose Predictor ��
����� Anomalous Cases ��

��� Overhead ��
��� The Sensitivity of PORT Predictors to the MaxDist Parameter � � � � � � � � � � � � ��
��� Conclusions ��

� Automatic Prediction in Global Patterns ��
��� Introduction ��
��� Theory ��

����� Assumptions ��
����� Zones of Activity ��
����� Bounding the Future Zone ��

��� The GAPS Predictor ��
����� The Overall Plan ��
����� Watch Mode ��
����� Continuation Mode ��
����� Prefetching ��

��� Implementation of the GAPS Predictor ��
����� Watch Mode ��
����� Random Mode ��
����� Determining maxjump and MaxDist ��
����� Continuation Mode ��
����� Prefetching ��

CONTENTS vii

��� Other Global Predictors ��
��� Experiments and Results ��

����� Performance of the Global Predictors ��
����� GAPS vs� RGAPS ��
����� Accuracy ��
����� Overhead ��
����� The E�ect of MaxDist ��
����� The E�ect of Portion Length ��

��� Using Both Global and Local Predictors ���
��� Conclusion ���

� E	ect of Architectural and Workload Parameters �
�
��� Varying the Record Size ���

����� Experiments ���
����� Results and Discussion ���
����� Conclusions ���

��� Varying the Cache Size ���
����� Experiments ���
����� Results and Discussion ���
����� Conclusions ���

��� Varying the Disk
Access Time ���
����� Experiments ���
����� Results and Discussion ���
����� Conclusions ���

��� Varying the Number of Disks ���
����� Experiments and Results ���
����� Conclusions ���

��� Varying the Number of Processors ���
����� Experiments ���
����� Results and Discussion ���
����� Scaling both Disks and Processors ���
����� Conclusions ���

��� Overall Conclusions ���

� Bu	ering for Write Access ���

��� Introduction ���
��� Methods ���
��� Experiments ���
��� Results ���

����� Cache
size Variation ���
����� Record
size Variation ���
����� The WriteFree Method ���

��� Conclusion ���

�
 The File System Interface ���
���� The Conventional Interface ���
���� Our Proposed Interface ���

������ Concepts ���

viii CONTENTS

������ Implications ���
������ Examples	 Our Access Patterns ���

���� Additional Semantic Information ���
������ Types of Information ���
������ Mechanisms ���

���� Related Work ���
������ Interface ���
������ Hints ���

���� Summary ���

�� Conclusions and Future Work ���

���� Summary of Results ���
������ Single
Process Access Patterns ���
������ Read
only Parallel Access Patterns ���
������ Write
only Access Patterns ���
������ Interface ���

���� Future Work ���
������ Techniques ���
������ Workload ���
������ Architecture Changes ���
������ Multiple Files ���
������ Reliability ���
������ Implementation ���

���� Conclusion ���

Glossary ���

Biography ���

List of Figures

��� Categories of File Access Patterns ��
��� Parallel Independent Disks ��

��� Structure of the Testbed ��
��� De�nition of Prefetch Overrun ��
��� Executions of a Parallel Computation ��

��� Change in Average Block Read Time ��
��� Change in Cache Hit Ratio ��
��� Hits and Unready Cache Hits ��
��� The Ready Hit Ratio ��
��� The Average Hit
wait time ��
��� Change in Disk Response Time ��
��� Change in Total Execution Time ��
��� Dependence of Total Execution Time on Read Time � � � � � � � � � � � � � � � � � � ��
��� Dependence of Total Execution Time on Hit Ratio ��
���� E�ect of Computation on Read Time and Total Execution Time � � � � � � � � � � � ��

��� Local predictors � lw ��
��� Local predictors � lw with computation ��
��� Local predictors � lfp ��
��� Local predictors � lfp with computation ��
��� Local predictors � lrp ��
��� Local predictors � lrp with computation ��
��� Local predictors � rnd ��
��� Local predictors � seg ��
��� Local predictors � seg with computation ��
���� Local predictors � seglong ��
���� Local predictors � seglong with computation ��
���� Deviation from the best predictor ��
���� Deviation from NONE predictor ��
���� Local predictors � Noti�cation times ��

��� The three zones of activity ��
��� GAPS state diagram ��
��� Example of slope �t in GAPS ��
��� Global predictors � gw ��
��� Global predictors � lw ��
��� Global predictors � rnd ��

ix

x LIST OF FIGURES

��� Global predictors � gfp ��
��� Global predictors � gfp with computation ��
��� Global predictors � grp ��
���� Global predictors � grp with computation ��
���� Comparing GAPS and RGAPS ��
���� Waste rate for GAPS and RGAPS ��
���� GAPS noti�cation time components ��
���� RGAPS noti�cation time components ��
���� MaxDist variation � grp ��
���� MaxDist variation � grp with computation ��
���� Portion
length variation � gfp ��
���� Portion
length variation � grp ���

��� Varying the record size � lfp ���
��� Varying the record size � lw ���
��� Varying the record size � seg ���
��� Varying the record size � gfp ���
��� Varying the record size � grp ���
��� Varying the record size � gw ���
��� Varying the record size � rnd ���
��� Varying the cache size � lfp ���
��� Varying the cache size � lrp ���
���� Varying the cache size � seg ���
���� Varying the cache size � gfp ���
���� Varying the cache size � grp ���
���� Varying the cache size � gw ���
���� Varying the disk
access time � gfp ���
���� Varying the disk
access time � grp ���
���� Varying the disk
access time � lfp ���
���� Varying the disk
access time � lrp ���
���� Varying the disk
access time � lw ���
���� Varying the disk
access time � seg ���
���� Varying the disk
access time � gfp with computation � � � � � � � � � � � � � � � � � ���
���� Varying the disk
access time � gfp with computation� no synchronization � � � � � � ���
���� Varying the disk
access time � lfp with computation � � � � � � � � � � � � � � � � � ���
���� Varying the disk
access time � lrp with computation � � � � � � � � � � � � � � � � � ���
���� Varying the disk
access time � lw with computation � � � � � � � � � � � � � � � � � � ���
���� Varying the number of disks � gfp ���
���� Varying the number of disks � grp ���
���� Varying the number of disks � lfp ���
���� Varying the number of disks � lrp ���
���� Varying the number of disks � lw ���
���� Varying the number of disks � rnd ���
���� Varying the number of disks � gfp with computation � � � � � � � � � � � � � � � � � ���
���� Varying the number of disks � grp with computation � � � � � � � � � � � � � � � � � ���
���� Varying the number of disks � lfp with computation � � � � � � � � � � � � � � � � � ���
���� Varying the number of disks � lrp with computation � � � � � � � � � � � � � � � � � ���
���� Varying the number of disks � lw with computation � � � � � � � � � � � � � � � � � � ���

LIST OF FIGURES xi

���� Varying the number of disks � rnd with computation � � � � � � � � � � � � � � � � � ���
���� Varying the number of processors � gfp ���
���� Varying the number of processors � grp ���
���� Varying the number of processors � lfp ���
���� Varying the number of processors � lrp ���
���� Varying the number of processors � lw ���
���� Varying the number of processors � seg ���
���� Varying the number of processors � rnd ���
���� Varying the number of processors � gfp with computation � � � � � � � � � � � � � � ���
���� Varying the number of processors � grp with computation � � � � � � � � � � � � � � ���
���� Varying the number of processors � lfp with computation � � � � � � � � � � � � � � ���
���� Varying the number of processors � lrp with computation � � � � � � � � � � � � � � ���
���� Varying the number of processors � lw with computation � � � � � � � � � � � � � � � ���
���� Varying the number of processors � seg with computation � � � � � � � � � � � � � � ���
���� Varying the number of processors � rnd with computation � � � � � � � � � � � � � � ���

��� Cache
size variation for gw write ���
��� Cache
size variation for gw write with computation � � � � � � � � � � � � � � � � � � ���
��� Cache
size variation for lw� write ���
��� Cache
size variation for lw� write with computation � � � � � � � � � � � � � � � � � � ���
��� Cache
size variation for seg write ���
��� Cache
size variation for seg write with computation � � � � � � � � � � � � � � � � � � ���
��� Record
size variation for gw write ���
��� Record
size variation for lw� write ���
��� Record
size variation for seg write ���
���� RU
set
size variation for WriteFree ���

xii LIST OF FIGURES

List of Tables

��� No
cache demonstration for read
only patterns ��
��� No
cache demonstration for write
only patterns ��

��� Support for one
process pattern ��
��� Results for di�erent prefetch techniques ��

xiii

Chapter �

Introduction

I�O� to disks� to networks� and to user�oriented devices� is expected to become the central
problem in future systems �Cab����

��� The I�O Crisis

As computers grow more powerful� it becomes increasingly dicult to provide sucient I�O band

width to keep them running at full speed for the largest problems� The increasing speed and
memory capacity of the most powerful computers allow them to solve ever larger problems� requir

ing immense amounts of data at high speeds� Disk I�O has always been slower than processing
speed� and recent trends have shown that improvements in the speed of disk hardware will not keep
up with the increasing speed of processors� This problem� the widening access
time gap� is known
as the I�O crisis �PGK����

Smith �Smi��b� argues that the widening access
time gap a�ects uniprocessors� multiprocessors�
and distributed systems� In short� his argument is that CPU speeds �and therefore I�O needs� are
doubling every three to six years� whereas disk access times are decreasing much more slowly� Thus�
the gap is widening� Patterson� Gibson� and Katz �PGK��� agree� claiming that microprocessor
speeds double every year� whereas disk seek speed has only doubled once in the last ten years� and
disk rotation speed has not changed� These trends are expected to continue�

A classic postulate of Gene Amdahl is that computers require � byte of memory and one bit per
second �bps� of I�O for every instruction per second �IPS� of CPU power �SBN���� Our ��
node
BBN GP���� multiprocessor �BBN��� has a ���
MIPS Motorola ����� processor at each node� for
a total of ��� ��� � ��� MIPS� There are ��� � � ��� megabytes of memory� which is more than
enough according to Amdahl� There should be ��� Mbps of raw I�O bandwidth for this machine�
but in the standard con�guration the single disk controller peaks at only �� Mbps�� Thus� the
standard con�guration for this machine is far out of balance with respect to I�O �and would be
worse with more processor nodes�� Adding eight ��
Mbps disk nodes would balance this system�
assuming the full disk bandwidth could be made available and usable�

Several examples of scienti�c applications requiring high
performance I�O are given in �Int����
These include �uid
�ow modeling� molecular modeling� seismic data processing� and tactical simu

lation� In general� these applications process tremendous amounts of data in a short time� Often
the working data
set size is too large for main memory� requiring large scratch �les� When the
application must run for a long time� checkpointing is necessary to enable the application to con

tinue after an interruption� such images may require gigabytes of storage� Certain applications�

�All GP���� performance �gures from BBN promotional literature�

�

� CHAPTER �� INTRODUCTION

such as seismic processing� read large amounts of raw data� on the order of ���� gigabytes� At the
National Center for Atmospheric Research� the mass storage system handles well over ��� gigabytes
of data per day� from a combined storage of �� terabytes �O�L���� In the future� they expect to
have more than a petabyte ����� bytes� of storage� and routinely transfer ���� terabytes as part
of a single simulation� Such large data requirements require an I�O system that can handle large
data transfers quickly� or the machine quickly becomes overwhelmed by I�O�

��� I�O Parallelism as a Solution

One promising solution to the I�O crisis is a parallel I�O subsystem� The idea is to connect many
disks to the computer in parallel� spreading individual �les across all disks� This disk
hardware
parallelism has been studied extensively� particularly for application to serial processors� and more
recently for parallel computers �see Section ����� Parallel disks can provide a signi�cant boost in
performance � possibly equal to the amount of parallelism� if there are no signi�cant bottlenecks�
such as shared busses or controllers�

��� How to Use Parallel I�O

Just as parallel processors are not sucient to guarantee high computational performance� parallel
disk hardware is not the complete answer to the I�O crisis� It is equally important to design
e�ective parallel systems software� A sequential �le system� or �le access from only one process in an
application� forms a bottleneck that reduces the e�ectiveness of parallel I�O hardware� In contrast�
a well
designed parallel �le system can help even a naive program to harness the power of parallel
disk hardware� This dissertation addresses �le system mechanisms to improve the performance of
applications on a multiprocessor with parallel disk hardware� The goal is to transparently provide
the full disk parallelism� even to applications that do not use parallel �le access methods and to
those that may not use them e�ectively�

Smith �Smi��b� acknowledges that multiprogramming is an e�ective way to mask disk latency�
but concedes that even multiprogramming will not suce for this purpose in the future� Indeed�
in many parallel computers the individual processors are not multiprogrammed among several user
processes� Smith�s solution to the I�O crisis is disk caching� Caching is e�ective for improving the
performance of I�O systems in conventional uniprocessor systems �see Section ����� In Section ���
we demonstrate with some experiments the importance of caching in parallel �le systems�

Cache performance can be improved by reading blocks into the cache before they are requested�
This read
ahead is known as prefetching �Smi��c�� Prefetching is an important technique in unipro

cessor �le systems� but the techniques for uniprocessor prefetching may not directly apply to the
problem of prefetching in parallel �le systems� Certain simple strategies� such as always prefetch

ing the next block� may yield good prediction but may not necessarily work well with respect to
improving overall performance� Furthermore� techniques based on detecting sequential �le access
may be more dicult in parallel due to more complex �le access patterns� In fact� the de�nition of
sequential �le access must change�

Prefetching is appropriate when reading �les� Another set of issues are involved in writing �les�
in particular timing the writes of dirty blocks to disk� The solutions to some of these problems are
treated in Chapter ��

In this dissertation we demonstrate three major points	

� Caching and prefetching can improve disk performance in parallel applications� They do this
by overlapping I�O with computation and I�O with I�O �using parallel disks��

���� HOW TO USE PARALLEL I�O �

� Prefetching can make the power of parallel disks available to single
process applications that
would otherwise use only one disk at a time�

� While caching and prefetching can deliver signi�cant I�O parallelism without requiring
changes to the �le system interface� enhancements to the interface �compatible with the
traditional interface� might make it easier to use parallel disks� and aid automatic prefetch

ing�

In the next chapter we outline the other work in the �eld� covering parallel disk hardware� disk
caching� �le access patterns� and prefetching in CPU caches� disk caches� and virtual memory� In
Chapter � we de�ne our workload models and architectural assumptions� Our methods are discussed
in Chapter �� Experiments on read
only access patterns are covered by Chapters � through ��
Chapter � examines the potential for prefetching to improve parallel I�O performance� Chapters �
and � outline heuristic prefetching techniques and give experimental results� In Chapter � the e�ects
of several architectural parameters are studied� Bu�ering of disk writes is considered in Chapter ��
We propose extensions to the traditional �le system interface in Chapter ��� In Chapter �� we
conclude and present some ideas for further work� A glossary� beginning on page ���� collects the
de�nitions of terms and acronyms used in this document�

� CHAPTER �� INTRODUCTION

Chapter �

Literature Survey

Many researchers have emphasized the importance of increasing the performance of I�O to keep pace
with ever
increasing processor performance� This is especially a problem with the advent of powerful
parallel processors� Boral and Dewitt �BD��� argue that I�O bandwidth is a crucial bottleneck for
database processing and that a signi�cant increase in bandwidth is necessary if parallel database
machines are to be e�ective� They propose two solutions	 hardware parallelism using multiple
conventional disks� or a large �le cache to retain blocks that are re
used and to hold blocks that are
prefetched� Some researchers �Smi��b� PGK��� have emphasized the increasing gap in memory and
disk access times and predict large bottlenecks at the I�O system for high
performance computers�
They propose caching and prefetching �Smi��b� and parallel disk hardware �PGK��� FH��� WCM���
as near
term solutions� The �le system for the NEC supercomputer demonstrates several techniques
for boosting I�O performance� including contiguous allocation� prefetching� and optimizing for large
�les �NNI����

��� Parallel I�O Hardware

Hardware parallelism implies multiple disk drives� and possibly multiple disk controllers and chan

nels� Traditional systems may use multiple disks for reasons of size� speed� or reliability� but they
rarely spread a single �le over multiple disks to parallelize access to that �le�

There are several ways of organizing multiple disks in a parallel fashion� The same terms are
often used by the literature in di�erent ways� To alleviate some of the confusion� we de�ne several
of these terms here� and use these de�nitions when discussing the other work below�

traditional� the traditional �le system may use multiple disks� but places each �le entirely on one
disk� The disks may be controlled by a single controller or multiple controllers�

declustered� the blocks of a �le are scattered among the disks� The disks are accessed inde

pendently� though they may be connected to the same disk controller� This does not imply
interleaving �see �Pie��� for a non
interleaved declustered approach��

interleaved� this refers to the way the blocks of the �le are partitioned among the disks� The
blocks are allocated to the disks in a round
robin fashion� the �rst block on the �rst disk� the

�We do not consider multiple�arm �see �Smi��a	
 or multiple�head disk drives in this discussion� as they still depend
on a single controller� something we would like to avoid� The importance of avoiding such a bottleneck is emphasized
by the results in �NLS��	�

�

� CHAPTER �� LITERATURE SURVEY

next block on the second disk� and so on�� This is a special case of declustering� and does
not imply striping�

striped� the blocks of the �le are interleaved among the disks� and the disks are controlled by a
single controller� which reads a block from all disks simultaneously� Each disk may contribute
as little as one bit at a time� There are two varieties� depending on whether the disks are
rotationally synchronous� This is a special case of interleaving�

An independent notion that may be combined with all of the above except striping is

parallel� independent disks� the disks are completely independent� having separate controllers
and paths to memory� and presumably connected to separate processors�

A wide range of di�erent arrangements� including striping� declustering� and combinations� was
studied by Reddy and Banerjee �RB��a� RB��b�� They found that interleaved systems are more
scalable� and more appropriate for scienti�c applications� whereas synchronized striping is better
for general �le system workloads�

Much of the previous work in I�O hardware parallelism has involved disk striping� In this
technique� a �le is interleaved across numerous disks and accessed in parallel to simultaneously
obtain many blocks of the �le with the positioning overhead of one block �SGM��� Kim��a� Ng����
The performance improvement of disk striping �in uniprocessor systems with current technology�
is limited to a small number of disks �less than �ve�� according to simulations reported in �GMS����
This is due to the increasing overhead involved in the serial management of the I�O parallelism�
As the access
time gap between memory and disks increases� they predict that the performance
improvement may be extended to larger number of disks�

Mirrored or shadowed disks are another form of I�O parallelism� which are intended mostly to
improve reliability but which can also boost performance �BG��� Bit����

The RAID group at Berkeley �PGK��� PGK��� Sch��� GHK���� studied large� tightly coupled
arrays of small� inexpensive disk drives� They carefully designed their system with redundancy
in mind� since a highly parallel array of disks is too unreliable without some built
in redundancy�
Their design is experimentally evaluated in �CGKP���� concluding that a striped
disk system with
a rotated parity scheme �RAID level �� is better than mirrored disks �RAID level �� for workloads
with large ���� MByte� transfer sizes �e�g�� scienti�c workloads��

Another possible parallel disk architecture is based on the notion of parallel� independent disks�
using multiple conventional disk devices addressed independently and attached to separate pro

cessors� This arrangement is di�erent than that in most distributed systems since a �le may be
spread over several disks� and thus the disks are more logically related� The �les may be inter

leaved over the disks� but the multiple controllers and independent access to the disks make this
technique di�erent from disk striping� Systems of this sort were proposed by Flynn �FH��� and
Reddy �RBA��� for hypercube
connected multiprocessors� Both researchers propose special I�O
processors connected by a separate network� and concentrate on the processor layout to minimize
communication delays� This plan was implemented in the Intel iPSC�� multiprocessor �see page ���

The Gamma project �DGS���� built a database machine that incorporated parallel� independent
disks with di�erent types of declustering� The �rst version used a network of �� VAX minicomputers
and the second version used a ��
node Intel iPSC�� hypercube multiprocessor� Another database
machine that proposes the use of parallel independent disks is Bubba �BAC����� This machine will

�Other granularities are possible� e�g�� at the record� byte� or even bit level� Thinking Machines� Data Vault
interleaves by bit �TMC��	�

���� PARALLEL I�O HARDWARE �

have hundreds of independent �intelligent repositories�� each with processing and storage capabil

ity� This project is paying special attention to the placement of data in the system to minimize
communication and to balance the load between the processors� and to best take advantage of the
disk bu�ers�

Bridge �Dib��� DSE��� is a �le system developed for the BBN Butter�y parallel computer
that interleaves individual �les over several independent �simulated� disks associated with di�erent
processor nodes� The �le system allows naive programs to access the �les as they might in a
traditional �le system� but makes no special e�orts to fully drive the available disk parallelism� An
alternative interface allows computations to take advantage of the hardware parallelism and locality
by having the �le system dole out blocks from each disk to the process running on the corresponding
processor� so all processes always operate on the �nearest� disk blocks and do not contend for the
same disk drive� Dibble �Dib��� also discusses resiliency� maintenance� and portability�

����� Commercial Products

Several companies have added some form of parallel I�O hardware to their system� An overview
of the commercial disk
array situation is presented in �Man���� Digital Equipment has a striping
driver available for its VMS operating system �DEC���� Sun Microsystems provides a �MetaDisk�
service that can mirror or stripe across the partitions of a set of disks �Tab���� Cray Research o�ers
a disk subsystem that uses hardware to combine four disk spindles into one logical disk drive with a
sustained transfer rate of ��� MBytes�sec �Res���� Micropolis Systems makes a striped system with
� disks and one parity disk that is byte
interleaved� with ��� GByte capacity� sustained transfer
rate of � MByte�sec� and MTTF of ������� hours �Mok���� Encore �KBK��� and Sequent �Hai���
have parallelized a traditional Unix� �le system� but their disks are limited �as are their processors�
to a single shared path to memory� Symult Systems �Sym��� has a traditional Unix �le system on
several disks accessible in parallel by attaching disks directly to processor nodes� Computer System
Architects builds a ��
transputer mesh
connected multiprocessor with embedded I�O nodes �M�����
though it is not clear what �le system model will be used� Teradata builds database machines with
disks accessed through their specialized Y
net� which selects the appropriate disks and merges
results from all the disks to satisfy queries �Ter���� The IBM ���� disk cache �MH��� is a combined
controller and cache that supports up to �� drives and up to �� channels from the processor�
Redundancy in the controller provides for reliability and increased performance� This system is
intended for uniprocessors� Maximum Strategy markets a disk subsystem that stripes ��� disks�
has up to � channels� and up to � hot spares �Mea���� The Connection Machine DataVault �TMC���
TR��� uses a bit
interleaved� striped set of �� disks and � parity disks� Up to eight DataVaults
may be attached to a Connection Machine
�� each with its own controller� and each maintaining
�� megabytes per second throughput to �� gigabytes capacity�

Intel developed an I�O architecture for their iPSC�� multiprocessor based on dedicated I�O
nodes� each with a separate controller and Small Computer Systems Interface �SCSI� bus �Int��a�
Int��b�� The maximum con�guration is ��� I�O nodes and ��� disk drives with ��� compute nodes�
Their Concurrent File System �Pie��� AS��� provides a transparent interface to the multiple disks�
treating them as a single logical disk� The performance of this �le system is examined in �FPD����
It automatically declusters the �le among the disks �allocating blocks to the �le from any disk� and
routes block requests to the appropriate disk� The interface is the standard Unix interface� with
a few extensions to allow asynchronous I�O and to control concurrent �le access� Other examples
of I�O architectures that are based on dedicated I�O nodes are the NCUBE �compared with the
iPSC�� in �PFDJ����� the proposed BBN Monarch �RCCT���� and the IBM Victor �WSB�����

�Unix is a registered trademark of ATT�

� CHAPTER �� LITERATURE SURVEY

None of these systems have made any signi�cant e�ort �such as the use of sophisticated caching
and prefetching� to help parallel programs use parallel disks eciently� Intel uses simple caching and
prefetching in CFS� but it is not clear from the literature what range of workloads or performance
could be supported by their �le system �FPD����

��� Caching

Early operating systems relied on user
controlled bu�ering for high
performance disk I�O� A good
discussion of bu�ering techniques� including careful overlap of computation and I�O� is found
in �FP��� �pp� ��������� This method depends on the user �or the run
time system� having total
control of the disks� channel� and processor for careful scheduling� Recently� it is common to use
automated caching� where blocks from the disk are kept in memory as long as they are useful� and
�ushed from the cache when room is needed for other blocks�

Alan Smith has extensively studied disk and memory caching in uniprocessors� In �Smi��b��
simulations of disk caching show that disk caching is an e�ective way to boost the performance
�as measured by the cache miss ratio� of the I�O subsystem �e�g�� an � MByte cache can service
������ of I�O requests�� Smith found that an in
memory cache �as opposed to caches at the disk
devices or controllers� had the lowest overall miss ratio� Since it is also closest to the users of the
data� main memory is the most e�ective position for the cache� Due to the variety of disk �le access
patterns� he recommends that the cache dynamically monitor its own miss ratio and use caching
and prefetching only when the miss ratio remains low�

Cache management overhead is signi�cantly reduced by using memory
management hardware
to manage the disk cache without changing the interface �BRW����

Stonebraker �Sto��� discusses disk
caching support for database systems� In particular he exam

ined replacement algorithms� recognizing that least
recently
used �LRU� is not necessarily the best
policy since much access to databases is sequential� In addition� program
controlled prefetching is
an important capability for the support of database applications� as the database manager often
knows in advance what block it will access next� even if the access is not sequentially related� It
is clear that cache management policies for random access patterns and sequential access patterns
are likely to be di�erent� and thus Stonebraker suggests that the application have some of control
over the policies� Tokunaga et al� �THY��� implemented a disk cache with this in mind� allowing
the application to specify the type of access pattern it would use�

Modern operating systems commonly use �le caches� The Unix operating system has included
a �le cache from the start �RT���� A non
Unix example is the IBM VM�XA disk cache �Boz����
File caching is also important in distributed systems� such as Sun�s Network File System �SGK�����
Sprite �NWO���� and Amoeba �TvRvS�����

��� Prefetching

The central idea behind prefetching is to overlap some of the I�O time with computation by issuing
I�O requests before they are requested� Trivedi �Tri��a� points out that the best reduction one
can hope for in execution time is ���� if all of the I�O and CPU time perfectly overlap� Thus
programs that have a good balance of CPU and I�O time have a better potential for improvement
from prefetching than those that are more CPU
bound or I�O bound� With parallel disk hardware�
however� we expect prefetching to also overlap I�O with I�O� obtaining even larger bene�ts�

Smith �Smi��b� mentions that prefetching is especially valuable for supercomputers since the
level of multiprogramming often cannot be increased to cover the idle time caused by I�O delays as in

���� PREFETCHING �

traditional multiprogrammed uniprocessor systems� This is evident in the processor
scheduling con

cepts generally used with the operating systems for the BBN Butter�y Parallel Computer �BBN����
in which each processor usually has only one user process running on it�

����� Prefetching in Disk Caches

Smith has studied two simple prefetching strategies in a uniprocessor �le system� Both depend
on an assumption of sequentiality but neither studies the reference string in detail to dynamically
adjust its behavior� The �rst� One�Block Lookahead �OBL�� is described in �Smi��b� Smi��� Smi��b�
Jos��� BS���� and involves prefetching block i � when block i is accessed� if it is not already in
the cache �these block numbers are physical disk block numbers� but the concept is the same for
logical block numbers as well��� In either case it is marked as most
recently
used for the use of the
LRU replacement algorithm� This technique has been successful in reducing the miss ratio in disk
caches for batch �les and temporary �les in uniprocessor simulations by up to ��� �Smi��b��

Smith�s second technique� described in �Smi��c�� assumes a strong degree of sequentiality� Using
knowledge about the various costs of I�O system activities� the length of the current run �a run is
a string of accesses to consecutive blocks in a �le�� and the static distribution of run lengths� the
strategy prefetches a number of blocks ahead� As the currently observed run length grows� blocks
are prefetched increasingly far into the future� He found this to be more e�ective than prefetching
a �xed amount ahead� and reduces the cache miss ratio by about ��� in a simulation on a database
workload� He has also found that prefetched blocks should be treated the same as demand
fetched
blocks with respect to LRU replacement� as variations in the replacement priority do not seem to
a�ect the miss ratio� His results are based on the assumption that fetching multiple contiguous
blocks does not take much more time than fetching a single block� which is true for �les that are
stored contiguously on the disk�

Smith�s simulations in �Smi��b� show that prefetching is more bene�cial for some types of �les
than for others� corresponding to the strength of the assumption of sequentiality for each type of
�le� The best improvements are for batch �les� batch users� and temporary �les� since they tend to
be sequentially accessed� No improvements are possible on paging data sets� since they have little
locality� Thus� Smith suggests that caching and prefetching be used selectively� depending on �le
type or� ideally� on hints from the user�

Earlier work by Ragaz and Rodriguez
Rosell �RRR��� examined reference traces of segments in
a database system� They found strong sequentiality in the references and� in turn� that prefetching
improved the average segment access time� Their strategy prefetched several segments ahead of
each cache miss� Indeed� blocking several segments into a disk block� and then demand
fetching disk
blocks� was nearly as e�ective as prefetching at the segment level� A second strategy adaptively dis

covered more complex sequential patterns� such as reading every other segment� but provided little
extra improvement for the e�ort� Another adaptive prefetching strategy is described by �FB����

Prefetching is included in the design of the MPE XL Data Management System for the HP
Precision �Kon���� a memory
mapped �le system� The prefetching algorithm uses a heuristic to
determine the amount of data to prefetch that depends on the access pattern� the �le consumption
rate� the fault rate� any access hints� and memory availability� A similar heuristic is used for the
write
back algorithm�

Powell �Pow��� proposed a �le system for DEMOS� an operating system for Cray
� supercom

puters� The �le system is oriented around a small disk cache ������ blocks of � KBytes each�� and
uses two basic strategies	 when reading sequentially it prefetches blocks to keep the bu�ers as full
as possible and when writing it allocates several contiguous blocks on the disk well ahead of the

�OBL on logical �le blocks was used in the original Unix �le system �RT��	�

�� CHAPTER �� LITERATURE SURVEY

program to reduce allocation overhead and external fragmentation on the disk� The latter strategy
also tends to avoid seeks when accessing the �le sequentially�

Bennett and May �BM��� de�ne a fairly sophisticated implementation of prefetching� similar
to that in �RRR���� in a disk controller cache� The controller they propose maintains a table
of recent disk accesses� separating the accesses into separate sequential streams� and prefetching
entire tracks when the reference stream appears to be sequential� The signi�cance of this approach
is its hardware implementation and its ability to automatically monitor several separate reference
streams�

Prefetching in a multiprocessor �le system �Intel�s CFS� was studied brie�y in �FPD���� Each
I�O node prefetches several blocks ahead when access appears sequential� This strategy gave a
���� improvement in throughput when a single process read an ��� KByte �le sequentially from
a single disk� compared to random access to the same �le� Their study does not directly evaluate
prefetching in a multi
process� multi
disk situation� Multiprocessor prefetching was also examined
by Towsley �Tow��� TCB���� This study argues that multiprocessors are likely to bene�t from
overlapping I�O with CPU time more than uniprocessors� and that prefetching looks promising for
large numbers of processors� In particular� overlapping I�O and CPU time is especially useful when
the degree of multiprogramming is low� Without this constraint� adjusting the multiprogramming
level may often be used to provide the necessary overlap to keep the CPU and I�O devices fully
utilized� The emphasis of this study seems to be on multiprocessors operating on independent
tasks� whereas we study programs that use many cooperating processes to accomplish one task�

����� Prepaging in Virtual Memory

Trivedi studied prepaging in a uniprocessor virtual
memory environment in �Tri��� Tri��b�� He
describes algorithms for prepaging that are optimal with respect to the number of page faults
incurred� with a correspondingly signi�cant reduction in execution time for programs using the
algorithms� These algorithms depend on the ability of the programmer� operating system� or
compiler to accurately predict the pages that are no longer needed and those that will be needed
in the near future� Thus� these are essentially replacement algorithms that decide which pages
to keep� which to discard� and when to prefetch� based on the predictions supplied by another
mechanism �e�g�� the compiler�� These techniques are successful for prepaging data pages in array
algorithms� In �Tri��� he exploits this technique to attempt to reduce the number of page faults
during transitions between phases of program execution�

More generally� Smith examined prefetching with OBL in memory hierarchies �Smi��b�� With
no hints from the compiler� as with Trivedi�s technique� prefetching is not helpful except for small
page sizes �about �� bytes�� This small size is due to the relatively small scope of sequentiality in
program instruction and data access patterns� Smith concluded that prefetching is most e�ective
for CPU cache memories� not at the level of virtual memory paging�

Baer and Sager �BS��� attempt to improve the predictive capabilities of OBL by dynamically
maintaining an association between page numbers� That is� if page j is the �rst page to fault after
a fault to page i� then j will be prefetched whenever a fault occurs for page i in the future� �Pure
OBL associates j � i � with i�� Their simulations showed that this technique predicts the next
page more accurately than OBL and reduces the number of page faults� They then go further by
reordering pages in a two
level memory hierarchy� grouping a few small pages of primary memory
into large blocks in the secondary memory� The grouping is based on the LRU ordering of pages at
the time of page replacement� This permits an elegant preloading of several related pages on each
fault while placing seldom used pages together in separate blocks�

���� FILE SYSTEM WORKLOAD ��

����� Prefetching in Memory Caches

Prefetching is e�ective for high
speed memory caches in uniprocessors �Smi��b� Smi���� In this in

stance only simple prefetching strategies like OBL are feasible� due to the hardware implementation
and the high speeds� The small line size and a relatively larger scope of sequentiality� particularly
in instruction streams� was shown by Smith �Smi��b� to be important for e�ective prefetching� In
addition� the simplest strategy appears to be superior	 initiate a prefetch on every access if the
successor is not already in the cache� as opposed to initiating only on cache misses or more complex
options� Smith also compares �� di�erent traces from � di�erent machines in �Smi��a�� and �nds
that prefetching is always successful �though to varying degrees�� reducing the number of cache
misses by about ����

Caching and prefetching were also studied for shared
memory multiprocessors �LYL��� Lee���
Mar���� One of the key points of their research is that the miss ratio is not an adequate measure of
cache performance in multiprocessors with pipelined interconnection networks� due to the overlap
of miss service times� They used one measure based on the overall execution time �Lee���� and
another multiplying the miss ratio by the standard deviation of inter
miss times �Mar���� They
found that caching e�ectively counters low
bandwidth problems� and prefetching e�ectively masks
the high latency memory� The combination essentially eliminates the problem of high
latency
shared memory� The primary �aw in these works �especially �Mar���� is that they did not consider
contention at the memory modules or in the interconnection network�

����� Prefetching Summary

In short� previous work in prefetching has centered in two di�erent areas	 �� prefetching instructions
and data in memory hierarchies� either between a CPU cache and main memory or between main
memory and disk �prepaging virtual memory� and �� prefetching blocks of a �le in a disk cache�
Most techniques depend on sequential reference patterns� Sequentiality is the simplest access
pattern� and choosing blocks whose size is on the same order as the sequentiality of the access
�a few tens of words for instructions and data� thousands of words for disk �les� seems to be
important� Most results have used simulation or modeling to show a reduction in the cache miss
ratios of roughly ������� which occasionally extend to increases in system performance of about
�������

��� File System Workload

In order to design caching and prefetching techniques for parallel �le systems� we must have an
idea of the workload expected in such a �le system� This is necessary to tailor the design to the
workload and to generate synthetic workloads for simulation� In addition� to do prefetching� we
must be able to predict future accesses� which requires a good understanding of access patterns�
Smith has studied the e�ect of the choice of workload when evaluating memory caches and prefetch

ing �Smi��a�� and found a wide variation in the miss ratios and prefetching e�ectiveness depending
on the workload and architecture generating the trace for the simulation�

A common way to view �le system workloads is to break them down into three classes �OD���	

scientic� This workload is characterized by sequential access to large �les� High transfer rates
for relatively few large transfers is important here�

transaction processing� Including database systems� this workload typically involves a large
number of short requests to independent portions of the database� Individual transactions
are limited by disk latency� so the overall I�O throughput �in accesses per second� is an
important metric�

�� CHAPTER �� LITERATURE SURVEY

engineering�o�ce� This workload �which might also be called general purpose� is comprised of
programs that make a large number of small requests� but with less concurrency than in
transaction systems� Here� the speed of the individual application is important� emphasizing
the latency of individual disk operations�

We expect the �rst two to be the most likely candidates for parallel �le systems� and these are the
workloads emphasized by other researchers �PGK��� PGK��� RB��a�� We concentrate on scienti�c
workloads�

File access patterns have been studied extensively for uniprocessors �Flo��� OCH���� FE����
Floyd �Flo��� studied �le access patterns in a Unix system� and found that ��� of �les opened for
reading are completely read� usually sequentially� Over ��� of all �les opened are opened read
only
or write
only� A classic Unix �le system study ��OCH����� found that ��� of all �les are processed
sequentially� either through the whole �le ���� of all accesses� or after only one seek� A survey of
�� large IBM mainframe installations found that ��� of the �les in the �le system were sequential
�les� although these accounted for only ��� of the disk space ��BSTY���� summarized in �Smi��a���
A study done by Powell �Pow��� on a Cray
� �le system found a similar pattern� with most �les
small� but the large �les occupying most of the disk space� Powell�s data and the IBM survey re�ect
a static �le system and do not include the frequency of use or any other dynamic measure of �le
usage�

Parallel �le access is discussed more generally by Crockett �Cro���� No actual workload was
studied� Instead� �le access patterns are related to possible storage techniques� He de�nes a few
basic �le access patterns� which are either sequential or random in nature� There are four sequential
patterns	 pure sequential �no parallel access�� partitioned� in which each process reads a separate
portion of the �le� interleaved� in which the processors read the �le in a globally sequential fashion
but individually read single blocks with regular stride� and self�scheduled� similar to the interleaved
pattern but with an unpredictable stride �i�e�� the processes each read the next unread block��
The random access patterns are either truly random or partitioned� with each process working in a
separate area of the �le�

Despite the lack of any parallel �le access study� we expect there to be enough sequential access
in the parallel �le access patterns of scienti�c applications for prefetching policies that assume
sequential access to be successful� The nature of parallel �le access patterns is di�erent than that
of uniprocess access patterns� and thus we must sometimes look for sequential access in di�erent
ways� We further describe our expectations for parallel �le access patterns in Section ����

��� File System Interface

Several researchers have discussed parallel I�O interfaces for MIMD multiprocessors� The Bridge
�le system �Dib��� has three interfaces that range from a sequential compatibility interface to
a highly
parallel low
level interface that emphasizes locality� Intel�s �le system for their iPSC��
multiprocessor supports both the standard sequential interface and two types of simple parallel
access patterns �AS���� Crockett �Cro��� has a standard sequential interface� support for self

scheduled patterns� and independent parallel access by all processes� The CUBIX �le system �for
hypercubes� connects a sequential �le server to a parallel application program �FJL�����

Some systems provide hints to the �le cache based on �le type� which is determined from the
�le name �Kor���� access mode �THY���� or system administrator �Gro���� Some systems allow the
user to provide hints� An example is �le preallocation in Intel�s CFS �AS����

For more details on related work in �le system interfaces� see Section �����

Chapter �

Models and Assumptions

In this chapter we present some basic assumptions that underlie our work� along with the models we
have chosen for the workload� processor and I�O architectures� and �le system control� The bulk of
the chapter de�nes the type of workload we expect in a parallel �le system� since its understanding
is critical for caching and prefetching policies� Chapter � describes our testbed and the details of
its policies� implementation� and experimental parameters�

��� Workload

Our e�orts are geared toward high
performance multiprocessor computers running scienti�c appli

cations� In other words� we do not consider general
purpose or transaction
processing workloads�
We use the model of a single parallel program running on an MIMD parallel processor and consisting
of a set of separate processes� each with a dedicated processor node� There is no multiprogram

ming within a particular processor node �except perhaps with operating system processes�� The
processes cooperate to access huge data sets� one �le at a time�

����� Parallel File Access Patterns

We must be able to predict the future �le access patterns in order to successfully prefetch disk
blocks� To predict �le access patterns we must �rst understand the patterns we may encounter� In
our study we choose to examine the access pattern within each �le accessed by a particular parallel
program� rather than the access pattern to a particular disk or other system
wide alternatives� We
feel that the sequentiality of access is most evident at the level of the individual �le� particularly if
the �les are not stored contiguously on the disk� Thus our techniques examine sequentiality in the
accesses to the �logical� blocks of a particular �le� rather than to �physical� blocks on a particular
disk� This is in sharp contrast to most previous work on prefetching and disk caching� which expects
to �nd sequentiality at the physical block level� This policy a�ects the structure of our disk cache�
Most disk caches are oriented to caching physical disk blocks and have little or no understanding
of the underlying �le system or process activity� Our system will employ a separate cache for each
open �le� which is shared by several cooperating processes� The caching �and prefetching� decisions
depend on the activity of that set of processes alone�

We assume that the programmer uses a conventional open� close� read� write� and seek interface
to interact with the �le system� The front
line interface converts application read and write requests
into requests for individual blocks of the �le� Note that we distinguish between �le blocks� which
correspond to the storage of the �le in �xed
size units usually related to the disk�s sector size�
and records� which are the logical units used by the application� We assume that the �le
system

��

�� CHAPTER �� MODELS AND ASSUMPTIONS

internals see only the block access pattern from an application� and thus all caching� prefetching�
and I�O is done in blocks�

The �le access patterns we see in a multiprocessor �le system are likely to be di�erent from
uniprocessor �le access patterns� Although �le access patterns in uniprocessor systems are well

understood �Flo��� OCH���� KD��� FE���� it is not clear that similar patterns will be found in
parallel environments� for a variety of reasons� We expect that the basic function of the �le system
is to provide a long
term repository for data� growing main memory capacities will reduce the need
for most temporary �les to be placed on disk� The nature of parallel scienti�c applications tends to
be di�erent than uniprocess� general
purpose workloads� Thus� the �les stored on a multiprocessor
should tend to be larger than on general
purpose interactive systems where most of the referenced
�les have been found to be quite small �e�g�� text �les and program sources�� Parallel �le systems
and the applications that use them are not suciently mature for us to know what patterns might
be typical� Parallel applications may use patterns that are more complex than those used by
uniprocess versions of the same application� However� a few basic patterns may be de�ned and we
shall see that many likely parallel algorithms using disk I�O �t into these patterns�

Types of Access Patterns

In our research we consider only read
only and write
only access patterns� We do not investigate
read�write �le access patterns� because we believe that most �les are opened for either reading
or writing� with few �les updated �Flo��� OCH����� We expect this to be especially true for the
large �les used in scienti�c applications ��Pow��� Ber����	 one or more large input �les are read�
and one or more large output �les are written� There may also be intermediate �les that are
written and then later read� When a �le is only written� it is conjectured that it is usually either
completely written or appended �Flo���� In either case� the writes are to a �new� part of the �le�
not overwriting old information� This is important when the application process writes only part
of a block� If the block already exists on disk� the block must be read into the cache before the
bu�er can be written� If it is a �new� block� not on disk� then the bu�er can be initialized with
zeroes� avoiding the disk read� These disk reads can also be avoided when the application makes
many small writes that eventually overwrite an entire block� This is easy on uniprocessors� but
parallel access patterns make this more complicated� In all of our experiments� we assume that the
�le being written is truncated to zero length and re
created when opened� so no disk reads should
be needed to write the �le�

Read�only access patterns� We assign all read
only �le access patterns to one of two categories�
random and sequential �see Figure ����� Random patterns are de�ned to be those that do not �t
into the sequential models�

All sequential patterns consist of a sequence of accesses to sequential portions �runs in �Smi��c���
A portion is some number of contiguous blocks in the �le�� Note that the whole �le may be
considered one large portion� The accesses to this portion may be sequential when viewed from
a local perspective� in which a single process accesses successive blocks of the portion� We call
these locally�sequential access patterns� or just local access patterns� This is the traditional notion
of sequential access used in uniprocessor �le systems� The sequential portions of the individual
processes may or may not overlap each other� any overlap has implications for the cache replacement
algorithm� as the blocks in common are used more than once each�

�Actually� a portion is originally some number of contiguous records� as read by the application� The �le system�
however� works with the resulting block access pattern� rather than the original record access pattern� We thus de�ne
portions here from the perspective of the �le system� in terms of blocks rather than records�

���� WORKLOAD ��

Read�only

IrregIrreg RegRegIrregReg

DisjointOverlapped

DisjointOverlapped

Global�only�Local

SequentialRandom

Parallel File Access Patterns

Figure ���	 Categories of File Access Patterns

Alternatively� the pattern of accesses may only look sequential from a global perspective� in
which many processes share access to the portion� reading disjoint blocks of the portion� We call
these globally�sequential access patterns� or just global access patterns� In this view each process
may be accessing blocks within the portion in some random or regular but increasing order� If the
reference strings of all the processes are merged with respect to time� the accesses follow a �roughly�
sequential pattern� The pattern may not be strictly sequential due to the slight variations in the
global ordering of the accesses� it is this variation that makes global patterns more dicult to detect�
If the nature of the sequentiality of a local or global pattern can be detected� more sophisticated
prefetching than just blindly prefetching the next block may be possible�

In addition� the length of portions �in blocks� may be regular� so the �le system may be able to
predict the end of a portion and not prefetch past it� The di�erence between the last block of one
portion and the �rst of the next may also be regular �a stride�� allowing the system to prefetch the
�rst block of the next portion� In the chart we refer to these as regular sequential portions ��Reg��
and others as irregular ��Irreg���

The record size or bu�ering at levels above the �le system can transform one pattern into
another� For example� a globally
sequential whole
�le access pattern with a �xed record size may
appear to be an interleaved pattern� if the accesses are regular� An interleaved pattern �not to
be confused with interleaved disks� is a special case of a local pattern with regular portions� A
globally
sequential whole
�le pattern may also appear to be a locally
sequential whole
�le pattern�
if the record size is much smaller than the �le system�s block size� To the �le system� it appears

�� CHAPTER �� MODELS AND ASSUMPTIONS

that each process is accessing every block� Although one pattern is similar to another� the patterns
are not the same� First� self
scheduled access patterns may sometimes seem interleaved� but due
to variations in record size� computation time� contention� etc�� strict interleaving may not last for
long� Second� a higher
level understanding of the pattern allows for more successful prefetching�
Thus� it is important for the �le system to understand both local and global patterns�

Note that each of Crockett�s proposed access patterns ��Cro���� may be described by our model�
He gives two random access patterns that are exactly represented by our random categories� the par�
titioned random pattern� as a re�nement of the random pattern� has little implication for prefetch

ing� It may� as he points out� determine the layout of the �le on the disks� His pure sequential
and partitioned sequential are special cases of sequential portions� as a sequential portion may be
any part of a �le� including the entire �le� The interleaved pattern is a case of regular sequential
portions that happen to be non
overlapping and cooperating to form a larger global sequential
portion� Finally� the self�scheduled access pattern is essentially our globally
sequential whole
�le
pattern� Our categorizations go a step further by generalizing to the concept of sequential portions
and to the concept of local and global views of the access pattern�

Write�only access patterns� We expect the class of parallel write
only access patterns to be
more limited than parallel read
only access patterns� For example� we expect that every byte of
the �le is written exactly once� whereas in a read
only pattern some bytes may never be read and
some may be read many times� For the sequential patterns we expect to be most common� it is
unlikely that some parts of the �le are not written �i�e�� written zero times� or that some parts are
rewritten �i�e�� written more than once�� As with read
only patterns� we expect to see both local
and global sequentiality�

Examples of Parallel File Access Patterns

We claim that our basic de�nitions of access patterns are sucient to describe all read
only and
write
only �le access patterns� Later we show the implications of these patterns on prefetching
decisions� First we examine some reasonable scenarios and some examples from the literature
that support our claim that these categories are interesting ones that may actually be seen in real
programs�

It is not hard to imagine programs that read an entire �le sequentially� in fact we expect this
to be the common case� In parallel programs� however� there are many variations on this activity�
in addition to one processor reading the whole �le by itself� Each processor may read the �le
entirely on its own� perhaps performing di�erent computations on the data in the �le� Both this
pattern and the single
process pattern are special cases of overlapping local sequential portions�
Alternatively� all processors may cooperate to read di�erent portions of the �le in some manner�
This might be done when the �le consists of a set of records that may be processed in parallel�
perhaps selecting some subset of records that match some criteria� If the processors sequentially
read separate partitions of the �le� it is an example of disjoint local sequential portions� if they
intermingle in the whole �le� it is a global sequential portion�

The processes may read only a part of the �le� perhaps a single row or set of rows of a large
matrix mapped into the �le� In this case� they are accessing some sequential portions of the �le�
either randomly or at regular intervals depending on the algorithm� If the matrix is stored as a
dense matrix� the portions are equally long� if stored as a sparse matrix� the portions tend to be of
di�erent lengths� Both of these patterns would be used by a local researcher �Pan���� given access
to parallel I�O�

���� PROCESSOR AND I�O ARCHITECTURE ��

Three papers �BBW��� BKZS��� DO��� regarding parallel external sorting and merging of
extremely large �les show that these types of operations use sequential access to �les� usually in
non
overlapping local sequential portions�

In her thesis� Kim �Kim��b� describes a parallel method for computing large �larger than main
memory� Fast Fourier Transforms �FFT� using a synchronously striped disk system� The data is
stored and accessed in sequential portions that are optimized for use with her striped disk system�

One supercomputer program for calculating the electronic structure of molecules requires several
gigabytes of scratch �les �Ber���� Several di�erent access patterns appear in the use of these �les�
All writing is sequential� Some of the �les are read sequentially from start to �nish� sometimes
by a single process and sometimes by several processes in cooperation� Some �les involve locally

sequential portions� with all processes reading random portions of the �le� Finally� some of the
patterns are purely random� The record size varies from �� bytes to more than �� KBytes� All of
these access patterns are represented in our categorization�

Local developers of VLSI tools note that VLSI applications often use large data �les� The �les
tend to be read sequentially and completely into data structures in virtual memory� where the data
is manipulated and then sequentially written back to disk �ABS��

A program for pattern matching in a gene database matches a given gene against every gene
in the database �Die���� The database is about �� MBytes compressed� The order of the search
is irrelevant� but the record length varies� This is a global pattern with variable record size� or a
locally
sequential pattern with variable
length portions�

In light of these examples it appears that parallel �le access �ts into a few basic categories�
several of which may facilitate prefetching�

��� Processor and I�O Architecture

The architecture on which we base our research e�orts is a multiple instruction stream� multiple
data stream �MIMD� multiprocessor� In addition it is a non
uniform memory access �NUMA�
architecture� in which each processor has its own memory that is also accessible by all other proces

sors �see Figure ����� The shared memory assumption is not a key component of our architectural
model� but is critical for our testbed implementation� We believe that this class of architecture
e�ectively scales to a large number of processors and disks�

��� I�O Architecture

We represent the disk subsystem with parallel� independent disks �Figure ����� There are multiple
conventional disks� each connected via a separate controller and channel �or bus� to a separate
processor� allowing each to be independently addressed� Indeed� with the NUMA architecture
each disk has an independent path to memory� This allows for completely parallel access to all
disks� Thus the time for a disk access is strictly dependent on the state and activity of that disk
and memory alone� This is in contrast to a conventional uniprocessor where many disks may be
connected to one processor� sharing some channels� disk controllers� string controllers� and memory
for bu�ers� It also contrasts with striping systems where parallel disks are joined by a single
controller�

We de�ne the access time of a single disk request to be a combination of the physical access
parameters of the disk and any contention for the disk� For simplicity� we use a constant physical
access time for each disk� allowing us to ignore the details of the layout on each disk� In other
words� we do not assume that the blocks of the �le are contiguous� which typically reduces seek

�� CHAPTER �� MODELS AND ASSUMPTIONS

Network

Memory

Processor

Processor

Memory

Memory

Processor

Disk

Disk

Disk

Figure ���	 Parallel Independent Disks on a NUMA�MIMD Architecture

time for sequential access� A given disk access only contends with other accesses to the same disk�
re�ecting the physical independence of the disks� The assumption that every processor has a disk
is used for the bulk of our experiments� but we vary this in Sections ��� and ����

There are several possible ways of mapping �les to multiple disks� including placing each �le
entirely on one disk� partitioning each �le among disks �by placing a contiguous segment of the �le
on each disk�� or declustering each �le among disks �by scattering blocks or bytes of the �le across
the disks in some manner�� We assume an interleaved structure� with blocks of the �le allocated
round
robin to all disks in the system� This is a straightforward declustering technique that is easy
to calculate� distributes the blocks of the �le roughly evenly� and allows easier extension of the �le
than a partitioned layout�

��� File System Control

The �le system manager is the entity� perhaps part of the operating system or perhaps a separate
process �or processes�� that manages the disks and all requests for I�O� We often refer to the �le
system manager as simply the ��le system�� considering the control software as a part of the �le
subsystem� This may be multiprogrammed on the same processor with the application program�
stealing cycles and thus a�ecting the execution pattern of the process� or it may run separately on
a dedicated I�O processor� independent of the original process� The latter model is used by several
proposed systems �DHS��� FH��� WCM��� Int��b� Pie��� RBA���� Our model is based on the

���� FILE SYSTEM CONTROL ��

multiprogrammed approach� with a �le system manager on each processor� handling all the I�O
requests for that processor� This spreads the I�O overhead over all processors and allows the use
of all processors for computation� rather than reserving a set of processors exclusively for I�O� In
either case the application is only detained �blocked� by demand fetches� when it requires the data
in order to continue� Prefetching I�O requests are serviced while the application continues to run�
The next chapter gives more details about the �le system manager�

�� CHAPTER �� MODELS AND ASSUMPTIONS

Chapter �

Methods

Our methodology is experimental� using a mix of implementation and simulation� We implemented
a �le system testbed called RAPID
Transit ��Read
Ahead for Parallel Independent Disks�� on an
actual shared
memory MIMD multiprocessor �BBN GP������ Since the multiprocessor does not
have parallel disks� they are simulated� Without access to a real workload �parallel applications
using parallel I�O� we chose to use a synthetic workload� The synthetic workload captures such
nuances of real workloads as sequentiality� regularity� and inter
process interactions� These charac

teristics� all important to caching and prefetching� are easy to incorporate in a synthetic workload
but would be dicult to include in an analytical model� Thus� we have simulated disks and a
synthetic workload� and a real implementation of the �le system on a real multiprocessor� We run
our synthetic workload through the testbed� measuring the elapsed real time and other signi�cant
statistics� This implementation of the policies on a real parallel processor� combined with real

time execution and measurement� allows us to directly include the e�ects of memory contention�
synchronization overhead� inter
process dependencies� and other overhead� as they are caused by
our workload under various management policies� Because of the wide variation in multiprocessor
architectures� we cannot claim that this architecture �or its overhead� is typical in any way� It
is� however� a direct measure of real overhead� which is better than simulated overhead� since it
responds dynamically to di�erent conditions and does not mistakenly avoid unexpected sources of
overhead� This is important when beginning to study an area that is not well understood� such as
parallel �le systems� since there are many of these unexpected sources of overhead� An implemen

tation helps to explore the new area without missing these unexpected e�ects� In this case� it also
evaluates whether practical prefetching policies can be implemented eciently�

In some cases� we compare the measurements with trivial analytic performance models to gain
an insight into the behavior of the system� and the overhead imposed by the system� These models
work well for this purpose�

��� The RAPID�Transit Testbed

The RAPID
Transit testbed is a parallel program implemented on a BBN Butter�y GP���� parallel
processor �BBN���� originally derived from the BBN RAMFile system �BBN���� The Butter�y
GP���� is a NUMA MIMD machine in which all memory resides with the processor nodes �see
Figure ����� but is accessible from all other processors through a form of a log
depth Omega
��butter�y�� network�

The testbed is a set of software routines designed to provide a simple �le system interface to
a set of �simulated� disks� allowing us to experiment with di�erent techniques for caching and

��

�� CHAPTER �� METHODS

prefetching� The testbed is heavily parameterized and fully parallelized� It incorporates both the
synthetic workload �the application� and the �le system �interface and manager�� The �le system
allocates and manages a bu�er cache to hold disk blocks� attempting to prefetch blocks while the
application is blocked� Finally� the testbed gathers statistics on many aspects of the performance
of the �le system�

Figure ��� outlines the basic structure of the testbed as a collection of software modules� The
application reads or writes records of the �le by making requests through the �le system interface�
The interface breaks record requests down into requests for disk blocks� It requests each block� in
order� from the cache manager� The cache manager either �nds the block in the cache �a cache
hit�� or must read the block from the disk into a free bu�er �a cache miss�� If necessary� a block
may be removed from a bu�er in the cache� �rst being written back to disk if it is dirty� Writes
into the cache need not immediately trigger a disk write� Section ����� gives more details about
cache management�

Disk Manager

Predictor

Cache Manager

Cache

Replacement

Policy

File System

Interface

Application

File System Managerblocks

Free List

Prefetch Module

records

RAPID�Transit

Figure ���	 The modular structure of the �le system testbed� The boxes represent software
modules� not threads or processes� Communication is therefore by function calls� not messages�

Prefetching is attempted by a processor node whenever the local application process is idle� The
prefetch module running on the same processor repeatedly considers prefetching� releasing control

���� THE RAPID�TRANSIT TESTBED ��

after each action� Each time� it calls a predictor� which encapsulates a particular pattern
prediction
heuristic� The predictor makes its predictions based on the reference history of the application�

The block number of each access is provided to to the predictor as it happens� We call this
noti�cation� since the cache manager noti�es the predictor� The time required for the predictor to
process the noti�cation is the noti�cation time� These noti�cations are the mechanism for supplying
the reference history to the predictor� When asked for a prediction by the prefetching mechanism�
the predictor provides either a one
block prediction based on the reference history� or chooses to
make no prediction �sometimes the best action is no action�� If the predicted block is not already
in the cache� the prefetching mechanism obtains a free bu�er and prefetches the block �issues a disk
request�� The prefetch action is successful if and only if it issues a disk request� A prefetch action
is unsuccessful when there is a surplus of prefetched but unused blocks already in the cache� when
there is a lack of blocks to prefetch �if the predictor refuses to predict any further�� or when the
block chosen for prefetch is already in the cache� Section ����� gives more details about prefetching�

Although the RAPID
Transit testbed was somewhat tuned during its development� it was not
a fully tuned system� Our strategy was always to develop mechanisms and policies� tune through
preliminary testing and experiments� and �nally run a full set of experiments for interpretation�
An iterative development would use the full results to re
tune and re
run the experiments� perhaps
several times� We compare our policies and mechanisms as they performed on our workload� rather
than tuning them to their best performance on this particular workload� We are looking for general
trends and conclusions about the ability of prefetching� not the precise optimized performance of
these policies on these workloads on this architecture�

����� Cache Management

The idea of a disk cache is to retain frequently
 or recently
used blocks from the disk� reducing the
number of actual disk accesses� We attach the cache to a particular open �le� caching the logical
blocks of the �le rather than the physical blocks of the disk� This distinction becomes important
when the blocks of a �le may not be stored contiguously on the disk� since any sequentiality in
accesses to the �le may not be evident in the pattern of physical accesses to the disk� It is also
important when �les are accessed by multiprocess applications� The bu�ers are managed in a
way that depends on all accesses to the �le� not just those made by a single processor� so parallel
data structures �shared by all cooperating processes� and algorithms are used instead of standard
uniprocessor cache management algorithms�

The e�ectiveness of the cache depends on the nature of the �le
access patterns in the application
and on the management policies of the cache� This includes an implied dependence on one or
more forms of locality� Spatial locality implies that the various bytes of a block tend to be used
together� Temporal locality implies that blocks tend to be re
referenced shortly after use� In a
parallel environment� there is another form of locality� inter�process locality� This implies that a
block referenced by one process may tend to be referenced by another process� It is wise for cache
policies to consider this form of locality as well�

Common �le reference patterns involve sequential access to the contents of the �le� Sequential
access leads to strong temporal and spatial locality� since all bytes in a block are used �access to
a sequence of records within a block appears as block re
use�� followed by the bytes of the next
block in the sequential order� and reasonably soon �at least� before any other bytes of the �le��
Note� however� that once access has moved on from one block to the next� the �rst block is not
re
referenced by the same process� Thus the spatial and temporal locality applies to the bytes
ahead of the current access� It is thus helpful to prefetch blocks of the �le into the cache before they
are requested� so that the data is in the cache when requested� Without prefetching� the block is

�� CHAPTER �� METHODS

only read into the cache upon a cache miss� forcing the process to experience a delay equal to the
physical disk access time� plus any queuing delays�

The replacement strategy used to manage the cache is completely dependent on the idea of
locality for its e�ectiveness� Smith �Smi��b� found that LRU is sucient for disk caching operations�
LRU is not necessarily a good policy� however� for sequential access� Since the blocks are not used
after the application moves on to the next block� a �toss
immediately� strategy �Sto��� makes more
sense�

There are a variety of possible caching and replacement strategies� responding to the di�erent
issues of access patterns� physical disk model� multiprocessor architecture� and so on� In this study
we concentrate on a single mechanism� We use an algorithm that is based on least
recently
used
�LRU� algorithms and is speci�cally designed for a shared
memory multiprocessor system� In
addition� it is �exible enough to handle sequential access� when LRU alone is not the best policy�
A separate list is maintained for each process recording the last few blocks accessed� ordered by the
most recent access to each block� This list is called the local recently
used
set� or local RU�set� and
is �xed in size� The global RU
set is the union of all local RU
sets� but is unordered� This is easily
maintained	 a counter for each bu�er containing a block of the �le indicates the number of local
RU
sets containing that block� A zero count implies that the block is not in the global RU
set� and
is subject to replacement� No block in the global set may be replaced� this is satisfactory as long as
there are enough bu�ers to hold the maximal global RU
set �its size being the sum of the local set
sizes�� We therefore require the number of bu�ers to be at least that large� When a process accesses
a block already in its local RU
set� the RU
set is reordered so that block is the most recent� If the
block being accessed is not in its local set� the least
recently used block from its set is removed from
the set� and the new block becomes the most recent member� In addition� the count of the removed
block is reduced by one and the count of the added block is increased by one� This scheme has the
advantage that the more complex data structure �the ordered list� is maintained completely locally
and without concurrency� whereas the shared data structure �an array of counters� is simple and
is accessed less often� The overall data structure promises low contention and high concurrency�

As blocks leave the global RU
set they become available for replacement� that is� the bu�er
containing that block may be allocated to another block� These bu�ers are kept in a global free
list� Any bu�er removed from this list containing a block that has re
entered the global RU
set
is not considered for replacement� and another bu�er is chosen from the list� In some situations
a bu�er in the free list may be involved in a current disk activity� It may be a disk read into the
bu�er� started by a prefetch decision that was later deemed to be a mistake �page ���� or it may be
a disk write used to �ush a dirty block back to the disk �Section ����� To avoid forcing processes
to wait for I�O when they need free bu�ers� we split the free list into two queues� one for ready
bu�ers� and one for unready bu�ers� A bu�er is put on the appropriate queue when it is freed�
Processes remove bu�ers from the ready queue as they are needed� If the bu�er removed is dirty
�contains data not yet written to disk�� the disk write is initiated� the �now clean but unready�
bu�er is placed on the unready free queue� and another bu�er is chosen from the ready queue� If
the ready queue is empty� and the unready queue contains some ready bu�ers� the unready queue is
scanned� moving ready bu�ers to the ready queue� and the process tries again� Unnecessary scans
are avoided by recording the earliest time when a bu�er on the unready queue is expected to be
ready� If there are none ready� a process in demand fetch waits �completely idle�� and a process
attempting a prefetch gives up and tries again later� Thus� a prefetching action never waits for
I�O� although it may scan the unready queue �which is to the bene�t of all processes��

The choice of the local RU
set size depends on the access pattern� if known� For sequential
access patterns� a size of one is all that is needed� implementing �toss
immediately�� In fact�
the RAPID
Transit testbed treats an RU
set size of one as a special case� using a toss
immediate

���� THE RAPID�TRANSIT TESTBED ��

mechanism directly� In this case the global RU
set is the set of bu�ers currently in use by all
processes� For some random access patterns� where a block may be used again within a reasonable
amount of time� the local set size may be larger �implementing LRU within each process�� to take
advantage of any temporal locality�

Thus� with p processes and an RU
set size of one� the minimum cache size is p bu�ers� This
ensures that all processes may do I�O simultaneously without competition for bu�ers� A larger
cache is needed when prefetching� However� we limit prefetching in two ways	 �rst� a block that
is prefetched into the cache cannot be removed from the cache until it is used �or recognized as a
mistake�� second� the number of these as
yet
unused prefetched blocks is restricted so that there are
always some replaceable blocks in the cache� The former ensures that a prefetched block remains
in the cache long enough to be used� The latter restriction requires that there are p replaceable
blocks� again ensuring a bu�er for every process �to be used for demand fetches�� The limit on the
number of as
yet
unused prefetched blocks in the cache is called the prefetch limit� The cache size
is thus de�ned to be

p� �RU
set size� prefetch limit�

����� Prefetching Issues

Note that by reading blocks of data into �xed
size bu�ers in memory we are already implicitly
prefetching adjacent bytes� If the application sequentially reads single bytes from a �le� it is
standard practice for the �le system to read a block at a time and parcel out bytes to the application�
paying the cost of the disk access only once� This dissertation considers prefetching on a higher
level� reading blocks into memory before any byte of the block is needed by a process� To do this
we must be able to predict future accesses to the �le� Before we describe how this prediction is
done� we must determine whether the �le system has enough spare time to prefetch�

When to prefetch� There are two general situations when a process may have to wait before
continuing� First� most multiprocessor algorithms involve some sort of synchronization between
processes� An example is a barrier where each process waits until all processes have arrived�
This time may be long� Second� a process may need to wait for a demand
fetched block �cache
miss�� In a uniprocessor� multiprogramming is often used to take advantage of these idle times�
in many multiprocessors� however� the individual processors may not be multiprogrammed among
user computations� Instead� while the process is idle� the �le system manager may perform the
necessary computation to prefetch blocks it expects the process to need in the future�

Another possibility is to issue prefetch requests while the process is running� With a multipro

grammed �le system control� this requires interrupting the process and may perturb the execution
sequence of the application process� a possible detriment to carefully tuned parallel programs�

At a synchronization point� it may be that the time spent making a prefetching decision and
issuing a read request may delay this process from leaving the synchronization point� if all other
processes arrive during this time �see Figure ����� This is called prefetch overrun� Similarly� if
prefetching while a demand fetch is processed� it may not return immediately after the required
block becomes available� If the prefetching decision was correct� however� the prefetched block will
be requested by some process in the near future� Any amount of the access time of that block
�both overhead and I�O� that may be �nished before it is requested by any process is a possible
reduction in the overall completion time of the program� Notice that it makes no di�erence which
process uses the prefetched block� as long as the block is used by some process�

Simply reducing the time of individual read operations may not be sucient to shorten the
overall execution� If one process of a parallel computation gains from some optimization such

�� CHAPTER �� METHODS

time

Wait time

Wait time

Overrun

Prefetching actions

�Ideal�

Prefetching actions

�Realistic�

Figure ���	 Prefetching actions may run past the end of the idle time available due to disk or
synchronization waits�

as caching while another waits on disk I�O for every request� the overall bene�t might be much
smaller than if the advantages of caching could be spread over all the processes� Actual reductions
in the overall completion time depend on our ability to reduce the disk access time so that some
synchronization point �including the end of the program� occurs earlier than it would have without
prefetching� For this to occur� the process that would have been last to arrive at the synchronization
point must arrive earlier� This is demonstrated by the example in Figure ����

This example shows three di�erent executions of a three
process parallel computation� Each
process makes several read requests and there are periodic synchronization points where all three
processes must meet� In case a� every read issued by the program results in a demand fetch from
disk� delaying the process making the request relative to the other processes� In case b� three of
the read requests are hits on the block cache �which has been �lled by some unspeci�ed mechanism
with the needed blocks�� For now� we allow the �generous� assumption that these cache hits result
in major time savings for the a�ected read requests� Unfortunately� the bene�ts are experienced
by only one of the threads of the computation and it waits longer at the synchronization points for
everyone else to catch up� There is no improvement in completion time of the computation from
case a to case b� although both the miss ratio and the average time to service a read request have
been reduced� The savings due to avoiding disk I�O are absorbed into increased synchronization
time� Case c has exactly the same number of hits as case b� but in this case they are distributed
more evenly over the processes� The interval between the two synchronization points becomes
shorter as a result�

���� THE RAPID�TRANSIT TESTBED ��

Speedup

P�

P�

P�

P�

P�

P�

P�

P�

P�

Synchronization Wait

a� All I�O done by demand fetch�

Bu�er Hit �No I�O�

Disk I�O

Legend

Computation

Time

Time

Time

b� Three hits� poorly distributed�

c� Three hits� better distributed�

Figure ���	 Executions of a Parallel Computation

�� CHAPTER �� METHODS

The �le system must be careful when it chooses to do prefetching and how many requests
it issues� It is possible� in fact� that prefetching may actually increase the execution time of a
program� A processor that does prefetching may arrive at �or leave from� a synchronization point
later than it would without doing the prefetch� In addition� the I�O for the prefetched block
may con�ict with I�O for data needed immediately� thus slowing down some process that is later
waited for by all other processes� In either case the execution of the program as a whole may
be slowed as well� Finally� in an imperfect prefetching strategy some blocks may be read in that
are never used� occupying valuable cache space for a period of time �Smith terms this �memory
pollution� �Smi��c��� and of course using valuable disk and channel time� We call these prefetch
mistakes�

Prefetch Mistakes� Recall that the predictor module in the �le system is responsible for tracking
the access patterns and providing a prediction to the prefetch module when requested� Many
predictors are likely to make mistakes� and predict the incorrect block reference sequence� If
a mistaken prediction is supplied to the prefetcher� the block may be prefetched� wasting disk
bandwidth and cache space� If the prediction is indeed incorrect� the block is never used� Our
replacement policy removes blocks from bu�ers only after they are used by at least one process�
Since a block may be prefetched into a bu�er and never used� we supply a mechanism for predictors
to explicitly free a bu�er containing a mistakenly
prefetched block� They may recognize a mistake�
for example� when the next block access occurs and proves the last prediction incorrect� A freed
bu�er may not be immediately available for re
use� since the disk read from the prefetch operation
may not yet be complete� The bu�er can not be used for another purpose until this I�O is complete�
so it is put on the unready queue of the free list �page ���� Forcing blocks to remain in their bu�er
until all read I�O is complete is a conservative simulation choice� An alternative is to consider
all I�O to be completely abortable� allowing the un�nished I�O to be ignored� Another is to
consider I�O that is queued� but not yet started� to be abortable� Both of these alternatives
require some optimistic assumptions about the way the I�O subsystem works� For generality� we
use the conservative approach�

Prefetching can fail to get a free bu�er when no free bu�ers are ready� Thus� it can fail
after getting a block number from the predictor� without the block being fetched somehow� Each
predictor accepts a block number back in order to undo the recommendation� This block number
can then be predicted again�

����� Workload

Due to a lack of actual applications using parallel I�O� we use synthetic applications to drive
our testbed� Each synthetic application is described by the combination of an access pattern and
the values of various parameters� This allows us to generate a wide variety of conditions with
well
known controls� and to repeat the same experiment with di�erent prefetching policies and
algorithms�

An application is represented as a partially ordered list of the records to be accessed� along with
an amount of computation for each record� This list of records is directly related to the block access
pattern� with each record reference expanded into the blocks it references� The list is either a set of
local reference strings� for which the local order is exact but the global interleaving is determined
at run time� or a single global access pattern that is followed in a �self
scheduled� manner by the
processes� Due to natural� run
time �uctuations in the relative timing of parallel processes� the
order of the references cannot be known in advance� but roughly follow the order given�

���� THE RAPID�TRANSIT TESTBED ��

The Access Patterns

Read�only access patterns� We use access patterns describing eight basic application types�
one for each of eight representative parallel �le access patterns� Four of these are local patterns�
three are global patterns� and one is random�

lw Local Whole �le	 in this local sequential pattern� every process reads the entire �le from
beginning to end� It is a special case of the overlapped local sequential pattern with a single�
fully overlapped portion�

lfp Local Fixed
length Portions	 in this local pattern� each process reads many sequential portions�
The sequential portions have regular length and spacing� although at di�erent places in the
�le for each process�

lrp Local Random Portions	 this local pattern uses portions of irregular �random� length and
spacing� Portions may overlap by coincidence�

seg Segmented	 in this local pattern� the �le is divided into a set of non
overlapping contiguous
segments� one per process� Each process thus has one sequential portion� This is a special
case of the non
overlapped local sequential pattern�

gw Global Whole �le	 this global pattern reads the entire �le from beginning to end� The processors
read distinct records from the �le in a self
scheduled order� so that globally the entire �le is
read exactly once� but locally each processor only reads some small subset of the �le with no
discernible portions�

gfp Global Fixed
length Portions	 �analogous to lfp� in this pattern� processors cooperate to read
what appears globally to be sequential portions of �xed length and spacing�

grp Global Random Portions	 �analogous to lrp� processors cooperate to globally read sequential
portions with random length and spacing�

rnd Random	 this pattern accesses records at random�

Note that these patterns are not necessarily representative of the distribution of the access
patterns actually used by applications� We feel that this set covers the range of patterns likely to
be used by scienti�c applications�

Write�only access patterns The following are the write
only access patterns that seem intu

itively likely and that we use for our experiments	

lw�� A single process writes the entire �le from start to �nish�

seg� This pattern divides the �le into segments� one per process� and each process writes its segment
from start to �nish�

gw� Like its read
only counterpart� this pattern writes records of the �le in an arbitrary order�
roughly sequentially from start to �nish� with all processes cooperating to write the �le�
Some �external� synchronization method determines which processes write which records�

Except below in Section ���� we only use these access patterns in Chapter ��

�� CHAPTER �� METHODS

Synchronization Points

One of the opportunities for prefetching occurs at points in the program when the processors
synchronize� A processor may take advantage of the time it spends waiting for the other processors
by doing prefetching� We use four di�erent types of synchronization points� The �rst type is
no synchronization at all� and we call it none� There are two types of barrier synchronization	
the processors synchronize after reading x blocks each �each�x��� or after reading x blocks total
�total�x��� The �nal type is pairwise synchronization� in which each process must synchronize
with each of two �neighboring� processors before continuing� We expect this style to be common
in many scienti�c applications� when processors are each assigned a contiguous set of rows in a
matrix� In this case� each processor synchronizes with its neighbor after reading x blocks� and we
call it neighbor�x��

����� Experimental Parameters

We �x most parameters for our initial tests in Chapters �� �� and �� Chapter � explores param

eter variations� These experiments are all for read
only patterns� Chapter � considers write
only
patterns� The parameters described here are the base from which we make other variations�

All tests were run with �� processes on �� processors� each running the same application with
the same set of parameters� Each experiment was repeated �ve times and the average of each
measure was used for the data point� The patterns all contained exactly ���� record accesses�
where the record size was one block� In local patterns this was divided up as ��� references per
process� Note that in most patterns this translates to ���� blocks read from the disk� but in lw
only ��� distinct blocks are read since all processes read the same set of ��� blocks�

After each record was read� delay was added in some tests to simulate computation� this delay
was exponentially distributed with a mean of �� msec except where noted� All other tests had
no delay after each read� simulating an I�O
intensive process as an example of one extreme in
the computation spectrum� Although this represents one extreme� we believe that it is common
for many applications to cluster much of their I�O into small� I�O
intensive periods� such as at
initialization�

The �le was interleaved over �� disks� at the granularity of a single block� The disk I�O
performed in all of the tests was simulated using arti�cial delays to approximate disk access times�
The delay� as with all measures of time in the testbed� was in real time� Each disk had a constant
access time of �� msec� a reasonable approximation of the average access time in current technology
for small� inexpensive disk drives of the kind that might be replicated in large numbers on a
multiprocessor system�

The processes synchronized after reading �� records on each processor �each��	��� after ��� total
�total�
		�� which is about �� each�� pairwise after �� each �neighbor��	��� or not at all �none��
The type of synchronization in any given test was the same across all processors� Prefetching was
done both at synchronization points and while waiting for disk fetches �whether demanded by this
process� demanded by another process� or prefetched by the �le system��

The RU
set size of each processor was one block� totaling �� blocks� implementing the �toss

immediately� version of our replacement algorithm� The prefetch limit was ��� making the total
cache size �� blocks� Because of the sequential nature of the access patterns� the additional ��
bu�ers were not generally useful without prefetching� but were included for fair comparison with
the prefetching experiments� We chose this ��
block prefetch limit based on preliminary results
that showed it to be a good compromise� We evaluate the actual e�ect of the prefetch limit �cache
size� in Section ����

���� THE BENEFITS OF CACHING ALONE ��

����� Measures

The RAPID
Transit testbed records many statistics intended to measure and interpret the perfor

mance of prefetching� The primary metric for measuring the performance of an application is the
overall completion time� This� and all time measures� is real wall
clock time� including all forms of
overhead� We also record the average time to read a block� the average e�ective disk access time
�the time from enqueuing a disk request to completion of the request�� the total synchronization
time� the cache hit ratio� prefetch overrun time �Figure ����� prefetch noti�cation time� the number
of mistakes� and many others�

A note on the data� In almost all cases� every data point in each experiment represents the
average of �ve trials� The coe�cient of variation �cv� is the standard deviation divided by the
mean �average�� Except for a few wildly variable data points �which are all noted�� the cv was
usually much less than ������ meaning that the standard deviation over �ve trials was less than
��� of the mean� In most places we just give the maximum cv for a given data set�

����� The Ideal Execution Time

To help in interpreting the results� we compare the experimental execution time to a simple model
of the ideal execution time� The total execution time is a combination of the computation time�
the I�O time� and overhead� In the ideal situation� there is no overhead� and either all of the
I�O is overlapped by computation or all of the computation is overlapped by I�O� Thus� the ideal
execution time T is

T � max�I�O time� comp time��

With this workload� architectural model� and parameter values� the ideal I�O time is � seconds	�

���� blocks

�� disks
�
��msec

block
�
� second

����msec
� � seconds

Essentially this represents the minimum physical disk time that is necessary to complete the syn

thetic program� This assumes that the workload is evenly divided among the disks and that the
disks are perfectly utilized� The ideal computation time is also � seconds� since there are ����
records with an average computation time of �� msec each� spread over �� processors� Thus� the
ideal total execution time� assuming I�O and computation perfectly overlap and there is no over

head� is also � seconds� Keep this ideal in mind while examining the data� No real execution of the
program can be faster than the ideal execution time� In Chapter � we return to the ideal execution
time when we vary the number of disks� number of processors� and disk access time�

��� The Bene�ts of Caching Alone

Before we examine the bene�ts of prefetching in detail� we �rst reinforce the importance of caching�
Certainly� prefetching is only possible with some form of cache or bu�er to hold the prefetched
information� But caching has signi�cant performance bene�ts of its own� A cache is useful as long
as the access pattern has either temporal locality� in which data in the cache tend to be referenced
again� or spatial locality� in which future data references are close to past data references �e�g�� in
the same block�� As a demonstration� we ran all of our access patterns with and without caching�

�The ideal time for lw is shorter� only ��� seconds� since it only needs ��� disk reads�

�� CHAPTER �� METHODS

The cache� when used� contained �� one
block bu�ers� Other parameters were as follows	 no
computation� no synchronization� �� disks� �� processes� and � KByte blocks�

Table ��� shows the results of experiments on our full set of read
only access patterns� We
also include a preview of the prefetching results� With one
block records �Table ���a�� there was
actually a slight performance degradation due to caching overhead� There was no improvement
because most of these patterns did not rereference data in the cache� Some patterns �lrp� grp and
rnd� made some rereferences� but so rarely that they were insigni�cant� The lw pattern had many
�inter
process� rereferences� but execution time did not improve with caching because all processes
read the same block simultaneously� and thus did not use the available I�O parallelism� The third
column previews the prefetching results� Prefetching was able to use the sequential locality to
improve the execution time for all access patterns except rnd� The dramatic improvement in lw
was due to the use of all �� disks in prefetching�

Table ���	 Total execution time� in seconds� with and without caching� and with caching and
prefetching� Read
only patterns� �cv � ������

a� One
block records� Read
only patterns

Pattern No caching Caching Prefetching

lfp ��� ��� ���
lrp ��� ��� ���
lw ��� ��� ���
seg ��� ��� ���
gfp ��� ��� ���
grp ��� ��� ���
gw ��� ��� ���
rnd ���� ����

b� Quarter
block records� Read
only patterns

Pattern No caching Caching Prefetching

lfp ���� ��� ���
lrp ���� ��� ���
lw ���� ��� ���
seg ���� ��� ���
gfp ���� ���� ���
grp ���� ���� ���
gw ���� ���� ���
rnd ���� ����

The situation changed signi�cantly when the record size was less than one block �Table ���b��
Except in the rnd pattern� each block was referenced four times� once for each quarter
block record
in the block� Without a cache� the block was read four times from the disk� The cache avoided
this wasted disk bandwidth� but could not use the full disk parallelism in the global access patterns
�four processes waited for each block to be read from the disk� and thus only one
fourth of all disks
were in use at any time�� With prefetching and caching� the disks were well utilized� Note that the
bene�ts would be larger for smaller record sizes� and signi�cant for all non
integral record sizes�

���� THE BENEFITS OF CACHING ALONE ��

Table ��� shows the results of experiments on our write
only access patterns� Here we compared
a simple write
back caching policy �see Chapter �� with not caching� Caching was faster in gw�
since the delayed write allowed some overlap between overhead and I�O� The lw� pattern was
most improved because� with caching� this one
processor pattern was able to use more than one
disk� Experiments with quarter
block records� shown in Table ���b� demonstrate the real power of
caching	 without a cache� all writes to a disk block after the �rst write had to read the block from
the disk� update the block� and write the block back to disk� With n records per block� a cache
reduces the �n�� disk accesses per block to one per block� The cache also allows concurrent access
to blocks� without a cache� all access was serialized� This is evident by comparing the non
cached
results for gw �where four processes used each block� with those for seg �where only one process
used each block��

Table ���	 Total execution time� in seconds� with and without caching� Write
only patterns� �cv �
������

a� One
block records� Write
only patterns

Pattern No caching Write
back caching

lw� ����� ����
seg ��� ���
gw ��� ���

b� Quarter
block records� Write
only patterns

Pattern No caching Write
back caching

lw� ����� ����
seg ���� ���
gw ����� ���

�� CHAPTER �� METHODS

Chapter �

The Potential of Prefetching

Our strategy is to �rst determine the potential for prefetching to improve �le system performance
on our read
only patterns� To do this� we make the unrealistic assumption that the entire access
pattern is known in advance� This is the basis for the experiments in this chapter� In the next
two chapters� we de�ne and evaluate heuristic prefetching methods that make real
time predictions
based on the accesses as they occur�

Here we use the EXACT predictor� which is provided with the entire access pattern in advance�
This makes it a perfect predictor� since it makes no mistakes and requires little overhead� but not
realistic� since a real predictor does not know the entire access pattern in advance� Nonetheless�
EXACT gives us a rough upper bound on the potential of prefetching�

EXACT does have some limitations� however� in the lrp and grp patterns� It is reasonable to
expect prefetching success within but not between sequential portions� Thus� EXACT does not
prefetch past the end of a portion until a demand fetch has established the location of the next
sequential portion �i�e�� it chooses not to use information it has in its supplied reference string that
would be impossible to predict�� In addition� no prefetching is possible in the rnd pattern� so we
do not consider it further in this chapter�

We measure the potential for prefetching in terms of its ability to improve some performance
measure over the value obtained without prefetching� The combination of several factors contributes
to the general success of prefetching as determined by one of the following measures	

� reduced average block read time

� increased cache hit ratio

� reduced overall execution time

Although the �nal goal may be the ultimate measure of prefetching success� the others are important
to consider� Change in the overall execution time may depend more strongly on the characteristics of
our workload than the other two measures may� whereas the �rst two goals may be more signi�cant
in other workloads� In addition� the average block read time and the cache miss ratio are the
measures most commonly used in the literature to evaluate the performance of prefetching and
caching techniques� As we noted on page ��� however� an improvement in the block read time or
hit ratio does not necessarily translate directly into an improvement in the overall execution time�
We examine this relationship further in Section ������

Our test set for each access pattern used all four synchronization styles� both without com

putation and with �� msec of computation� Each of these eight combinations represents one test
case� Each test case was run for seven patterns �all except rnd�� producing �� combinations� Each
combination was run with and without prefetching to produce one data point�

��

�� CHAPTER �� THE POTENTIAL OF PREFETCHING

A note on the graphs� In many of the graphs that follow� the distribution of a set of values
is shown as a cumulative distribution function �CDF�� with the fraction of the points having less
than or equal to a particular value plotted against that value� The actual data values are plotted
and connected by lines� This allows easy location of the median �at ������ upper ������ and lower
������ quartiles� and a general view of the distribution� In other graphs� pairs of values �e�g�� one
with prefetching and one with no prefetching� are compared in a scatter plot� Other graphs plot
the percent reduction due to prefetching of some measure� which is simply the change caused by
prefetching as a percentage of the value measured without prefetching�

��� Prefetching Support for One Processor

Most existing programs� both for uniprocessors and multiprocessors� do not make use of any form
of parallel I�O� The usual paradigm for parallel programs that need to read or write �les is to have
one controlling process open and read the input� then use parallelism for processing� and then use
a single process to write the output �le� In our execution model� there are several idle processes
when this single process is reading or writing� A single reader process may speed up using parallel
disks� but may speed up more if the otherwise idle processors are used to prefetch for the reader
process� Additional speedup is possible if all processes are used to read the �le in parallel� as in
the experiments described in the next section�

The following experiment demonstrates the potential for prefetching to improve I�O perfor

mance in parallel computations� The experiment involved a ��
process computation on �� proces

sors with �� disks� The �le was ���� blocks long and block
interleaved over all disks� First� a single
process was used to read the �le� Then one process was used to read� and all �� processes �both
the reader and the �� otherwise idle processes� did prefetching� Finally� all �� processes read the
�le as in the gw pattern� The results are shown in Table ���� The speedup values are relative to
the �rst case�

Table ���	 Speedup attained by prefetching and reader parallelism�

Experiment
Execution time
�sec�

Speedup

One reader� no prefetch ����� ���
One reader� �� prefetch ��� ����
�� readers� no prefetch ��� ����
�� readers� �� prefetch ��� ����

Execution was greatly speeded by the use of the other �� processes� for reading� prefetching�
or both� The �rst case simply did not use the available disk bandwidth� reading from one disk
at a time� Since this example involved an I�O
bound computation� its execution was speeded
signi�cantly when the full parallel bandwidth was used� A perfect speedup of �� is possible by
parallelizing the I�O requests over �� disks and the overhead over �� processors� The third case
closely approached this perfect speedup of ��� In the last case� the additional speedup came from
overlapping the I�O and the read operations through prefetching� In this case� the execution time
matched the ideal � seconds� There are two lessons from this experiment	

� Parallel disk I�O� if used� can greatly improve disk bandwidth�

���� PREFETCHING IN MULTI�PROCESS PATTERNS ��

� Prefetching alone �as in the second case above� can be provided transparently by the �le
system to attain signi�cant speedup ������ on an otherwise sequential part of the computation�

��� Prefetching in Multi�process Patterns

In this section� we experiment with prefetching on a wide variety of workloads �see Section �������
intended to explore a broad range of possibilities� The results are presented in graphs with each
workload represented by a single data point� Thus the graphs represent our particular workload
mix� Remember that the performance of a real system depends on its particular workload mix�

����� Average Block Read Time and Hit Ratio

The average block read time is the average time necessary to read a block from the �le� If the block
is in the cache� the read time is much lower than when a disk operation is necessary� Prefetching
is an attempt to �ll the cache with the right blocks� so that more read requests may be satis�ed
quickly� A lower average block read time is one measure of the success of this attempt� As shown in
Figure ���� the average block read time was signi�cantly reduced through the e�orts of prefetching
in all cases we studied� In this �gure� the read time with prefetching for a given set of parameters
is plotted against the read time without prefetching for the same set of parameters� The line y � x
is plotted as a reference� Since all of the points lie under this line� the average read time for each
instance was reduced� The improvement in the average read time exceeded ��� for ��� of the
experiments� had a median of ���� and reached as high as ����

�

�

��

��

��

��

��

��

��

��

�� �� �� �� �� �� �� �� �� ��

With
Pref�

Without Prefetching

Average Block Read Time �msec�

line of no change�

Figure ���	 Prefetching consistently lowered the read time�

A possible reason for the improvement in the block read times was the high cache hit ratio�
shown in Figure ���� The hit ratio for all prefetching experiments was over ����� with more than
a third of them over ����� Due to the sequential nature of the accesses� most of the corresponding

�� CHAPTER �� THE POTENTIAL OF PREFETCHING

experiments without prefetching had a hit ratio of ���� �those that did not had some measure of
inter
process locality� as in the lw pattern��

�

���

���

���

���

�

� ��� ��� ��� ��� �

CDF

Hit Ratio

Cache Hit Ratio with and without Prefetching

No Prefetching

Prefetching

Figure ���	 The cache hit ratio with prefetching was consistently over ����� with more than a
third of the points over �����

A strong improvement in the hit ratio was not enough to lower the average read time� however�
since even a block that was found to be in the cache �perhaps due to a prefetch action or the demand
request of another process� may still have had a large proportion of its I�O time outstanding� The
process had to wait for the I�O to complete� so we call this the hit�wait time� The hits with a
non
zero hit
wait time were unready cache hits �ready cache hits had a zero hit
wait time� and
often represented a signi�cant portion of all cache hits� In Figure ��� the hit ratio �as in Figure ����
is compared with the ratio of unready cache hits� These unready cache hits may be construed as
misses and so we examine the hit ratio that includes both types of misses in Figure ���� Prefetching
still has a clear advantage over not prefetching�

Although the unready cache hits may be construed as misses� they did not have the same impact
as true misses �see Figure ����� In general ���� of all cases�� the average hit
wait time was less than
the disk access time of �� msec� Of course� the e�ect of the hit
wait time on the average block read
time also depended on the hit ratio and the unready hit ratio� A small hit ratio would virtually
eliminate the e�ect of hit
wait time� whereas a high hit ratio could be accompanied by either a large
or small average hit
wait time depending primarily on characteristics of the benchmark program
�e�g�� access pattern and computational intensity�� Our results show that the hit
wait time was
usually smaller than the time required for a miss but was large enough �when combined with a high
number of unready hits� to be a contributing factor in the time required to read a block� While
there seems to be a fuzzy relationship between the average block read time and the hit
wait time�
no obvious relationship has been found between the read time and the hit ratio measure over the
full range of experiments�

One factor contributing to the average block read time �when prefetching� was the cost of the
prefetching overhead� Prefetching incurs overhead both directly� due to overruns �page ���� and

���� PREFETCHING IN MULTI�PROCESS PATTERNS ��

�

���

���

���

���

�

� ��� ��� ��� ��� �

CDF

Fraction of all reads

All Hits

Unready cache hits

Figure ���	 The unready cache hits represented a signi�cant fraction of all reads�

�

���

���

���

���

�

� ��� ��� ��� ��� �

CDF

Ready Hit Ratio

Prefetching

Not prefetching

Figure ���	 If the unready cache hits are considered misses� the hit ratio was lower� though still
much improved with prefetching�

�� CHAPTER �� THE POTENTIAL OF PREFETCHING

�

���

���

���

���

�

� �� �� �� �� �� ��

CDF

Time �msec�

Average hit�wait time

Minimum
demand�fetch time

Figure ���	 The average time spent waiting for un�nished disk I�O can be large� Nonetheless� the
wait for a cache hit was usually less than the minimum disk response time of �� msec�

indirectly� due to increased contention for the disks and internal data structures� Long prefetching
times contribute to long overrun times and� of course� reduce the number of prefetches that are
initiated during a given period of idle time� A prefetching overrun causes a direct slowdown to
one process� as it delays the process from continuing its computation when it is otherwise ready�
Clearly� for prefetching to be a successful technique� these costs must be kept to a minimum� The
prefetching time in our experiments was usually low� keeping the average overrun time near ���
msec in most cases �although certainly some overruns were much longer than the average��

Contention for the disks was measured by the disk response time� the time from the entry of the
request on the queue of the appropriate disk to the completion of the I�O� The disk response time�
and therefore the hit
wait time� for a block was sometimes larger than the physical disk access time
when contention for the disks forced disk requests to be queued for service� Since the physical disk
access time was �xed at �� msec for our experiments� this was really a measure of the disk queuing
delay� The disk response time slowed as contention for the disks increased� Prefetching increased
the contention for the disks as it �lled the queues with read requests� shown in Figure ����

Note that the disks serviced no more requests under prefetching than they did without prefetch

ing� since the EXACT predictor fetched no unnecessary blocks� The extra disk load arose from the
same number of requests issued in a smaller amount of time� This is clear when the total execution
time was reduced� Even when the total time was not reduced� the disk reads tended to be issued
non
uniformly in time� creating periods of high disk contention� In general� an experiment that
had high disk utilization even without prefetching experienced sharp increases in the disk response
time as prefetching �lled the disk queues� This e�ect can be seen for several points in Figure ����
Because of prefetching� however� the longer disk operations were overlapped with other I�O� with
computation� and with �le system overhead� resulting in faster average block read times�

���� PREFETCHING IN MULTI�PROCESS PATTERNS ��

��

��

��

���

���

���

�� �� �� �� �� �� �� ��

With
Pref�

Without Prefetching

Disk Response Time �msec�

line of no change

Change in response time

�

�

Figure ���	 Increased contention for the disks lengthened the disk response time�

����� E�ect on the Total Execution Time

Our primary measure of prefetching e�ectiveness is the total execution time of the program� We
have found that prefetching reduced the total execution time� often signi�cantly� for most of the
cases we studied �see Figure ����� The biggest improvements� up to ���� were in the lw pattern
where all �� processes could bene�t from each prefetched block�

Occasionally� prefetching increased the execution time� Two of the lfp pattern experiments
slowed down as much as ���� despite solid improvements in the hit ratio and the average block
read time� This was due to an uneven distribution of the bene�ts of prefetching� as outlined in
Figure ���b� In local patterns� including lfp� the processes prefetched only for themselves� Thus�
any prefetching completed by a process bene�ted only that process� in the form of hits and shorter
read times� It appears that� due to subtle timing issues� some processes grab several bu�ers and
prefetch for themselves� leaving few bu�ers for other processes� Their time was improved� but
they had to wait at the next synchronization point for the less fortunate processes� Those other
processes� in their own attempts to do prefetching �often unsuccessful due to the lack of free bu�ers��
wasted some time in prefetching overruns� lengthening the interval and hence the total execution
time� This issue� and a solution� is discussed further in Section ������ Another solution was an
increased cache size �Section ����� where lfp had a ��� speedup due to prefetching�

The lrp pattern� which had reasonable improvements in the total execution time� did not exhibit
this e�ect as strongly� Recall that with random portions we restricted the prefetching of any one
process to its current portion� which was usually short� Thus� it was dicult for one process to use
many prefetch bu�ers�

Synchronization delays� the time between arrival of a process at a synchronization point and the
moment all processes achieve synchrony� were a�ected in other patterns as well� This was another
factor that a�ects the total execution time� The synchronization delays often increased as some
of the savings on I�O operations were converted into longer synchronization waits� Prefetching
increased average synchronization time in about half of our test cases� In half of those cases the

�� CHAPTER �� THE POTENTIAL OF PREFETCHING

�

���

���

���

���

�

��� � �� �� �� �� ���

CDF

Percent Reduction

Change in the Total Execution Time

Maximum� ����

Median� 	
��

Minimum� ���� �slowdown�

�

�

Figure ���	 Prefetching improved the total execution time in most cases�

increase was less than ����� but in some cases the synchronization delay increased by almost
������

Without some way to distribute the primary bene�t of prefetching �a lower block read time�
among the processes� any reduction in the average block read time did not necessarily translate
into a reduction in the total execution time� Figure ��� plots the reductions measured in our
experiments� demonstrating at best only a fuzzy relationship� Figure ��� plots the reduction in
total execution time against hit ratio�

For these experiments� neither the hit ratio nor the average block read time were strong pre

dictors of overall success� Nonetheless� some signi�cant improvements in both measures �read time
and hit ratio� were obtained with prefetching�

����� The Balance between Computation and I�O

The preceding results have looked at the data for all data points� from all of the parameter com

binations we used in our experiments� Many of these runs simply read one block after another
with no time spent processing each block and represent one endpoint of the workload spectrum�
When the processors devote all of their time to I�O� there was an increased likelihood that they
contended for access to the disks and internal data structures� To simulate programs with some
computation� we associated computation time with each block fetched in many of the runs� as
described in Section ������ These runs are included in the preceding �gures� but it is valuable to
examine the e�ect of this variable separately�

We chose one access pattern and one synchronization style and varied the average computation
time per block over a wide range of values� The experiments in this section all use the gw pattern
and each��	� synchronization� The computation time is exponentially distributed about a given
mean� The idea was to study the e�ects of prefetching on various measures as the program changed
from I�O
bound to compute
bound�

���� PREFETCHING IN MULTI�PROCESS PATTERNS ��

���

�

��

��

��

��

���

� �� �� �� �� ���

Percent
Reduction

in
Total Time

Percent Reduction in Average Read Time

Dependence of Total Time on Average Read Time

Figure ���	 Reducing the average block read time does not necessarily imply a reduction in the
total execution time�

���

�

��

��

��

��

���

� ��� ��� ��� ��� �

Percent
Reduction

in
Total Time

Hit Ratio

Dependence of Total Time on Hit ratio

Figure ���	 Increasing the hit rate does not necessarily imply a reduction in the total execution
time�

�� CHAPTER �� THE POTENTIAL OF PREFETCHING

The results obtained were as might be expected� As the character of the program switched from
I�O
bound to compute
bound� prefetching bene�ted from overlapping the I�O and the computation�
Indeed� Figure ���� shows that the total execution time improved more when the program spent
some time in computation� but this tailed o� as the bulk of the program�s time was spent in
computation �which did not improve with prefetching� and the e�ect of the I�O time improvement
became less signi�cant� The improvement was due to an increasingly large reduction in the average
block read time� which dropped to �� of its value without prefetching�

�

��

��

��

���

� �� �� �� �� �� �� �� �� ��

Percent
Reduction

by
prefetching

Dened average computation time per block �msec�

E�ect of Computation on Prefetching

Block read time

Total execution time

Figure ����	 Larger improvements in the block
read time and some improvements in the total
execution time are obtained when the processes are less I�O
bound�

The primary reason for the reduced average block read time was the overlap between compu

tation and I�O� When prefetching� most or all of the I�O delay was �nished during periods of
computation� leaving shorter hit
wait times� Another reason the average block read time improved
was the reduced response time of the disk� When the processes were I�O
bound� there was a great
deal of contention for the disks and internal data structures� This contention decreased steadily as
more time was spent processing each block� although the disk response time when prefetching was
still higher than the response time when not prefetching�

The generality of these results� which were based on a single access pattern� is supported by
the di�erence between the I�O
bound �no computation time with each block read� and balanced
�some computation time on each block� runs in our full set of experiments� Indeed� the average
block read time was always increased signi�cantly when the process was I�O
bound rather than
balanced� Correspondingly� the total execution time generally improves less with prefetching in the
I�O
bound processes than in their balanced counterparts�

����� Attempts to Improve Prefetching

Given what we learned about prefetching and the e�ect of various measures on the average read
time� we explored a change to the prefetch strategy that could improve performance� Although a

���� PREFETCHING IN MULTI�PROCESS PATTERNS ��

high cache hit ratio was important to lower the block read time� we found that a low hit
wait time
was also an important component� It seems that the blocks that were prefetched were needed soon
after the prefetch had been initiated� A possible improvement to the strategy is to avoid prefetching
blocks that would be used soon� and instead to prefetch well ahead of the current activity in the �le�
In other words� to have the prefetch activity �lead� the demand
fetch activity by some distance�
We tried this strategy with a varying amount of minimum prefetch lead for several patterns� For
space reasons we do not include any plots of the data�

As hoped� the hit
wait time was reduced considerably by increasing the minimum lead� except
for the lw pattern� whose hit
wait time decreased only slightly� In sharp contrast� however� the cache
hit ratio dropped signi�cantly� Unfortunately� the signi�cant decrease in the hit ratio diminished
the e�ect of the improvements in the hit
wait time on the the average block read time� and the
average block read time increased for most patterns �it improved slightly for gfp��

It was therefore no surprise that most patterns slowed down overall� The total time for lfp was
slightly improved� and then only for large values of the minimum prefetch lead� It is unlikely� how

ever� that prefetching leads of more than �� or �� would be workable in an automated prefetching
system� due to the inaccuracy of many prefetching decisions� In any case� the result was that no
satisfying improvements were obtained by using a minimum prefetch lead�

����� The Importance of Synchronization Points

A portion of our experiments used no synchronization points at all� synchronizing only at the end of
the program� These experiments give us an indication of the importance of synchronization points
and of the prefetching that occurs during synchronization points� Interestingly� not synchronizing
at all produced the largest read times for many patterns� though the improvements in both block
read time and total execution time were similar to other synchronization styles� One reason for
the higher read times was the disk contention	 synchronization was often a respite for the �le
system� as processes stopped reading blocks� Synchronization points also provided a chance for
prefetched I�O initiated before or during the synchronization point to overlap with the idle time of
the synchronization period� and to be completed �or more nearly completed� before the block was
requested by some process after synchronization� Without synchronization points� processes spent
more time waiting for I�O�

����� Di�erences Between the Patterns

Most of the preceding discussions make no distinction between the data points based on the ac

cess pattern� In fact� the access pattern often accounts for many interesting di�erences between
experiments� For example� the lw �local whole
�le� pattern gained the most bene�t from prefetch

ing� This pattern is represented in most of the preceding graphs as the most
improved points�
with improvements in the total execution time of about ������ whereas the other patterns had
improvements of ����� with some slowing down by up to ���� The pattern that slowed down was
lfp� as described in Section ������ This slowdown is discussed further in Section ������

Even without prefetching� lw had a hit ratio of ���� since all �� processors read only ��� blocks
of the �le �chosen so the total number of accesses was ����� for consistency with the other patterns��
Therefore� as long as the processes maintained inter
process locality� there were �� cache hits for
each block fetched� With prefetching� the number of misses was often reduced to a single block	
the �rst one� This meant a hit ratio of �������� or nearly �� Because �� processes bene�ted from
each prefetched block� the bene�ts of prefetching were enormous compared to the other patterns�
which had little �if any� inter
process locality� It was this aspect of lw that made it unique among

�� CHAPTER �� THE POTENTIAL OF PREFETCHING

the other patterns and that makes its data stand out�
The parameters were chosen to make all of the experiments similar� so that the actual total

execution time could be compared� The lw pattern had a much lower total execution time than
all of the others� due to the reduced number of disk fetches� Most of the others were similar to
each other� Otherwise� total�
		� synchronization rather than each��	� added a measure of load

balancing that generally reduced the execution time� Furthermore� not synchronizing at all �none�
usually gave the lowest execution time of all�

����	 The High Cost of Prefetching Overhead

A prefetch action was sometimes complex� requiring several milliseconds to complete� To prefetch
a block� a number of parameters and indicators were checked� such as the number of bu�ers �lled
with unused prefetched blocks� Then a block number to prefetch was obtained from the predictor
�which in EXACT meant checking the provided reference string�� possibly contending with other
processors for access to the predictor�s data structures� Following this� a bu�er was found for the
prefetched block� and any block resident in the bu�er was removed �although no disk operation
was necessary since these patterns are read
only�� Then the I�O request was placed on the correct
disk queue� and the status of the prefetched block updated�

Much of the activity involved in prefetching required several accesses to data structures in
shared memory� which �on the Butter�y� were signi�cantly slower than local memory accesses�
particularly with memory contention� Programs that spent more time processing and less time
doing I�O had lower prefetch times due entirely to reduced memory contention� We expect that
although extremely compute
intensive programs might have smaller hit
wait times� leaving less time
to prefetch� they would be able to prefetch more blocks due to a substantially reduced prefetch
action time�

In our experiments we found the prefetching overhead to be high at �rst� The most signi�cant
indication of this was extremely high ��� msec� prefetch times and overruns� It was necessary to
optimize the paths through the I�O subsystem� both for prefetch actions and demand fetches� Data
structures were replicated where possible to reduce the number of remote memory references and
the amount of memory contention� and local pointers to remote data structures were maintained
for fast access� Expensive operating system calls to map bu�ers in and out of the �le system�s
virtual memory space were avoided� keeping bu�ers mapped in as much as possible� Statistics were
gathered in data structures kept completely in local memory� We used atomic memory operations
�such as fetch
and
add� in the place of critical sections maintained by locks� The locks that were
used on the data structures were held for short periods only and each lock was designed to a�ect
only a small piece of the data structure� In short� our experience with the implementation of a
simulated system implies that any practical implementation of prefetching must pay a great deal
of attention to optimization�

����
 Balancing the Bene�ts of Prefetching

In Section ����� we note an unexpected slowdown in the lfp pattern caused by prefetching� In local
patterns� each process chose blocks for prefetching exclusively from its own list� ignoring the access
patterns of other processes� All processes shared the same set of prefetching bu�ers� If one process
moved more quickly than the others� it could �ll many bu�ers with prefetch requests from its own
reference list� This restricted the ability of other processes to prefetch for themselves� since the
number of bu�ers was limited� Thus the more aggressive process bene�ted more from prefetching
than the others� and �nished its work more quickly� The other processes did not improve as much�

���� PREFETCHING IN MULTI�PROCESS PATTERNS ��

and the quick process waited for them at the next synchronization� Thus� there were improvements
in the block read time� but they were lost to synchronization delays� The slowdown arose from
the overhead expended by the prefetch manager attempting �and failing� to prefetch for the slower
processes� We call this the greedy�process problem�

The ultimate goal of any solution to the greedy
process problem is to more e�ectively balance
the bene�ts of prefetching in order to lower the overall execution time of the application� We
examine two solutions to the problem here� Other mechanisms that solved the problem include a
restriction on prefetching �Section ���� or a larger cache size �Section �����

Private Prefetch Limits� A direct solution to the greedy
process problem is to limit in some
way the amount of prefetching done by any one process� This may be done by placing a per�
process� rather than global� limit on the the number of bu�ers used for prefetched blocks� In our
experiments� this meant limiting each of the �� processes to three unused prefetched blocks� rather
than limiting the group of �� processes to a total of �� unused prefetched blocks� The number of
bu�ers allocated for prefetching was the same in each case� but in this solution no process could use
bu�ers intended for another process� Inter
process cache hits �due to opportune portion overlaps in
the lrp access pattern� were still permitted� This solution is called Private Prefetch Limits �PPL��

Prefetching For Others� In our prefetching model� the blocks prefetched by the �le system
prefetch manager during the idle time of any given process were chosen from the reference list of
that process� In the greedy
process problem� more blocks were prefetched for an ambitious �greedy�
process than for the others� The Prefetching For Others solution� called PFO� forced every prefetch
manager to choose prefetch candidates from all reference lists� This solution used a self
scheduled
selection of prefetching candidates from the various lists by all prefetch managers�

Table ���	 Percent improvement of prefetching over not prefetching� for di�erent prefetch tech

niques�

Pattern Normal PFO PPL

��� ���� ����

��� ���� ����
��� ���� ����

lfp ��� ��� ���
���� ���� ����
���� ���� ����
���� ���� ����
���� ���� ����

���� ����
���
��� ����
���
���� ���� ���

lrp ���� ����
����
���� ���� ���
���� ���� ���
���� ���� ����
���� ���� ����

�� CHAPTER �� THE POTENTIAL OF PREFETCHING

We compare our prefetching techniques in Table ���� The measure used for comparison is the
percent improvement due to prefetching� as compared to not prefetching� This result is given for
each of the three prefetch techniques	 our normal prefetch algorithm� prefetching for others� and
private prefetch limits� A negative improvement represents a slowdown caused by prefetching�
There are eight variations for each pattern� representing di�erent combinations of the synchroniza

tion style and computation parameters� These results show that PFO was always faster than �or
as fast as� the normal prefetching method� The PPL technique was not as successful� especially on
the lrp pattern� It solved the greedy
process problem as well as PFO did� but was over
restrictive
in cases where the greedy
process problem was not an issue�

The primary reason for the improvements in the lfp pattern was an improvement in the load
balance at each synchronization point �data not shown�� Thus� these techniques had the desired
e�ect� to balance the bene�ts of prefetching� These techniques� however� are not general
purpose�
since they work well only on patterns that have inherently balanced amounts of computation and
of I�O� More sophisticated techniques might be necessary if a load imbalance already exists within
the application� On the other hand� increasing the cache size �and thus reducing the competition
for bu�ers� is a simple solution that was also e�ective �Section �����

����� Summary of Multiprocess prefetching

The experiments in this chapter are intended to measure the e�ectiveness of our prefetching and
caching techniques in a �le system incorporating parallel I�O� given perfect pattern prediction� We
found that prefetching did indeed help to signi�cantly reduce the average block read time and to
increase the cache hit ratio� generally contributing to a decrease in the overall execution time of
the parallel program� The cache hit ratio was an optimistic measure while the read time took into
account prefetching overhead and the hit
wait time as well as the cache hit ratio� Some important
contributors to the read time were the hit
wait time and the disk response time� The average block
read time and the hit ratio were only part of the story� The total execution time was the only good
indicator of overall performance�

Although these techniques were intended to reduce the I�O time seen by a parallel program�
they were most e�ective to a program that did some computation as well as I�O� since much
of the I�O time could be overlapped with the computation time� further reducing the I�O time
actually seen by the program� The speedup to be gained� however� was largest for programs that
were roughly balanced between computation and I�O� just overlapping their I�O with computation�
Indeed� parallel programs have opportunities for multiplying this overlap factor when more than one
process requires a particular disk block at the same time	 without prefetching� all processes must
wait for the I�O to complete� with prefetching� the I�O may be overlapped with the computation
of all processes�

The lw pattern bene�ted the most from prefetching� There are two reasons� both due to lw�s
overlapped access pattern� First� any prefetched block bene�ted all processes� Second� without
prefetching lw used only one disk at a time �every process waited for one block� then went on to
the next�� Prefetching was able to use all of the disks and thus run much faster�

There was no reason to avoid prefetching blocks needed too soon in the future� since our
experiments suggest that any advance work done reading a block was helpful in reducing the
e�ective access time for that block�

It may seem that a process that does little I�O would leave little time for prefetching to take
place� suggesting that the application should be interrupted for the purpose of prefetching� It
appears� however� that idle times are sucient for prefetching� Indeed� interrupting the application
may disturb carefully tuned sections of parallel algorithms� Therefore we advocate prefetching only
during application idle periods�

Chapter �

Automatic Prediction in Local

Patterns

In the previous chapter we established the potential for prefetching to improve the performance
of �le I�O� The results depend on the EXACT predictor� which had full knowledge of the access
pattern in advance� In any practical system an o�
line predictor like EXACT is not possible� so
on
line predictors are needed� In this chapter we examine several on
line predictors for local access
patterns �global patterns are treated in Chapter ��� to determine whether on
line predictors can
reach the full potential identi�ed in the previous chapter� This chapter compares several predictors
on a �xed set of architectural parameters� Chapter � examines the e�ects of these parameters on
one local predictor�

	�� Introduction

A predictor recommends blocks to prefetch by predicting the near future of the access pattern� On�
line predictors are designed to form their prediction at any point from only the access pattern seen
up to that point� As �le read requests occur� the predictor revises its prediction for the next block
�or blocks� to be accessed� These predictions are used for prefetching when time is available� The
RAPID
Transit testbed supports several predictors in addition to the original EXACT algorithm�
The experiments in this chapter determine what predictor to use for each type of local access
pattern� and whether there is any candidate for a single general
purpose local predictor� First we
describe the idea behind each predictor� Then we outline a set of experiments for evaluating the
predictors� performance� and present and discuss the results�

	�� The Predictors

Four basic and three hybrid predictors are de�ned here� These are all on
line predictors� making
predictions in real time based on the data at hand� Remember that predictors do not actually
prefetch anything� they are used by the prefetch module to make predictions� which are then used
for prefetching� There are two baseline predictors	 the original �o�
line� EXACT algorithm� and
the degenerate case of no prefetching� which we call the NONE predictor� Each predictor is suited
to a di�erent type of access pattern� although some may be more �exible than others� They also
vary in implementation complexity�

Depending on the mix of patterns in a given workload and the importance of optimizing for
particular patterns� one may be able to choose a speci�c predictor for that workload� Each of the

��

�� CHAPTER �� AUTOMATIC PREDICTION IN LOCAL PATTERNS

�rst six predictors is designed for a speci�c kind of pattern� However� one that is designed for the
lw pattern is de�nitely not the right choice for the rnd pattern� By mixing the characteristics
of several basic predictors� we derive three hybrid predictors that may more easily accommodate
multiple patterns�

����� OBL � OneBlock Lookahead

This algorithm always predicts block i � after block i is referenced� This is the only block it
recommends for prefetching� It has no prediction at the start�

Note that our implementation of OBL is not the same as most implementations of OBL found
in the literature� Usually� OBL implies prefetching the next block after every read� RAPID
Transit
prefetches only during process idle times� so blocks may not be prefetched after every read�

����� IBL � In�niteBlock Lookahead

This algorithm is like OBL� in that it predicts block i � after block i is referenced� It also predicts
that i �� i �� � � � will follow� and recommends that they all be prefetched in that order� Whether
they are actually prefetched� of course� depends on the currently available resources� IBL is a logical
extension of OBL� and is designed for the lw and seg patterns�

����� PORT � Portion Recognition

This algorithm attempts to recognize sequential portions� Essentially� PORT tries to handle the lfp
access
pattern family� It expects a regular portion length and regular portion skip �the distance from
the end of one portion to the beginning of the next�� Like IBL� it tries to predict the pattern further
ahead than the next reference� in order to prefetch more blocks� Unlike IBL� however� it limits the
number of blocks that it predicts into the future� This number of blocks is the prefetch distance�
because it represents a distance ahead in the access pattern� With a short prefetch distance� PORT
may predict a few blocks ahead in the pattern� but reach past hundreds of blocks in the �le by
jumping over portion skips� The prefetch distance depends on the following parameters	

MinLen is the number of blocks requested in a row necessary to call the observed sequence a
portion� We use MinLen���

LenRep is the number of consecutive� identical portion lengths needed to consider them regular�
We use LenRep���

SkipRep is the number of consecutive� identical portion skips needed to consider them regular�
We use SkipRep���

MaxDist is the upper limit on the prefetch distance� We use MaxDist���

PORT has no prediction at the start� and predicts nothing until it sees a few �MinLen� blocks
in a row� At this point it predicts a few blocks in advance� depending on a distance function
�below�� If it sees a new portion begin� it records the old portion length and the skip� If� after
a few �LenRep� portions� the length remains constant� it limits its predictions to portions of that
length� If the portion length is regular� and if the skip also remains constant �for SkipRep skips��
it predicts right over the skip into the next portion �possibly over multiple skips� if MaxDist is
greater than the portion length�� up to a distance of MaxDist�

���� THE PREDICTORS ��

The prefetch distance for PORT� when the portion length is irregular� is a function of the
current portion length c	

distance�c� �

���
��
� if c �MinLen
c�MinLen � if MinLen � c � MinLen MaxDist
MaxDist if c �MaxDist MinLen

The MaxDist cuto� serves to reduce the number of mistakes� In Section ����� we show that it can
also have another signi�cant e�ect on performance�

Choosing PORT Parameters

The value of the PORT parameters �MinLen� LenRep� SkipRep� and MaxDist� depend directly
on the expected workload� If the workload is always �or primarily� of one type of pattern� the
parameters may be chosen to optimize for that pattern� With a more general workload� the ability
to vary these parameters may make PORT more �exible� We discuss each parameter in turn� Note
that all parameters must be at least ��

MinLen should be small �� or �� unless the patterns in the workload suggest avoiding prefetching
in small portions� One example of such a workload is one consisting of two types of portions�
some tiny �say � blocks� and some huge �say ���� blocks�� Here� MinLen�� would defer
prefetching until the portion was con�rmed to be long� Preliminary experiments indicate
that a MinLen of � was a good choice to allow prefetching to begin immediately� MinLen��
was a slightly more conservative choice that was rarely much better than MinLen��� Note
that a random pattern �single blocks at random locations� does have regular portion lengths�
and PORT will not prefetch past the end of a regular portion length� Thus� MinLen�� does
not cause excessive prefetching in random patterns� a major fault of some predictors�

LenRep should also be small� probably � or �� If the portion lengths in the workload are always
�or nearly always� of regular length� then choose LenRep�� to quickly take advantage of this
regularity� Otherwise� choose LenRep���

SkipRep should also be about � or �� Choose SkipRep�� if the workload exhibits �xed skip
lengths� If there are random
access patterns in the workload� however� this will be a
poor choice� Thus� for any workload with some irregular skip lengths� choose SkipRep���
SkipRep�� should suce�

MaxDist is a much more �exible parameter� and may be much larger� PORT never prefetches
more than MaxDist blocks ahead of the current position� If MaxDist is too small� processor
and disk idle time may be wasted for lack of prefetching work� If MaxDist is too large�
the number of mistakes caused by an incorrect prediction may be high� Thus� the expected
accuracy of the predictions is an important factor in selecting MaxDist�

It is dicult to determine the best MaxDist for a particular workload� For highly regular
patterns� the prediction accuracy is likely to be high� so MaxDist may be large� For more
variable patterns� MaxDist should be lower� See Section ��� for a discussion of the sensitivity
of PORT to MaxDist�

����� ADAPT � Adaptive

This predictor also recognizes sequential portions� and is an attempt at handling lrp� It easily
recognizes the regular portion lengths of lfp� It makes no use of any regular skips� however�

�� CHAPTER �� AUTOMATIC PREDICTION IN LOCAL PATTERNS

ADAPT is based on probability theory� At any given time ADAPT has some idea of the portion

length distribution� From this distribution and the current portion length� ADAPT computes the
expected �nal length of the current portion given that the current portion is already a certain
length� This is the conditional expectation of the portion
length distribution��

Let L be the discrete random variable representing the portion length� and c be the length �so
far� of the current portion� Then the expected portion length of the current portion� given that it
is at least c� is given by

E�Ljc� �
X
x

x P �L � xjL � c��

The formula for conditional expectation is from �Tri���� This� by the de�nition of conditional
probability� becomes

E�Ljc� �
X
x

x
P �L � x and L � c�

P �L � c�
�

We can then divide the range of x into two parts� based on c�

E�Ljc� �
X
x�c

x
P �L � x and L � c�

P �L � c�

X
x�c

x
P �L � x and L � c�

P �L � c�
�

The �rst term drops out� since the numerator goes to probability zero� The second term can be
simpli�ed since �L � x and x � c� implies �L � c�� We now have simply

E�Ljc� �
X
x�c

x
P �L � x�

P �L � c�
�

We now de�ne the pmf and CDF of L	

pL�x� � P �L � x�

FL�x� � P �L � x�

�
X
y�x

pL�y��

Then we note that P �L � c� � � � FL�c� pL�c� and that this is independent of x� Then the
conditional expectation becomes

E�Ljc� �
�

�� FL�c� pL�c�

X
x�c

x pL�x��

We wish to use this formula without advance knowledge of the distribution of L� We thus
de�ne the distribution of L by the portions seen before the current portion� ADAPT records
enough information about the distribution to be able to compute pL�x� �for any x� and FL�c�
easily� and computes the expected portion length every time c changes�

There is a case where the above formula does not work� When the current portion is longer
than any prior portion �which is always true for the �rst portion�� the function becomes in�nite�
In this case we use a simple distance predictor �as with PORT�� shown below� Thus this algorithm
is also a�ected by the MaxDist parameter�

distance�c� �

�
c if c �MaxDist
MaxDist if c �MaxDist

�The concept for ADAPT is loosely based on Smith�s method �Smi��c	�

���� EXPERIMENTS AND METHODS ��

This is equivalent to the formula

E�Ljc� �

�
�c if c �MaxDist
c MaxDist if c �MaxDist

����� IOBL � IBL�OBL

IOBL is a hybrid predictor� combining IBL and OBL� It is IBL when started� and becomes OBL
whenever an incorrect decision is made� This happens at the �rst portion break� if any� We pay a
little overhead over each of the two algorithms for more generality� The success of this predictor
depends on the workload consisting of one long sequential portion� or many short portions� IBL
alone is probably better for a pattern with multiple long portions�

����� IPORT � IBL�PORT

IPORT is a mixture of IBL and PORT� PORT uses a distance function that is limited to MaxDist�
IPORT uses the same function� but removes the limit when in the �rst portion� Thus� during the
�rst portion� we nearly have IBL� although retaining some conservatism to avoid too many mistakes
in multi
portion patterns� Once a portion break is noticed� IPORT becomes exactly PORT�

����	 IOPORT � IBL�OBL�PORT

This hybrid is slightly more conservative than IPORT� in that it uses OBL instead of the linear
function when in irregular portions� The prefetch distance function is the same as for PORT� with
MaxDist�� for irregular portions� and MaxDist�� for the �rst portion�

	�� Experiments and Methods

In this set of experiments we evaluate all of our local predictors in terms of their ability to improve
performance on our synthetic workload� We note the strengths and weaknesses of each predictor�
and identify a predictor �or set of predictors� that work best for each pattern� We also try to
determine whether any one predictor is generally useful for all workloads�

All predictors �including NONE and EXACT� were used with each local access pattern� com

putation ratio� and synchronization style� Each combination of these four parameters represented
one test case� For each test case� we averaged the total execution time over �ve trials� and used
this as our comparison measure� We recorded many other measures �Section ������ although we do
not directly report them here�

For the ADAPT and the PORT family predictors� which required the MaxDist parameter� we
chose MaxDist��� This choice was fairly arbitrary� Section ��� examines the e�ect of MaxDist on
the PORT
family predictors�

We used our standard workload set� but restricted it to local access patterns� This set included
the lfp� lrp� lw� and seg patterns� We added the rnd pattern here since it is important for
predictors to properly handle random
access patterns�� The synchronization styles were� as before�
each��	�� neighbor��	�� total�
		�� and none� Each test was repeated with computation simulated
between block reads� averaging �� msec per block�

�They need not handle global patterns� which are handled by global predictors �Chapter �
� The choice of a local
or global predictor can also be automated �Section ���
�

�� CHAPTER �� AUTOMATIC PREDICTION IN LOCAL PATTERNS

The other experimental parameters were the same as in our previous experiments� There were
�� processes and �� disks� Each process read ��� records �blocks� for a total of ����� There were
�� bu�ers in the cache� with up to �� allowed for prefetched blocks� The record and block sizes
were both � KByte� We used the standard prefetching mechanism with none of our other variations
�i�e�� no prefetching
for
others� no private prefetch bu�ers� and no minimum prefetch lead��

To use the results of these experiments to choose a predictor for a given workload� one must know
the relative predominance of each of our pattern types in the given workload� Practical workloads
likely do not have the same composition as our synthetic workload� Since the predictors respond
di�erently to the patterns in our workload� we describe the results for each pattern separately� For
unknown workloads� we de�ne the requirements for a general
purpose predictor� and compare our
predictors to �nd a good general
purpose predictor�

	�� Results and Discussion for each Pattern

Our comparison measure is the total execution time� For each test case� we averaged the total
execution time over �ve identical trials� The cv was always less than �� �������� seconds except for
one case�� Thus� small di�erences in total execution time should be ignored� We present a separate
graph for each pattern� including the maximum cv for that graph in its caption� Each graph plots
the total execution times for all test cases in a horizontal bar chart� The graphs group the test
cases by synchronization style� to allow easy comparison of the di�erent predictors� The predictors
are ordered so as to group the IBL family �IBL� IOBL� IPORT� IOPORT� and the PORT family
�PORT� IPORT� IOPORT�� The NONE �no prefetching� case is drawn as dotted lines� both vertical
and horizontal� to facilitate comparison� Occasionally� a predictor was faster than EXACT� These
anomalies are discussed in Section ������

The results for lw are shown in Figures �������� The key to success with both lw patterns was
IBL �one anomaly in lw with computation is described in Section ������� The performance was
almost identical to EXACT� so here on
line prediction was successful� The hybrid predictors all
attempted to mimic IBL on lw patterns and thus came close in performance� The worst performer
was OBL� whose conservatism sharply limited the number of disks used simultaneously� This is an
example of where a simple predictor useful for uniprocessor� single
disk systems was not sucient
for multiprocessor� parallel
disk systems�

���� RESULTS AND DISCUSSION FOR EACH PATTERN ��

neighbor

each

total

none

� � 	 � � �
 � � �
seconds

Total execution time for lw

NONE �����
EXACT �����

ADAPT ���	�
PORT ���	�

IPORT ���
�
IOPORT ���
�

IBL �����
IOBL �����

OBL �����

NONE �����
EXACT �����

ADAPT ���	�

PORT ���	�
IPORT �����

IOPORT �����
IBL �����

IOBL �����
OBL �����

NONE �����

EXACT �����
ADAPT ���	�

PORT �����
IPORT �����

IOPORT �����
IBL �����

IOBL �����

OBL ���
�

NONE �����
EXACT �����

ADAPT �����
PORT �����

IPORT ���
�
IOPORT ���
�

IBL �����
IOBL �����

OBL ���
�

Figure ���	 Total execution times for lw� �cv � ������

�� CHAPTER �� AUTOMATIC PREDICTION IN LOCAL PATTERNS

neighbor

each

total

none

� 	 �
 � �� �	
seconds

Total execution time for lw with computation

NONE ����	�
EXACT ���	�

ADAPT ���
�
PORT �����

IPORT �����
IOPORT �����

IBL ���	�
IOBL �����

OBL �
���

NONE ������
EXACT �����

ADAPT �����

PORT �����
IPORT �����

IOPORT �����
IBL �����

IOBL �����
OBL �
���

NONE ������

EXACT �����
ADAPT �����

PORT �����
IPORT �����

IOPORT �����
IBL �����

IOBL �����

OBL �
���

NONE ������
EXACT �����

ADAPT ���	�
PORT ���	�

IPORT �����
IOPORT �����

IBL �����
IOBL �����

OBL �����

Figure ���	 Total execution times for lw with computation� �cv � ������

���� RESULTS AND DISCUSSION FOR EACH PATTERN ��

The results for lfp are shown in Figures �������� The most striking feature in Figure ��� is that
IBL was much slower than the others� IBL made many mistakes at each portion skip� The IBL
hybrids avoided most of the mistakes by switching to OBL or PORT at the end of the �rst portion�
The PORT family and ADAPT are designed to recognize lfp patterns� and so they were more
successful� Still� only small bene�ts �i�e�� improvement over NONE� were obtained for lfp� With
computation� however� the bene�ts were more signi�cant� Here� the PORT family and ADAPT
were essentially tied� All have the same ability to recognize the �xed
length portions� and avoid
mistakes after the start of the third portion� ADAPT could not prefetch into future portions� like
PORT� but that does not seem to have been a de�ciency here�

There were several anomalies due to the greedy
process problem �Section ������� which are
discussed further in Section ������ ADAPT was sometimes faster than the PORT family because
its limitation to prefetching within a portion helped to solve the greedy
process problem� PORT was
highly sensitive to the MaxDist parameter in this pattern �see Section ����� Indeed� with di�erent
�lower� MaxDist values� PORT avoided the problem and did as well or better than ADAPT� The
greedy
process problem was also solved� and better performance obtained� with a large ���
block
cache �see Section �����

�� CHAPTER �� AUTOMATIC PREDICTION IN LOCAL PATTERNS

neighbor

each

total

none

� 	 �
 � �� �	
seconds

Total execution time for lfp

NONE �����
EXACT �����

ADAPT �����
PORT �����

IPORT �����
IOPORT �����

IBL ������
IOBL ���
�

OBL �����

NONE �����
EXACT �����

ADAPT �����

PORT �����
IPORT �����

IOPORT �����
IBL �����

IOBL �����
OBL �����

NONE �����

EXACT �����
ADAPT �����

PORT �����
IPORT ���
�

IOPORT �����
IBL ����	�

IOBL �����

OBL ���	�

NONE �����
EXACT �����

ADAPT �����
PORT �����

IPORT �����
IOPORT �����

IBL �
���
IOBL ���
�

OBL �����

Figure ���	 Total execution times for lfp� �cv � ������

���� RESULTS AND DISCUSSION FOR EACH PATTERN ��

neighbor

each

total

none

� 	 �
 � �� �	 �� �
 �� 	�
seconds

Total execution time for lfp with computation

NONE ��	���
EXACT ����	�

ADAPT ������
PORT ������

IPORT ������
IOPORT ������

IBL ������
IOBL ������

OBL ������

NONE ������
EXACT ������

ADAPT ����
�

PORT ������
IPORT ������

IOPORT ������
IBL ������

IOBL ����	�
OBL ����	�

NONE ��	���

EXACT ������
ADAPT ������

PORT ������
IPORT ������

IOPORT ������
IBL ������

IOBL ����
�

OBL ����
�

NONE ������
EXACT �
���

ADAPT �
���
PORT �
�
�

IPORT �����
IOPORT �����

IBL ������
IOBL ������

OBL ������

Figure ���	 Total execution times for lfp with computation� �cv � ������

�� CHAPTER �� AUTOMATIC PREDICTION IN LOCAL PATTERNS

In the lrp pattern �Figure ����� the OBL predictor performed better than less
conservative
predictors �those that prefetched further ahead of the current position�� Only the OBL family was
signi�cantly faster than NONE� More ambitious predictors �such as IBL� made toomany mistakes in
this hard
to
predict pattern� Thus� conservatism in the predictor was the key to success� validating
OBL hybrids like IOBL and IOPORT� ADAPT seems to have been too slow to learn the nature of
the portion
length distribution to make e�ective predictions�

In lrp with computation �Figure ����� the results were more mixed� and either PORT or OBL
was the best choice� This pattern allowed more opportunities to overlap computation and I�O� and
thus a more ambitious predictor �like PORT� had some success� In general� though� OBL was a
safe choice for lrp� The hybrids IOBL and IOPORT� intended to mimic OBL in lrp
like patterns�
came fairly close to OBL in most cases� and were thus reasonable substitutes� No predictor could
match EXACT� which was immune to mistakes�

���� RESULTS AND DISCUSSION FOR EACH PATTERN ��

neighbor

each

total

none

� 	 �
 � �� �	 ��
seconds

Total execution time for lrp

NONE �����
EXACT ���	�

ADAPT �����
PORT �����

IPORT �����
IOPORT �
���

IBL ������
IOBL �
���

OBL �
���

NONE ������
EXACT ���
�

ADAPT ������

PORT ������
IPORT ����
�

IOPORT ������
IBL ������

IOBL �����
OBL �����

NONE �����

EXACT �����
ADAPT ������

PORT ����	�
IPORT ������

IOPORT �����
IBL ������

IOBL �
���

OBL �
�
�

NONE �
���
EXACT �����

ADAPT �����
PORT �
���

IPORT �
�
�
IOPORT �����

IBL �����
IOBL ���
�

OBL �����

Figure ���	 Total execution times for lrp� �cv � ������

�� CHAPTER �� AUTOMATIC PREDICTION IN LOCAL PATTERNS

neighbor

each

total

none

� 	 �
 � �� �	 �� �
 ��
seconds

Total execution time for lrp with computation

NONE ����
�
EXACT ������

ADAPT ����	�
PORT ������

IPORT ������
IOPORT ������

IBL ������
IOBL ������

OBL ����
�

NONE ��	���
EXACT ����
�

ADAPT ������

PORT ������
IPORT ������

IOPORT ����	�
IBL ����	�

IOBL ������
OBL ������

NONE ��	���

EXACT ������
ADAPT ������

PORT ������
IPORT ������

IOPORT ����	�
IBL ����	�

IOBL ����	�

OBL ������

NONE ������
EXACT �
���

ADAPT ������
PORT ������

IPORT ������
IOPORT ������

IBL ����	�
IOBL ������

OBL ������

Figure ���	 Total execution times for lrp with computation� �cv � ������

���� RESULTS AND DISCUSSION FOR EACH PATTERN ��

The EXACT predictor is not used with the rnd pattern �Figure ����� since no prefetching is
reasonably possible� here� EXACT is conceptually equal to NONE� The rnd pattern required a
predictor more intelligent than OBL or IBL� which both performed poorly due to mistakes� ADAPT
or any of the PORT family suced� In any random pattern� any prefetching is usually wasted� and
thus only slows down the computation� A predictor must shut o� prefetching to be successful with
rnd� The results for rnd with computation are similar �not shown��

neighbor

each

total

none

� � �� �� 	� 	� �� �� �� ��
seconds

Total execution time for rnd

NONE ������

ADAPT ������
PORT ������

IPORT ������
IOPORT ����	�

IBL ������
IOBL ����	�

OBL ����	�

NONE ������

ADAPT ������

PORT ������
IPORT ������

IOPORT ������
IBL ������

IOBL ��
���
OBL ��
���

NONE ������

ADAPT ����
�

PORT ����
�
IPORT ������

IOPORT ����
�
IBL ��
���

IOBL ������

OBL ����	�

NONE ������

ADAPT ������
PORT ������

IPORT ������
IOPORT ������

IBL ������
IOBL ��	���

OBL ��	���

Figure ���	 Total execution times for rnd� �cv � ������

�� CHAPTER �� AUTOMATIC PREDICTION IN LOCAL PATTERNS

The seg pattern was dicult to handle� since the disk access pattern is critical to performance
�Figures ��������� The disk access pattern was more important than the prediction accuracy or
other factors� In the seg pattern� all processes began their round
robin disk access pattern on
the same disk� This caused severe initial contention� followed by a neat pipelining of processors
through the disks� Synchronization and prefetching both interfered with this pipeline� It turns out
that a larger cache helped to handle disk contention by allowing more prefetching� much better
performance was possible �Section �����

When the disk access pipeline was reset at each synchronization point� as in each��	� synchro

nization� the large amount of prefetching allowed by IBL predictors helped to spread out the disk
accesses after the synchronization point� reducing disk contention� Thus� the IBL family was best
for each��	�� The conservative OBL was best for the total
 and non
synchronized cases� maintaining
a neat pipelined access pattern� MaxDist
limited predictors PORT and ADAPT were similar to
OBL for neighbor��	� and none� Adding computation �Figure ���� allowed more potential for over

lap between computation and I�O� and the conservatism of OBL was no longer necessary� PORT
and ADAPT were generally best� except for each��	�� where the IBL family was still best�

���� RESULTS AND DISCUSSION FOR EACH PATTERN ��

neighbor

each

total

none

� � �� �� 	�
seconds

Total execution time for seg

NONE �����
EXACT �
���

ADAPT �����
PORT ���
�

IPORT ���
�
IOPORT �����

IBL �
���
IOBL �
���

OBL �����

NONE ��
���
EXACT ������

ADAPT ������

PORT ������
IPORT ������

IOPORT ����	�
IBL ������

IOBL ������
OBL ������

NONE �����

EXACT �����
ADAPT �
���

PORT �
���
IPORT �
���

IOPORT �
���
IBL �
���

IOBL �
���

OBL ���	�

NONE �����
EXACT �����

ADAPT ���
�
PORT �����

IPORT �����
IOPORT �����

IBL �����
IOBL �
���

OBL �����

Figure ���	 Total execution times for seg� �cv � ������

�� CHAPTER �� AUTOMATIC PREDICTION IN LOCAL PATTERNS

neighbor

each

total

none

� � �� �� 	� 	� ��
seconds

Total execution time for seg with computation

NONE ������
EXACT ������

ADAPT ������
PORT ������

IPORT ����	�
IOPORT ������

IBL ������
IOBL ������

OBL ����
�

NONE ��	���
EXACT ������

ADAPT ������

PORT ������
IPORT ������

IOPORT ������
IBL ������

IOBL ������
OBL ������

NONE ������

EXACT ����
�
ADAPT ������

PORT ������
IPORT ������

IOPORT ������
IBL ������

IOBL ������

OBL ������

NONE ������
EXACT �����

ADAPT �
���
PORT �
���

IPORT �
���
IOPORT �
���

IBL �����
IOBL �����

OBL ������

Figure ���	 Total execution times for seg with computation� �cv � ������

���� RESULTS AND DISCUSSION FOR EACH PATTERN ��

A slightly di�erent seg access pattern� reading ��� blocks rather than ��� blocks per process�
starts each process on a di�erent disk� Thus� the pipeline is explicitly built into the pattern� The
results for this pattern� seglong� are shown in Figure ����� OBL was consistently the fastest
predictor� OBL did not disturb the pipeline� especially under the tight each��	� synchronization�
while still prestaging accesses to keep the disks fully utilized� In comparing with Figure ���� it is
interesting to note that this pattern� though longer� runs faster� because of the explicit pipeline�
As before� the disk access pattern is more important than the ability of the predictor�

neighbor

each

total

none

� 	 �
 � ��
seconds

Total execution time for seglong

NONE ���
�
EXACT �����

ADAPT �����
PORT �����

IPORT �����
IOPORT �����

IBL �����
IOBL �����

OBL �����

NONE �����
EXACT �����

ADAPT �����

PORT �����
IPORT �
���

IOPORT �
���
IBL �
���

IOBL �
���
OBL �����

NONE �����

EXACT ���
�
ADAPT �����

PORT �����
IPORT ���
�

IOPORT �
���
IBL ���
�

IOBL �
���

OBL �����

NONE �����
EXACT �����

ADAPT �����
PORT �����

IPORT �����
IOPORT ���
�

IBL �����
IOBL ���
�

OBL �����

Figure ����	 Total execution times for seglong� which is a slightly longer pattern� �cv � ������

�� CHAPTER �� AUTOMATIC PREDICTION IN LOCAL PATTERNS

When a variable amount of computation accompanied each block read in the seglong pat

tern� the pipeline was disrupted and the advantage of OBL was lost� In each test case� PORT
was at least equivalent �within measurement error� to the best predictor for this pattern� shown
in Figure ����� More than one
block lookahead was clearly necessary here� Indeed� for all but
the neighbor
synchronized cases all on
line predictors except OBL were similar� The anomaly in
the neighbor
synchronized tests is similar to that in the seg pattern with computation� which is
discussed in Section ������

neighbor

each

total

none

� 	 �
 � �� �	 �� �
 ��
seconds

Total execution time for seglong with computation

NONE ����	�
EXACT �����

ADAPT �����
PORT �����

IPORT ������
IOPORT ������

IBL ������
IOBL ������

OBL ������

NONE ����
�
EXACT �����

ADAPT ���
�

PORT ���
�
IPORT ������

IOPORT ������
IBL ������

IOBL ������
OBL ������

NONE ������

EXACT ���
�
ADAPT ������

PORT ������
IPORT ������

IOPORT ����	�
IBL ����	�

IOBL ������

OBL ������

NONE ������
EXACT �
���

ADAPT �
���
PORT �
�	�

IPORT �
���
IOPORT �
���

IBL �
�	�
IOBL �
���

OBL ����	�

Figure ����	 Total execution times for seglong with computation� �cv � ������

���� RESULTS AND DISCUSSION FOR EACH PATTERN ��

����� Choosing a Generalpurpose Predictor

The determination of the �best� predictor clearly depends on the relative importance of di�erent
access patterns in a particular workload� Given knowledge of the workload� the preceding discussion
helps to choose the best predictor� With a highly
mixed workload� or no knowledge of the workload�
a general
purpose predictor is necessary� A general
purpose predictor should work reasonably well
on all workloads� and provide high performance to most of the access patterns encountered� We
designed the hybrid predictors in the search for a general
purpose predictor� Although our synthetic
workload is not necessarily typical� it is broad enough to encompass the many kinds of patterns
that may be found in practical workloads� We thus use our synthetic workload to evaluate our
predictors	 a general
purpose predictor will handle all test cases reasonably� and most test cases
well�

Our �rst comparison measure was the percent deviation of each predictor�s time from that of
the best on
line predictor� Thus� if the total execution time on a given test with on
line predictor
i is ti� and the best time tb is de�ned to be the minimum ti� the percent deviation for predictor i is

di �
ti � tb
tb

� �����

If the deviation for a predictor were zero in every test case� then the predictor would be the best
choice for every test case� This is unlikely� but we can expect a general
purpose predictor to have
many deviations near zero without any that are high� Since the run time for each predictor was
averaged over �ve trials� and the run time often varied by about ��� deviations of this magnitude
were indistinguishable from noise in the data� Thus a deviation of less than �� should be considered
to be essentially no deviation�

The collection of deviations for each predictor forms a distribution� We present each distribution
in a common graphical form called the box plot� which allows inspection of �ve key points	 the
minimum� maximum� median� and lower and upper fourths� These �ve points divide the distribution
into four parts� each representing one quarter of the data points in the distribution� The position
and size of these parts summarize the shape of the distribution�

The box plot of the deviation distribution for each predictor is shown in Figure ����� Each
distribution is given on a separate line� with a circle representing the median� and a line on either
side representing the upper and lower fourths of the distribution� In this particular plot� the
lower fourth is barely visible� if at all� The OBL and IBL distributions are cut o� on the right�
since their maximums are large� The predictors are grouped somewhat to keep the PORT family
�PORT� IPORT� IOPORT� and the IBL family �IBL� IOBL� IPORT� IOPORT� together for easy
comparison�

From Figure ����� ADAPT and the PORT family had the lowest median deviations �less than
���� IPORT and IOPORT had the additional advantage of a low maximum ������ meaning
they were never more than a third slower than the best predictor for any test case� There is
little information here to distinguish IOPORT from IPORT� Note that the simple OBL and IBL
predictors were poor general
purpose selections�

A similar comparison measure computes the percent deviation from NONE� This is the negative
of the percent improvement due to prefetching� In Figure ����� negative percent deviation represents
improvement due to prefetching� and positive deviation represents a slowdown due to prefetching�
IBL is again cut o� on the right� Although all on
line predictors had similar medians ��� to ���
improvement�� IOPORT had the lowest maximum ����� slowdown�� and the IBL family had the
lowest minimum ������� improvement�� Here the di�erence between IOPORT and IPORT is
more clear� since IPORT had a higher maximum deviation� IOPORT was thus a good choice for a
general
purpose predictor�

�� CHAPTER �� AUTOMATIC PREDICTION IN LOCAL PATTERNS

ADAPT

PORT

IPORT

IOPORT

IBL

IOBL

OBL

� 	� �� �� ��� �	� ���
Percent Deviation

Deviation from Best Total Execution Time

OBL to max ���

IBL to max 	��

�

�

Figure ����	 A box plot of the percent deviation from the best for each test case� The lowest
medians belong to ADAPT and the PORT family� but the lowest maximums to the hybrid PORT
patterns�

EXACT

ADAPT

PORT

IPORT

IOPORT

IBL

IOBL

OBL

���� ��� � �� ���
Percent Deviation

Total Execution Time� Deviation from NONE

IBL to max 	�� �

Figure ����	 A box plot of the percent deviation from NONE�

���� RESULTS AND DISCUSSION FOR EACH PATTERN ��

A box plot of the predictors compared to EXACT �not shown� was of little use due to several
anomalies� where on
the
�y predictors beat EXACT� EXACT was a perfect predictor in terms of
accuracy� but was unfortunately not a perfect �best case� for comparing results�

����� Anomalous Cases

In some cases an on
line predictor actually beat the EXACT algorithm� The reason varied with
the case� but each depended on an e�ect separate from prediction issues� We discuss each e�ect
separately here�

The Greedy�Process Problem

This problem a�ecting the lfp pattern involved an imbalance in the bene�ts of prefetching� One or
more processes prefetched an inordinate amount for themselves� using all of the bu�ers and slowing
down the other processes �page ���� With explicit inter
process synchronization the computation as
a whole was slower� This e�ect was responsible for the anomaly in the lfp pattern with each��	� and
neighbor��	� synchronization� with or without computation� With some mechanism for balancing
the bene�ts of prefetching� the performance of EXACT would improve� For example� the MaxDist
cuto� in PORT restricted the prefetching of individual processes� allowing all processes a chance
to prefetch� By similarly restricting the EXACT predictor� its performance improved� This points
out that perfect prediction does not guarantee the best performance�

As an example� consider lfp with computation and neighbor��	� synchronization� With EXACT
it completed in ���� seconds whereas PORT and ADAPT took ���� and ���� seconds respectively�
Varying the MaxDist parameter demonstrates the dependence	

MaxDist
Algorithm � � �� �� �� ��

PORT ���� ���� ���� ���� ���� ����
ADAPT ���� ���� ����

Once we removed the low MaxDist restriction from PORT� its run time climbed to match that of
EXACT� ADAPT� by its nature� was limited to prefetch within the portion� A similarly restricted
EXACT had a total time of ���� seconds� The other lfp anomalies can be explained in the same
way� The e�ect of MaxDist on PORT is discussed further in Section ����

The lw Phase Problem

In the lw pattern� all processes read the same set of blocks in the same order� As long as they
all read them at about the same time� the cache ensured that each block was only read from the
disk once� If the processes became spread out over the �le� reading a wide range of blocks� blocks
may have been read from disk� used� and �ushed from the cache before they were needed by some
process� This process must then reread the block from the disk�

In some cases synchronization� or a balanced load� ensured that the processes stayed together�
With variable computation per block� and with the loose neighbor��	� synchronization� the pro

cesses spread out� In this case� EXACT ran in ��� seconds ���� disk reads�� while PORT and
ADAPT took ��� or ��� seconds ���� disk reads�� In fact� only OBL� PORT� and ADAPT managed
to stay together� Again� it was the MaxDist restriction that solved the problem�

One possible solution to this problem is to predict the number of uses of each block from the
number of uses of previous blocks in the pattern� Then only �ush blocks from the cache when

�� CHAPTER �� AUTOMATIC PREDICTION IN LOCAL PATTERNS

they have been used the predicted number of times� This would require some �exibility� since non

integral record sizes would cause inequalities in the number of uses of di�erent blocks� In addition�
if the prediction is incorrect� another mechanism is needed to expire the block�

In a more exact solution to this problem� processes record their �interest� in a block whenever
they predict the block� We add a counter for each block to count the processes interested in the
block� The counter is incremented when a process selects the block� and decremented when a
process uses the block� The �rst interested process also prefetches the block� The block remains
in the bu�er until the interest count drops to zero� This has bene�ts whenever many processes try
to prefetch a block� either correctly or incorrectly� This mechanism is not guaranteed to solve the
problem with lw� since it is possible for a process to not mention its interest in a block until after
the block is prefetched� used� and �ushed by other processes�

When the tests for lw with computation and neighbor��	� synchronization were repeated with
the latter solution in place� the problem disappeared� Only ��� blocks were read in all cases�
Although NONE and OBL were not a�ected� all of the other predictors managed to lower their
time to ��� seconds� Although this mechanism seems like a desirable addition� it is not the default
in the rest of our experiments�

Disk Access Pattern Details

The seg pattern produced a most dicult disk access pattern	 all processes read from the disks in
a round
robin fashion� and all began on the same disk� This could cause a lot of disk contention�
and the e�ect of the predictor �or synchronization� on this pattern could mask the eciency of the
predictor�

Without prefetching� the processes fell into a pipeline� With prefetching� this pipeline often
never formed and the accesses became more spread out� With a lot of prefetching� the access times
became highly variable� the synchronization times increased� and the computation slowed down�

For example� in seg with neighbor��	� synchronization� EXACT required ��� seconds� while
PORT and ADAPT needed only ��� and ��� seconds� We devised some special variants of the
prediction algorithms	 the �rst was EXACT with a maximum distance restriction on each process�
the second was PORT with a distance function �xed at MaxDist� Note that changing the PORT
limit to a �xed number� instead of the varying function� only a�ected prefetching at the beginning
of the pattern� since there was only one portion in this pattern� The e�ect of the limit parameter
is shown for several algorithms below�

Limit
Algorithm � � �� �� �� ��

Restricted EXACT ��� ��� ��� ��� ��� ���
Fixed PORT ��� ��� ��� ��� ��� ���
PORT ��� ��� ��� ��� ��� ���
ADAPT ��� ��� ��� ��� ��� ���

EXACT was improved by sharply restricting its prefetching �to OBL� essentially�� PORT and
ADAPT were best with a moderate limit of �� Thus� a local limit on the prefetching distance led
to the best performance� Indeed� the pattern with no limit on the prefetch distance� IBL �and its
hybrid variants�� had the poorest performance for this synchronization style�

Similar results were found for seg with computation and neighbor��	� synchronization� The
same explanation does not work� however� for the unsynchronized case� which also appeared anoma

lous� The above explanation for the anomaly blames the slowdown on increased synchronization
delays� With no synchronization this cannot happen� Using the same special set of experiments

���� OVERHEAD ��

we found that the Fixed PORT predictor slowed down to match EXACT� and Restricted EXACT
was no faster� Thus� we believe that it was the relatively conservative startup used by PORT and
ADAPT that allowed the pipeline to be primed correctly� giving better performance�

	�� Overhead

One measure of the overhead of the predictor was the noti�cation time �page ���� the amount
of time used to notify the predictor of each block that was referenced� Since this was time out
from processing a read� not overlapping some otherwise idle time� it was important to keep the
noti�cation mechanism ecient� Another part of the predictor overhead came during prefetching�
when the predictor was asked for a prediction�

The predictors did most of their work during noti�cation and quickly provided predictions when
they were requested� If there were any blocks prefetched by mistake� the noti�cation procedure
arranged for their removal from the cache� This could take a long time� and mask the pure
noti�cation time of the predictor�

We recorded the noti�cation time for each test case� averaged over the ���� references in the
test� In Figure ����� the distribution of these average noti�cation times is shown for each predictor�
Some cases had large noti�cation times� from processing many prediction mistakes� This was
particularly apparent when the IBL predictor was used with the rnd pattern� For all predictors�
however� the median noti�cation time over all test cases was less than ��� msec� and the lower
fourth was under ���� msec� These represent the test cases where few mistakes were made� and
indicate that the noti�cation overhead was usually negligible� The cost of mistakes� however� was
occasionally quite high�

NONE

EXACT

ADAPT

PORT

IPORT

IOPORT

IBL

IOBL

OBL

���� ���� ���� ���� ���� ����
Notication Time �msec�

Average Predictor�Notication Time

IBL to max �
�	�

Figure ����	 The average time needed to notify the predictor for each block referenced�

�� CHAPTER �� AUTOMATIC PREDICTION IN LOCAL PATTERNS

	�	 The Sensitivity of PORT Predictors to the MaxDist
Parameter

MaxDist is an important parameter of all the PORT
family predictors� since it controls the amount
of prefetching by limiting predictions to the near future� An understanding of MaxDist�s e�ect
allows us to better understand PORT� and to tune PORT for particular workloads� To determine
the sensitivity of PORT to MaxDist� we experimented with a range of MaxDist values �� to ���
for every test case and all three PORT predictors �PORT� IPORT� IOPORT�� Although the data
are too numerous to show here� we summarize the results below� using total execution time as the
performance measure� The general behavior was often dicult to characterize� implying no simple
relationship between MaxDist and PORT performance� but we present the key observations�

Note that MaxDist was inherently ignored in many cases	 in the IPORT and IOPORT predictors
for lw and seg patterns� since they were in IBL mode� and in the IOPORT predictor for lrp
patterns� since it was in IBL and then OBL mode� MaxDist was irrelevant to all three predictors
in the rnd pattern�

lw� MaxDist is only relevant to PORT� The total execution time decreased steadily with increasing
MaxDist� slowly approaching the constant performance of IPORT and IOPORT� Since for lw PORT
with a large MaxDist is essentially the same as IPORT� which in turn is the same as IBL� this
behavior is no surprise� The lw pattern needs a lot of prefetching� and IBL �or an imitation� is the
best way to do it� The same results hold with and without computation�

lfp� MaxDist is relevant to all three predictors� The lfp pattern is easily predicted� once the
regular portions are recognized� Thus� early conservatism is warranted until the regularity is de

tected� and then aggressive prefetching can be used for the bulk of the pattern� However� the
greedy
process problem �Section ������ is always an issue with lfp� Here� a low MaxDist helped
to limit prefetching and avoid the greedy
process problem� In most cases� execution was fastest
with MaxDist��� and then slowed down steadily for increasing MaxDist� as the greedy
process
problem became more signi�cant� It did level o� around MaxDist���� when other factors �such
as the prefetch limit or prefetch overhead� limited prefetching� The exception was total�
		� syn

chronization� which was slow for MaxDist�� and for high MaxDist� but had a sharp minimum at
MaxDist��� Note that � is exactly a single process�s share of the prefetch limit� thus� MaxDist�� is
essentially an implementation of private prefetch limits �PPL� page ���� one of our earlier solutions
to the greedy
process problem� Although there are better solutions to the problem �e�g�� PFO or a
larger cache�� PPL may be implemented with MaxDist equal to the prefetch limit divided by the
number of processes�

With computation� however� the conservatism of MaxDist�� �OBL� was not as successful�
Adding computation to the pattern provided an opportunity for prefetching to overlap computation
and I�O� Thus� a successful prefetch was even more bene�cial� and a mistake was less costly� All
three predictors were worst at MaxDist��� speeding up signi�cantly with increasing MaxDist until
about MaxDist�� �MaxDist�� for each��	��� Thus� the bene�ts of the added prefetching were
important� Beyond MaxDist��� total�
		� and none leveled o�� but each��	� and neighbor��	�
slowed down slightly� showing a return of the greedy
process problem�

lrp� MaxDist is not relevant to IOPORT� which is in IBL and then OBL mode� The PORT and
IPORT predictors were equivalent to IOPORT at MaxDist��� where they all have the conservatism
of OBL� which was successful in this hard
to
predict pattern� From there� however� PORT slowed

��	� CONCLUSIONS ��

down steadily with increasing MaxDist� as more predictions were mistakes� It leveled o� around
MaxDist���� Thus for lrp the best MaxDist was ��

As before� conservatism was a poor policy when there was computation to overlap with I�O�
PORT was similar to IPORT and IOPORT at MaxDist��� sped up for moderate MaxDist values
�around ��� and then slowed down for larger MaxDists� Thus for this pattern a moderate MaxDist
of � was best� representing the moderate predictability of lrp�

seg� MaxDist is only relevant to PORT� since the others are in IBL mode� The results for PORT
were complicated� and highly dependent on the synchronization style� The root of all explanations
is seg�s dicult disk access pattern� Each process began its round
robin disk access pattern on the
same disk� so there was a lot of disk contention� Under the right conditions� the processes begin a
pipeline through the disks� which can be successful� Strong synchronization �such as each��	�� or
aggressive prefetching can disrupt the pipeline�

With no synchronization� MaxDist�� limited prefetching and kept the pipeline intact� PORT
was fastest at MaxDist��� and slowed steadily as MaxDist increased� eventually matching IPORT
and IOPORT �which are in IBL mode� similar to having a high MaxDist�� For each��	� synchro

nization the opposite was true	 PORT was slowest at MaxDist��� and slowly sped up to match
IPORT at higher MaxDist values� Here� the pipeline is emptied at each synchronization point� and
the aggressive prefetching of a large MaxDist helped to �ll it quickly after each synchronization�
The total�
		� and neighbor��	� synchronization styles� compromises in terms of synchronization�
needed a compromise in MaxDist� PORT was faster than IPORT at MaxDist��� but sped up
around MaxDist�� and then slowed to match IPORT for high MaxDist values� This kept the
pipeline full without overly disrupting it�

As always� with computation more prefetching was necessary for best performance� Here�
MaxDist�� was slowest� in contrast to the above result� This corresponds to the poor perfor

mance of OBL on seg with computation� Except in neighbor��	� synchronization� PORT sped
up with increasing MaxDist to match IPORT and IOPORT for large MaxDist� The neighbor��	�
synchronization still needed a compromise� with PORT slow for low and high MaxDist� and a deep
minimum at MaxDist���

Summary� There are several issues involved in MaxDist�s e�ect on the PORT family of predictors�
First� in some cases it is irrelevant� Second� since it controls the aggressiveness of prefetching� its
e�ect corresponds to the predictability of the pattern� with highly predictable patterns needing a
high MaxDist� and poorly predictable patterns preferring a low MaxDist� Third� predictability is
sometimes not as important as other factors� such as the greedy
process problem or disk contention�
Fourth� a pattern with computation needs to be less conservative than the same pattern with no
computation� since prefetch I�O may be overlapped with computation� This overlap increases the
bene�t of success and decreases the cost of failure� Fifth� IOPORT had two advantages	 it was
often the fastest of the PORT family� and MaxDist was more often irrelevant� In some seg and lrp
cases� it is possible to identify a MaxDist that gave PORT better performance than IOPORT� but
this would be dicult to do dynamically� IOPORT was more generally successful and required less
tuning�

	�
 Conclusions

It was no surprise that conservative predictors were important for random patterns� and ambitious
predictors were better for regular patterns� OBL was best for lrp� and NONE �or a predictor smart

�� CHAPTER �� AUTOMATIC PREDICTION IN LOCAL PATTERNS

enough to do no prefetching� for rnd� PORT with a solution to the greedy
process problem worked
for lfp� and IBL for lw� The results for seg were more dependent on the disk pattern than the
predictor� We show in Section ��� that a larger cache signi�cantly improves the performance of
IOPORT on lfp and seg� so more prefetching success is possible�

Patterns with some computation allow for overlap between computation and I�O� The bene�t
of a successful prefetch can be much larger due to this overlap� and the relative cost of a mistake
much less� Thus� less conservatism is necessary in predicting for patterns with more computation
than in the patterns with no computation� In other words� when I�O
bound� a predictor should
concentrate more on the I�O that must be done� and speculate less on the I�O that may be done�

The on
line predictors matched the performance of the EXACT predictor in many cases� All
on
line predictors were less than ��� slower than EXACT half of the time� and were within a few
percent of EXACT a quarter of the time� In some cases� due to e�ects like the greedy
process
problem� the on
line predictors actually beat EXACT�

IOPORT appears to be the best general
purpose local
pattern predictor� in that it provided
high performance to a wide variety of patterns without causing poor performance to any pattern�
IOPORT was always within a third of the execution time of the best on
line predictor� and in half
of our test cases was within �� of the best predictor�

Chapter �

Automatic Prediction in Global

Patterns

�� Introduction

We have shown that locally
sequential access patterns can be predicted with sucient accuracy and
eciency to allow prefetching to improve the run time of programs that use them� This chapter
concentrates on the problem of recognizing and predicting globally
sequential patterns at runtime�
To do so� we de�ne several global predictors� Although the problem is more dicult� and the over

head is larger� our experimental results show that the bene�ts are still signi�cant� In this chapter
we compare several predictors on a �xed set of architectural parameters� to investigate the tradeo�
between accuracy and eciency� the impact of some workload and predictor parameters� and the
overhead involved in prefetching� In Chapter � we examine the e�ects of di�erent architectural
parameters�

There are three primary challenges for a global predictor	 �rst� to recognize sequentiality� sec

ond� to prefetch intelligently and recognize mistakes� and third� to have an ecient and concurrent
implementation� The emphasis in local patterns is on intelligent prefetching� since recognition is
relatively easy� In global patterns� the blocks in the pattern may be referenced in only a roughly
sequential order� so that each block number may not be simply the previous block number plus
one� Thus it is more dicult just to recognize sequential access� Our bu�er
replacement policy�
which requires mistakenly
prefetched blocks to be explicitly �ushed from the cache� complicates
prefetching with the need to recognize mistakes� Ecient� concurrent implementations are dicult
due to the need for global decision making�

In any concurrent algorithm there is a tradeo� between accurate information and high concur

rency� The algorithms we describe here involve extensive computation and cooperation between
processes� and their implementations require signi�cantly more overhead than any of the local pre

dictors� To determine the importance of the tradeo� between accuracy and eciency� we compare
a highly accurate �but inecient� predictor with a less accurate �but ecient� predictor�

In the next section we discuss some assumptions and theory behind our techniques� We outline
our primary predictor in Section ��� and its implementation in Section ���� Some alternative
predictors are presented in Section ���� The results of experiments using the global predictors are
described in Section ���� A predictor for both local and global reference patterns is discussed in
Section ���� We conclude in Section ����

��

�� CHAPTER 	� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

�� Theory

Globally�sequential access to a portion of a �le �or perhaps the whole �le� involves processes coop

erating to read the portion so that all blocks of the portion are read� and the blocks are referenced
in a more
or
less increasing order� with variations that are small compared to the overall pattern�
With this in mind� we present some assumptions� de�nitions� and theorems we use as the basis for
global predictors�

	���� Assumptions

We make a number of assumptions about globally
sequential access patterns	

� First� we assume that the processes are all cooperating to read portions of the �le� This
is di�erent from locally
sequential patterns� where the processes work independently� For
simplicity� we do not consider the possibility of several groups of processes cooperating in
groups to read independent portions of the �le� We also assume that all processes continue
to participate� no process drops out or runs arbitrarily slowly�

� We assume that the pattern is the result of either a self�scheduled assignment of work� or more
strictly� a round
robin assignment of work� In the self
scheduled method� processes choose
records to read from the �le based on a shared variable �or similar method� that atomically and
incrementally assigns work to the processes� The round
robin assignment needs no shared
variable� since the record choice is dependent on a regular� well
known pattern� where p
processes read every pth record� In any case� the speci�c assignment method is not known to
the �le system�

� We assume that the �le system is only aware of references to �le system blocks� Although
access to the actual byte ranges accessed by the processes may provide other information
�such as record size�� this is often obscured by user
level bu�ering anyway �for example� the
stdio package��

� The above assumptions imply a series of block numbers that is nondecreasing� Although the
�le system may not see a list of block references that is smoothly increasing with time� we
can expect the reference string from each process to be nondecreasing� A process experiences
a jump�back when it references a block number less than its previous reference� Jump
backs
are useful to global predictors� since they indicate the end of a sequential portion�

� Another assumption is part of the de�nition of global portions� The global access pattern
within a sequential portion references all blocks of that portion� By de�nition� the missing
blocks would divide the reference stream into smaller sequential portions� This gives rise to
completeness� all blocks in a portion are eventually accessed�

� The processes are reading records� which may or may not be of constant size� Although our
experiments use constant
size records� our theory� algorithm� and implementation allow for
variable
size records� Since highly variable record sizes make sequentiality hard to recognize�
the record sizes must be constant or nearly constant for the method to work e�ectively� In
other words� we are not optimizing for wildly variable record sizes in this work�

� We also assume that the record size is at most a few �le system blocks� Larger record
sizes appear to the �le system to be locally sequential portions� since a process reads several
consecutive blocks� We thus leave large record sizes to the local predictors�

	��� THEORY ��

We believe that these assumptions are reasonable� and encompass many kinds of global access
patterns�

	���� Zones of Activity

Combining these assumptions and observations allows an understanding of some important fea

tures of globally
sequential access patterns� Imagine several processes cooperating to read a single
sequential portion� The reference string from each process is ordered� that is� it has no jump
backs�
At any time the next block number for a given process will be greater than or equal to its last

referenced block number �called last�� Overall� the next block from any process must be greater
than or equal to the minimum of the set of last blocks from all processes� We call this minimum
block number minlast� There is also a corresponding maxlast� which is the maximum last of any
process�

These two values de�ne three zones of activity �see the example in Figure ����� The old zone is
a range of blocks that will not be referenced in the future� From our assumption of completeness�
these blocks have all been referenced� The active zone contains the set of blocks between minlast
and maxlast� inclusive� Some of these blocks may have already been referenced� The rest are likely
to be referenced soon� The future zone contains blocks that will be referenced in the near
 and
far
future� None of these have been referenced yet� Note that the zones change as blocks are
referenced and the processes� last values change�

��

maxlast���minlast���

������������������

Future ZoneActive ZoneOld Zone

Figure ���	 The three zones of activity� The numbered squares in this example represent
blocks that have been referenced� Four blocks in the active zone have not yet been referenced
��������������

	���� Bounding the Future Zone

There are several properties about the active zone� and changes to the active zone� that are useful
for detecting and predicting sequentiality� At any time� the active zone is de�ned by the current
values of minlast and maxlast� We derive a bound on the extension of the active zone when a
process references a block beyond maxlast� This bound aids in detecting the end of a sequential
portion� by specifying the blocks that are likely to be part of the current portion�

Theorem � For a pattern with p processes and a �xed record size of r blocks �r not necessarily
integral�� the next block to be referenced �assuming it is in the same portion� is between minlast
and maxlast dpre� inclusive�

Proof� From our observation that the references of each individual process are ordered� the next
reference for each process is greater than or equal to the last for that process� Since minlast is

�� CHAPTER 	� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

the minimum last value� the next reference from any process is certainly greater than or equal to
minlast�

We assume that records are assigned to processes in increasing order� in either a self
scheduled
or round
robin pattern� Since no process is assigned more work until it has �nished its current
assignment� there are at most p records assigned that have not yet been requested from the �le
system� involving at most dpre � blocks� The � only arises in certain situations when the �rst
record begins in the middle of a block� If all of these outstanding blocks were greater than maxlast�
then the highest outstanding block number would be maxlast dpre� We would calculate it as
maxlast dpre �� but the � does not belong here� since if the �rst outstanding record does begin
in the middle of a block� it must begin in the middle of maxlast� Since the next reference must be
one of these outstanding block numbers� the next reference is also limited to maxlast dpre� The
theorem follows� �

This theorem is easily generalized to variable record sizes	 the theorem still holds if r is the
maximum record size� The upper bound in the theorem can also be tightened	 since each process
reads the blocks of each record in order� only the �rst block of the highest outstanding record is a
possible next reference� Thus� the maximum next reference is maxlast dpre � dre ��

We now have a well
de�ned range of blocks for the next reference� The bound on the extension
of the active zone is useful� but unfortunately there is no bound on the size of the active zone itself�
This has strong implications for any implementation that tries to track the active zone� The size
of the active zone is unbounded because it is possible for one process� whose last�minlast� to not
reference any blocks for a long time while the other processes move ahead� Our implementation
optimizes for small active zones� due to our assumption that no process will drop out or run
relatively slowly�

�� The GAPS Predictor

Armed with this understanding of globally
sequential access patterns� we have developed an algo

rithm for recognizing� tracking� and using global sequentiality� We call this predictor GAPS� for
Global Access Pattern Sequentiality� The method is much more complex than any of the local
predictors� and also involves more guesswork� On the other hand� this prediction algorithm bases
its decisions on more references than do the local predictors� so its decisions may sometimes be
more accurate� We describe the technique �rst� and delay implementation details to Section ����

	���� The Overall Plan

Like other predictors� the GAPS predictor is a self
contained module within the �le system� noti�ed
on each block reference and queried when prefetching work is desired �page ���� The predictor is
then a �black box� that takes block reference streams as input� responds to queries for prefetching
predictions� and issues �ush commands for mistaken prefetches� As with the rest of the �le sys

tem� the GAPS predictor is concurrent	 every user process may be active simultaneously� GAPS
maintains separate state information for each process� as well as global state information�

The structure of the GAPS predictor is a state machine with three states �Figure ����� The
only events that trigger state transitions are the noti�cations from the �le system� Although it
is possible for processes to be in di�erent states� they usually move between the states in unison
�these are distinguished in the �gure�� This is accomplished with a mixture of private and shared
state variables� Initially� all processes are in Watch mode� watching the access pattern for signs
of sequentiality or extreme randomness� If the pattern appears extremely random� all processes
shift to the much simpler Random mode� in which they do just enough processing to shift back

	��� THE GAPS PREDICTOR ��

to Watch mode if the pattern becomes less random� If sequentiality is detected� all processes
shift to Continuation mode� where prefetching is �nally possible� Continuation mode tracks the
sequentiality carefully� if sequentiality appears to end� the processes drop out� one by one� back to
Watch mode� The separate transitions here allow each process to complete the portion before going
to Watch mode� All processes must be back in Watch mode before any new check for sequentiality�
and thus before any process re
enters Continuation mode� In the next few subsections� we describe
each state separately�

Individually

In unison
Start

Continuation

Watch

Random

Figure ���	 The three states in GAPS� Most state transitions occur simultaneously across all
processes�

	���� Watch Mode

Watch mode has two primary purposes	 to detect sequentiality� and to record enough information
about the sequential portion to start Continuation mode and enable prefetching� No predictions
are made while in Watch mode�

The access pattern is presented to GAPS via a noti�cation procedure called on each reference�
All that is provided about each reference is the block number� To detect sequentiality GAPS records
the access pattern in a shared access list� The blocks in the list are tagged with process numbers�
The last block number is recorded by each process� for comparison with each new reference� If the
new block number is the same as or greater than the last block number� then the ordered property
has been maintained� and the new reference is appended to the list� If the new block number is less
than last� a jump
back has occurred� Under our assumptions� that process must have moved to a
new sequential portion� Thus� all of its previous references are irrelevant to the new portion� and
are �ushed from the list �using the process tag on each list element�� If the jump
back is indicative
of a new portion� then all processes eventually jump back and �ush their entries from the list�� The
list then contains only blocks from this new portion� in their global reference order�

To be considered sequential� the access pattern must pass three successive tests� described below�
If sequential� several values are computed before switching fromWatch mode to Continuation mode	
minlast� maxlast� start �the starting block number of the portion�� and maxjump �the furthest we
expect to extend maxlast in any one reference�� Continuation mode also requires a list of blocks
that have already been referenced in the active zone �copied from the access list�� and last for each

�Note that if we were to �ush the whole list on every jump�back� the earliest blocks in the portion would be erased
from the list by the last process to join the portion�

�� CHAPTER 	� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

process�
The �rst test� that of enough information� ensures that all processes are in Watch mode and

that each has contributed to the access list� The second and third tests are described below�

Completeness

The Completeness check examines the access list as a set of blocks without regard to their time
ordering� First� we compute minlast from all the processes� last values� Then we examine the
blocks in the list to determine the completed part of the old zone� In other words� what is the value
of start such that all blocks between start and minlast� inclusive� have been referenced� Note that
blocks greater than minlast or less than start are ignored� Because there are no jump
backs in the
access list� blocks less than start are from an earlier portion� no longer relevant�

Slope

If the pattern passes the Completeness check� we test it for linearity� In this check� the order of the
blocks in the access list is important� We �rst restrict the access list to blocks greater than start�
We then treat the blocks in the list as a function of their position in the list� and �t a line to this
function� obtaining a slope� If the slope is �for some reason� negative� the check fails immediately�
A positive slope� however� does not tell us whether the function was even close to linear� Thus� we
compute the coecient of determination �cd� for the function �Tri���� The coecient is a measure
of the deviation of the function from the linear �t� and is between zero and one� If cd is close to
one� the �t is good� our slope check succeeds� and we consider the access pattern to be sequential�
A piece of an actual access pattern is shown in Figure ���� along with the �tted line� the slope� and
cd� Here the �t is good�

�

�

��

��

	�

	�

��

��

��

��

��

� � �� �� 	� 	� �� �� �� �� ��

Block

Time of reference �position in list�

Block accesses plotted by position in list

Accesses
Slope� ������� cd � ������

Figure ���	 An actual access list plotted with respect to our measure of time� the position in the
list� The line resulting from a linear regression of the data is also plotted�

	��� THE GAPS PREDICTOR ��

Occasionally there are two or more sequential portions represented in the access list� with
the later one involving higher block numbers� Thus� there were no jump
backs to �ush the old
portion from the list� If minlast and start are still in the lower� older portion� the slope calculation
encompasses both portions� obtaining a large slope� Usually cd is low� and the check fails� As an
optimization� the check fails due to a large slope before computing cd� This is safe� since the slope
is rarely much more than ��� for the sequential reference patterns that �t our initial assumptions�

An Optimization� Random Mode

Watch mode is sucient to distinguish sequential access patterns from random access patterns�
However� it also entails a lot of overhead� For random access patterns� this overhead is costly�
because there are no prefetching bene�ts to balance the overhead� For this reason� we add Random
mode�

In a truly random access pattern� the ordered property of references on a particular process is
rarely maintained for many references� The probability of three or more references in nondecreasing
order is roughly� �

�
� For p processes to simultaneously be ordered� the probability is ��

�
�p� which

is small even for moderate p� In a sequential reference pattern� however� references are usually
ordered� Thus� we shift to Random mode when several processes are not maintaining reference
order� and shift back to Watch mode when all processes again have ordered references� In Random
mode� there is only a quick check for changes in ordered status� This reduces overhead and increases
concurrency�

	���� Continuation Mode

Continuation mode has several purposes� Primarily� it tracks the sequential portion recognized by
Watch mode� It detects breaks in sequentiality� and decides how to handle them� perhaps by going
back to Watch mode� It tracks the portion length and portion skip� in an e�ort to detect regular
sequential portions� Finally� of course� it records enough information to make predictions and to
catch mistakes�

As each reference arrives� Continuation mode updates last� minlast� and maxlast� It checks
for failures in three critical areas	 orderedness �jump
backs�� completeness �in the old zone� as it
grows�� and maxlast extension� Any of these failures signal the end of a sequential portion� and can
force the process to leave Continuation mode� Despite these extensive e�orts� Continuation mode
is more ecient than Watch mode� and also allows prefetching� Thus� Continuation mode tries to
handle sequentiality failures and stay in Continuation mode�

A jump
back clearly indicates that the process is in a new portion� Since the new references
could overlap the current portion� and the two portions become confused� the process must leave
Continuation mode� The other processes follow when they have also �nished the current portion�

A completeness failure is detected only when minlast is updated� When minlast changes� the
old zone is extended� We expect the old zone to be complete� that is� for all blocks in the old zone
to have been referenced� Any gaps signal the end of one portion and the start of the next� A gap
may or may not have been detected previously by the maxlast
extension check�

The third check involves references that exceed maxlast � From Theorem � we know that a
reference in the current portion cannot be past maxlast dpre� for p processes and record size r�
�Our implementation does not use the tighter bound from Section ������� The quantity dpre is
called maxjump� Thus� any reference that is past maxlast maxjump is likely to be in another

�The probability of being ordered can be easily found with a combinatoric calculation� For an N �block �le� the
exact probability is �

� �
�
�N � �

�N�
�

�� CHAPTER 	� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

portion� If this happens� one option is to leave Continuation mode and watch for sequentiality to
begin again� There are� however� two optimizations	 if the portion length and portion skip are
regular� and the current reference is consistent with those values� then GAPS assumes the pattern
is continuing� If the portions are irregular� but the completed portion is long� GAPS treats the new
reference as a new portion and remains in Continuation mode� This makes the assumption that the
pattern consists of irregular sequential portions� These optimizations allow the GAPS predictor to
spend most of its time in Continuation mode� and to do more prefetching�

	���� Prefetching

The bulk of the GAPS predictor is involved with watching for and tracking sequentiality� All of the
information is used to predict future accesses and to recommend blocks for prefetching� Essentially�
GAPS recommends blocks for prefetching that have not yet been accessed� are greater thanminlast�
and meet other special
case constraints� It prefetches in both the active and future zones�

The prediction code is similar to that in the IPORT local predictor� That is� it detects regular
sequential portions� and prefetches accordingly� Unlike IPORT� it limits the prefetch distance only
when the portion length is not regular� In the �rst portion� or with regular portions� it may prefetch
far past maxlast� When the portion length is not regular� it limits its prefetching at all times to
maxlast MaxDist� where MaxDist is a parameter as before �see Section ������� It also limits its
prefetching to the active zone whenever any process leaves Continuation mode� which implies the
current portion is ending�

�� Implementation of the GAPS Predictor

In order to make a scalable predictor� concurrency must be high and the amount of serialization
kept to a minimum� This is one problem with GAPS	 it uses a great deal of serialization to make
global decisions� especially in Watch mode� Thus� the scalability of this predictor may be limited
�see the scalability experiments in Section ����� Thus� it represents one endpoint of the tradeo�
spectrum between accuracy and eciency�

Without going into detail� we brie�y describe the implementation of each of the primary modes�
along with the transitions between them�

	���� Watch Mode

Watch mode is completely serial� operating as a �rather long� critical section� More concurrency
may be available in Watch mode� but to gain concurrency we would have to sacri�ce some accuracy�
In GAPS we concentrate on accuracy� The entrance to Watch mode is controlled by a FIFO queue�
so the processes enter the critical section in the same order that they arrived� This is crucial to
maintaining the original block ordering� which is important to the slope check� The access list is
represented by a shared array�

	���� Random Mode

The Random mode has a simple implementation� The access list is not used� Each process in
Watch mode counts the total number of references it has made since its last jump
back� If this
is higher than the threshold �two references� then this process is considered ordered� There is a
global count of the number of processes that are ordered� When this count falls below a threshold
���� of processes�� GAPS enters Random mode� When it returns to the number of processes �all
processes are ordered�� GAPS returns from Random mode to Watch mode�

	��� OTHER GLOBAL PREDICTORS ��

	���� Determining maxjump and MaxDist

Before GAPS may enter Continuation mode it must determine two values	 maxjump� used for
tracking sequential portions� and MaxDist� used to limit prefetching�

The ideal value of maxjump is dpre� where p is the number of processes and r is the �maximum�
record size in blocks� The �le system does not have access to r� so it must be estimated� The
record size is estimated with heuristics based on observations of the average number of references
to each block� and the average length of locally
consecutive runs �a series of consecutively numbered
references from a single process��

The ideal value of MaxDist is more dicult to determine� A large MaxDist leads to more
mistakes� and a small MaxDist may not allow enough prefetching� Section ����� examines this issue
further� Preliminary experiments led us to determine MaxDist from the record size as follows	 for
r � �� use MaxDist� p� For r � �� use MaxDist� �p��� For r � �� use MaxDist�p��� For r � ��
use MaxDist� ��

	���� Continuation Mode

The primary data structure for Continuation mode is an array with one entry for each block in
the �le� Our implementation uses the �le system�s existing� memory
resident block map for the �le
instead of a separate array�� Each entry in the array contains a used bit� indicating that GAPS
knows that the block has been referenced� These bits are initialized from the access list� and
updated by later block noti�cations� Once Continuation mode is started� block noti�cation can
proceed concurrently with other noti�cations and with prefetching� On each noti�cation� the used
bits are adjusted� and minlast and maxlast are updated� possibly catching mistakes or deciding
that the portion has ended� When a process leaves Continuation mode� it limits prefetching to the
current active zone� and drops out into Watch mode� The last process to leave must clean up the
data structures�

	���� Prefetching

The GAPS prediction code is executed on request from the �le system� and can run concurrently
with other processes in Continuation noti�cation code� There is a short lock used to choose a
block for prefetch� The block is chosen by updating a single counter� then adjusting for any known
portion skips and the prefetch limit� Also� the block must not have already been used or prefetched�
The block is marked for later detection of prefetch mistakes� and the block number is given to the
�le system�

�� Other Global Predictors

For comparison with the accurate but inecient GAPS predictor� we consider two predictors that
are less accurate but more ecient� These are two more points in the tradeo� spectrum between
accuracy and eciency�

The GAPS predictor has three primary states	 Watch mode� Random mode� and Continua

tion mode� Watch mode is expensive� due to the serialization and the amount of computation�
Watch mode determines whether the access pattern is random or sequential� and enters Random
or Continuation mode� respectively� If all patterns are either random or sequential� then why not
eliminate Watch mode entirely� This is the basis of the RGAPS predictor� which begins in Random

�Other data structures are possible� of course�

�� CHAPTER 	� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

mode� In RGAPS� when Random mode decides that the pattern is not random� it shifts directly to
Continuation mode� constructing the data structures as well as possible� Of course� the information
usually found in the access list is not available� so the start of the portion and the initial list of
used blocks are inaccurate� and estimates of maxjump and MaxDist are crude� Continuation mode
exits directly to Random mode when necessary� Some wrong decisions may be made� but at least
they are made quickly� Of course� not all patterns are either random or globally sequential� so
this predictor may be prone to failure on pathological patterns�� In any case� it is an interesting
alternative�

Another possible alternative is to build a predictor speci�c to a particular pattern� GAPS is
intended to handle the gw� grp� gfp� and rnd �random� patterns� It is likely� however� that some
workloads may contain only� or predominately� gw patterns �at least among the global patterns��
Thus� we have implemented a GW predictor� designed speci�cally for gw� that prefetches from the
start to the end of the �le and ignores mistakes� It adjusts its prefetching in only two ways	 to
accept block numbers back when they could not be prefetched� and then recommend them again�
and to keep the prefetching ahead of maxlast� This predictor is especially valuable if the �le system
allows hints from the user to direct its prefetching �Section ������

�	 Experiments and Results

We ran a broad suite of experiments using the global predictors� Each of the patterns grp� gfp�
gw� and rnd was used with an appropriate set of predictors� NONE� GAPS� and RGAPS were used
with all patterns� EXACT was used with all patterns except rnd� since the best predictor for rnd is
NONE� Finally� the GW predictor was used with the gw pattern� Each of the four synchronization
styles each��	�� total�
		�� none� and neighbor��	� was used with all patterns� Finally� each of
these tests was run both with and without computation on each block� Each combination of these
parameters represented one test case�

We ran all predictors on the lw pattern� since lw is a type of gw pattern where every process
reads every block� We also included the IBL predictor �which had had the best results for lw� for
comparison� Due to the short execution times of the normal lw pattern� we used an extended lw
here� in which every process read the same ���� blocks ��ve times as many as before�� We used
only the each��	� synchronization style� to avoid the lw
phase problem� Each case was run with
and without computation on each block�

For each test case� we averaged the total execution time over �ve trials� and used this as our
comparison measure� The standard deviation over �ve trials was always less than ��� of the
mean �at most � second�� and was less than �� in ��� of the cases� Small di�erences �in most
cases� about ��� seconds or less� between the average times for two predictors should therefore be
considered insigni�cant relative to measurement error� We present the results in the same style as
we did the local pattern results� The time in seconds and predictor name is given next to each line
in the graph� and the maximum cv for all lines in a graph is given in the graph�s caption�

The other parameters were the same as in our previous experiments� There were �� processes
and �� disks� Each pattern �except lw� involved reading ���� blocks� There were �� bu�ers in the
cache� with up to �� allowed for prefetched blocks� The block size and the record size were both
� KByte� The computation simulated for each block� when used� averaged �� msec�

�This includes local patterns� Section ��� describes a special predictor for distinguishing local and global patterns�
which chooses either a local or a global predictor as appropriate�

	��� EXPERIMENTS AND RESULTS ��

neighbor

each

total

none

� � 	 � � �
 � � �
seconds

Total execution time for gw

NONE �����
EXACT �����
GAPS �����
RGAPS �����
GW �����

NONE �����
EXACT �����
GAPS �����
RGAPS �����
GW �����

NONE �����
EXACT �����
GAPS �����
RGAPS �����
GW �����

NONE ���	�
EXACT �����
GAPS �����
RGAPS �����
GW �����

Figure ���	 Execution times for gw� �cv � ������

The results for gw �Figure ���� were encouraging and fairly straightforward� It was no surprise
that the GW predictor was best among the on
line predictors� always matching EXACT� GAPS
and RGAPS nearly matched those two predictors� and were also essentially equivalent to each
other� This is because the expensive Watch mode �the di�erence between GAPS and RGAPS�
was used little here� The results for gw with computation �not shown� were similar� except that
the improvements were more signi�cant �about ��� faster with prefetching than without� and
that RGAPS was more similar to GAPS� With computation� the overhead of GAPS was reduced
due to decreased contention in Watch mode� since the added computation meant there were fewer
processes active in the �le system code at any one time�

�� CHAPTER 	� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

no comp

with comp

� �� 	� �� �� ��
� �� ��
seconds

Total execution time for lw

NONE ������

EXACT �����

GAPS �	���

RGAPS �	���

GW ���
�

IBL �����

NONE ������

EXACT ����	�

GAPS ������

RGAPS ������

GW ����	�

IBL ����	�

Figure ���	 Execution times for lw� both with and without computation� Both cases use
the each��	� synchronization style� Note that this is an extended lw� reading ���� blocks�
�cv � ������

In the experiments with the lw pattern� shown in Figure ���� we used only the each��	� synchro

nization� so there is room for both the with
computation and no
computation cases on the same
graph� The results here were similar to those for the gw pattern� with GW matching EXACT� and
GAPS and RGAPS coming fairly close� GAPS and RGAPS had more overhead to slow them down
than did GW or EXACT� With longer patterns� the di�erence between GAPS and EXACT �which
was also due to start
up e�ects� should be less signi�cant� For comparison� we included the IBL
predictor here� The EXACT� GW� and IBL predictors had equivalent performance�

	��� EXPERIMENTS AND RESULTS ��

neighbor

each

total

none

� 	 �
 � �� �	 ��
seconds

Total execution time for rnd

NONE ����
�

GAPS ������
RGAPS ����
�

NONE ����
�

GAPS ������
RGAPS ����
�

NONE ������

GAPS ������
RGAPS ������

NONE ������

GAPS ������
RGAPS ������

Figure ���	 Execution times for rnd� �cv � �������

Results for the rnd pattern are shown in Figure ���� No prefetching was possible because of
the random access pattern� so NONE represented the best possible time� That GAPS and RGAPS
were as fast as NONE shows that they recognized and handled rnd patterns with low overhead�
This success was due entirely to the �Random� mode of GAPS and RGAPS �an early version of
GAPS without Random mode was almost four times slower than NONE!�� The conclusions for
rnd with computation are identical �not shown��

�� CHAPTER 	� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

neighbor

each

total

none

� � 	 � � �
 � � �
seconds

Total execution time for gfp

NONE �����
EXACT �����
GAPS �����
RGAPS �����

NONE �����
EXACT �����
GAPS �����
RGAPS �����

NONE �����
EXACT �����
GAPS �����
RGAPS �����

NONE ���	�
EXACT �����
GAPS �����
RGAPS �����

Figure ���	 Execution times for gfp� �cv � ������

The gfp pattern �Figure ���� is more dicult than the preceding patterns� due to the portion
changes� The regularity of the portions� however� was recognized by both GAPS and RGAPS�
and used to prefetch over the portion skips into future portions� The RGAPS predictor required
one more portion to recognize the regularity� since it did not correctly notice the start of the �rst
portion �Random mode is less accurate than Watch mode�� Nonetheless� RGAPS and GAPS were
essentially equivalent on this pattern� The results for gfp with computation �Figure ���� show
that GAPS and RGAPS are closer to EXACT than to NONE� something that is not evident in
Figure ����

	��� EXPERIMENTS AND RESULTS ��

neighbor

each

total

none

� 	 �
 � �� �	 �� �
 �� 	�
seconds

Total execution time for gfp with computation

NONE ������
EXACT �
���

GAPS �����
RGAPS �����

NONE ��	���
EXACT ������
GAPS ������
RGAPS ����
�

NONE ������
EXACT �
���
GAPS �
���
RGAPS �
���

NONE ������
EXACT �����
GAPS ���	�
RGAPS ���	�

Figure ���	 Execution times for gfp with computation� �cv � ������

�� CHAPTER 	� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

neighbor

each

total

none

� 	 �
 � ��
seconds

Total execution time for grp

NONE ���
�
EXACT �����

GAPS �
���
RGAPS �����

NONE �����
EXACT �����

GAPS �
���
RGAPS ���
�

NONE �����
EXACT �����

GAPS �
���
RGAPS �����

NONE �����
EXACT �����

GAPS ���	�
RGAPS �����

Figure ���	 Execution times for grp� �cv � ������

The grp pattern �Figure ���� is the most dicult pattern for the GAPS predictor� Because of
the unpredictable portion lengths and jump
backs� GAPS spent a lot of time in Watch mode� and
made more prefetching mistakes than in other patterns� In our experiments� GAPS was never able
to break even and match NONE in the no
computation test cases �but see Section ������� Note that
RGAPS was slightly faster than GAPS in all cases �we examine this further in Section ������� We
also ran this experiment with a di�erent grp pattern constructed with the same parameters� The
results �not shown� from this experiment were similar to those for the original grp pattern� except
that RGAPS was more clearly faster than GAPS� Thus� although GAPS was more accurate� the
eciency of RGAPS was more important in grp�

	��� EXPERIMENTS AND RESULTS ��

neighbor

each

total

none

� 	 �
 � �� �	 �� �
 �� 	�
seconds

Total execution time for grp with computation

NONE ������
EXACT �����
GAPS ������
RGAPS ����	�

NONE ������
EXACT ������
GAPS ������
RGAPS ����	�

NONE ������
EXACT �
���
GAPS ������
RGAPS ������

NONE ������
EXACT ���
�
GAPS ���
�
RGAPS �����

Figure ����	 Execution times for grp with computation� �cv � ������

When there was some computation on each block� the opportunities for overlapping I�O and
computation were increased� and the e�ects of I�O overhead were less signi�cant� In the grp pattern
with computation �Figure ������ as in all test cases with computation� the bene�ts of prefetching
were more signi�cant� Indeed� GAPS and RGAPS were able to obtain signi�cant bene�ts by
prefetching� about half those obtained by EXACT� There was also less of a di�erence between
GAPS and RGAPS �same reason as for gw� page ���� As before� we also tried a di�erent grp
pattern generated with the same parameters� Again� there was little qualitative di�erence between
the results for that pattern �not shown� and those for the �rst grp pattern� except that RGAPS
was a little faster than GAPS�

�� CHAPTER 	� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

	���� Performance of the Global Predictors

With the usual caveat that our workload does not necessarily contain the distribution of patterns
in any real workload� we formed a summary presentation of the performance of GAPS and RGAPS�
Since EXACT is a good baseline for evaluating global predictors� we evaluate GAPS and RGAPS
in terms of their relative performance to EXACT� Our measure was the normalized performance�
the ability of the on
line predictor to improve on NONE compared to EXACT�s ability to improve
on NONE� Thus� if te was the execution time for EXACT� tn was the time for NONE� and t was
the time for some other predictor� the normalized performance of this other predictor was

t � tn
te � tn

Note that the normalized performance was � when the predictor in question did as well as EXACT�
It was zero when it did only as well as NONE� and negative when slower than NONE� We computed
the normalized performance for all test cases except those of the rnd pattern� since there te � tn� We
plot the CDFs of the distributions of these values in Figure ����� The low
performance �negative�
cases were all from the grp pattern� where GAPS and RGAPS were often slower than NONE� In
general� however� half of the GAPS cases reached at least ���� normalized performance �i�e�� ���
of the performance improvement of EXACT�� and half of the RGAPS cases reached at least ����
normalized performance�

�

���

��	

���

���

���

��

���

���

���

�

���� ���� ���� ���� ���� ���� ���� ��� ���

CDF

normalized performance

Normalized Performance

GAPS
RGAPS

Figure ����	 The normalized performance for GAPS and RGAPS on all patterns except rnd�
A normalized performance of ��� indicates that the predictor matched EXACT� and a negative
number indicates that it was slower than NONE�

	���� GAPS vs� RGAPS

From the preceding discussion of the results� it appears that there was no performance di�erence
between the GAPS and RGAPS predictors for most patterns� The exception was grp� where

	��� EXPERIMENTS AND RESULTS ��

RGAPS was faster in most cases� This makes sense� since Watch mode �the di�erence between
GAPS and RGAPS� is not important to the other patterns� In Figure ����� the predictors had
similar distributions in the high
performance areas� but di�ered in the low
performance areas �i�e��
the grp pattern�� Thus GAPS and RGAPS were essentially identical for most test cases here�
with RGAPS better for grp patterns� RGAPS was much more robust �and usually had better
performance� in the experiments described in Chapter � �in particular see Section ����� Section �����
points out a situation where GAPS was more robust than RGAPS�

	���� Accuracy

Judging by the performance of GAPS and RGAPS on most patterns� the e�ort expended to prefetch
was worthwhile� One reason for this was the accuracy of the predictions� Figure ���� shows the
distribution of the fraction of prefetched blocks that were wasted �read from disk but never used��
The rnd pattern is excluded here� since there were no prefetches� There were many zero
waste
cases from the gw and lw patterns� Only the grp and gfp patterns allow for mistakes� and even
in these cases it is clear that the waste rate was extremely low� always less than ���� Note also
that RGAPS tended to have a higher waste rate� as expected�

�

���

��	

���

���

���

��

���

���

���

�

� ���	 ���� ���
 ���� ��� ���	 ����

CDF

waste rate

Fraction of Prefetches that were never used

GAPS
RGAPS

Figure ����	 The waste rate for GAPS and RGAPS� The waste rate is the ratio of the number of
wasted blocks to the number of prefetched blocks�

	���� Overhead

The overhead of the GAPS predictor can be high� One measure of the overhead is the noti�cation
time� the time spent in the GAPS predictor for every block read �page ���� From an examination
of the distribution of noti�cation times� most noti�cations were short �less than � msec�� Some
noti�cations were extremely long �������� msec�� with the longest noti�cation times typically in
the grp pattern� an evidence of its diculty�

�� CHAPTER 	� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

�

���

��	

���

���

���

��

���

���

���

�

� 	� ��
� �� ���

CDF

msec

GAPS Notication time

to max ���

�

Notication
Watch�entry wait

Figure ����	 Distribution the GAPS noti�cation time for a typical grp test case�

In Figure ����� we display the distribution of the noti�cation time for a typical grp case� along
with the distribution of the time waiting to enter Watch mode�s critical section� Here we see
the severe skew on the distributions	 ��� of the noti�cation times were less than � msec� There
was often a long wait to enter Watch mode� due to the critical section� Thus many of the long
noti�cations were when GAPS was in Watch mode� and many processes were forced to wait at the
entry point� This kind of serialization is likely to limit the scalability of such an algorithm� The
longest noti�cation times� however� occurred in Continuation mode� and reached up to ��� msec�
These were the result of a major update to minlast� which often had to scan large portions of the
�memory
resident� �le map when moving from one portion to another� Fortunately� these long
updates were rare� and were concurrent with other Continuation
mode noti�cations�

The RGAPS predictor uses Random mode instead of Watch mode� This mode is simple and
concurrent� compared to the complex� serialized Watch mode in GAPS� The noti�cation times for
RGAPS were generally lower than for GAPS �not shown�� except in the grp pattern� where they
were similar� Figure ���� shows the distribution of the noti�cation times and Random
mode times
for the same pattern as in Figure ����� but with the RGAPS predictor� Note the time scale is
shorter than Figure ����� The Random
mode time was short� never more than � msec and less
than ���� msec in ��� of the cases� As with GAPS� RGAPS had some long Continuation
mode
times� up to ��� msec� This was re�ected in the noti�cation
time distribution� Nonetheless� ���
of the noti�cation times were less than � msec�

	���� The E�ect of MaxDist

In any predictor� the prefetch distance represents a commitment to prefetching� The prefetch
distance is the number of blocks that the predictor is willing to prefetch past the highest
known
block in the portion� There is a tradeo� in many situations� since a small distance overly restricts
prefetching� and a large distance increases the number of mistakes when a portion ends unexpect

edly�

	��� EXPERIMENTS AND RESULTS ��

�

���

��	

���

���

���

��

���

���

���

�

� 	 �
 � �� �	 �� �
 �� 	�

CDF

msec

RGAPS Notication time

to max ���
�

Notication
Random Mode

Figure ����	 Distribution the RGAPS noti�cation time for a typical grp test case� Note the time
scale is shorter than Figure �����

In the preceding experiments the prefetch distance �called MaxDist� was determined as de

scribed in Section ����� �which were derived from preliminary experiments�� For these tests this
means MaxDist was ��� In the �rst portion� and when the portions were regular� MaxDist was
in�nite� allowing plenty of prefetching for gw and gfp patterns�

To examine the e�ect of MaxDist on the GAPS predictor� we ran a set of experiments varying
MaxDist from zero to �� blocks� It was still in�nite for the �rst portion and for regular portions� so
it did not a�ect gw or lw� and scarcely a�ected gfp in preliminary tests� It did not a�ect rnd� of
course� so we only studied the grp pattern� All other test parameters were the same� Figure ����
shows the results for tests with no computation� and Figure ���� shows the results for tests with
computation� Each point represents the average of �ve trials��

Whereas it is dicult to determine the single �best� value of MaxDist from these results�
some general conclusions are possible� First� it is important that MaxDist not be too small� since
the performance was clearly worse for small MaxDist �small being less than �� blocks for no

computation tests� �� for computation tests�� In some cases� the performance curve shows a
de�nite minimum� in others the performance tends to level o�� Overall� the best performance
was found with MaxDist between �� and ��� with �� as a reasonable compromise� Within this
range the performance di�ers little� Our choice of �� allowed reasonable� though not optimum�
results� Overall� a moderate MaxDist was needed� corresponding to the moderate predictability of
grp�

	In a few of neighbor���� tests there were some trials that were discarded from the average due to extreme
behavior� These cases are the result of the extreme synchronization stress on the pattern� which idles some processors
in synchronization points while the others are still working� The execution sequence and the execution times are thus
highly dependent on random run�time variations� The a�ected data points are marked�

�� CHAPTER 	� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

�

�

�

��

��

�	

��

��

� �� 	� �� �� ��
�

time
�seconds�

MaxDist

MaxDist variation for GAPS on grp

Synchronization style�
each��	�

total�
		�
none

neighbor��	�
Extremely variable point �

�

Figure ����	 The e�ect of varying MaxDist on grp patterns with no computation�

�

��

��

�	

��

��

��

�

��

��

� �� 	� �� �� ��
�

time
�seconds�

MaxDist

MaxDist variation for GAPS on grp with computation

Synchronization style�
each��	�

total�
		�
none

neighbor��	�
Extremely variable point �

�

�

�

Figure ����	 The e�ect of varying MaxDist on grp patterns with computation�

	��� EXPERIMENTS AND RESULTS ��

	���� The E�ect of Portion Length

The performance bene�ts from prefetching in sequential portions using the GAPS and RGAPS
predictors sometimes depend on the length of the portion� Short portions are more dicult to
recognize� particularly when the length is not constant� With longer portions more time is spent
in Continuation mode� and less time is spent in handling portion skips� so overhead is reduced� To
examine the e�ect of portion length on the global predictors� we ran a set of experiments using
the GAPS and RGAPS predictors on several grp and gfp patterns� each with a di�erent portion
length� In the gfp patterns the portion length was �xed� of course� in the grp patterns� the portion
length represents an average portion length� Our original experiments �and those in the previous
section� used a ���
block portion length� here we vary the length from ��� to ���� blocks� We ran
each experiment with no computation on each block� and again with computation �keeping the set
of computation times identical across all patterns�� For simplicity� we restricted ourselves to the
none synchronization style� For comparison� we also used the EXACT and NONE predictors� All
other experimental parameters remained the same� Of course� when the portion length increases
and the number of blocks in the pattern remains the same� the number of portions necessarily
decreases�

The gfp pattern was generally insensitive to the portion length� due to prefetching over portion
skips� Neither the NONE nor the EXACT predictors were a�ected by the portion length� The
execution time for the GAPS predictor did not change appreciably with di�erent portion lengths�
at least for the no
computation test case� Since there were essentially no changes� the normalized
performance �de�ned on page ��� for GAPS remained steady �Figure ������ The RGAPS predictor
was only a�ected by the shortest ����
block� portions� Due to the incomplete information available
in the RGAPS Continuation mode� RGAPS never recognized the pattern as gfp and could not take
advantage of the regularity� This was true with and without computation� and is the reason for
the odd RGAPS points in Figure ����� This is one �rare� case where GAPS was more robust than
RGAPS�

�	

����

��

����

�

���

�

� 	�� ���
�� ��� ����

Norm�
perf�

Portion length

Normalized performance of gfp� varying portion length

GAPS� comp
RGAPS� comp

GAPS� no comp
RGAPS� no comp

Figure ����	 The normalized performance for the gfp pattern� while varying the portion length�

��� CHAPTER 	� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

In the grp pattern� a decrease in the number of portions is as signi�cant as an increase in the
portion length� Thus� we expected GAPS� RGAPS� and EXACT all to improve their execution
time on grp� and our experiments con�rmed this� To gauge the signi�cance of the faster execution
times� we plot the normalized performance for GAPS and RGAPS in Figure ����� The normalized
performance increased roughly with portion length� Thus� not only did the execution time improve�
but the predictors were closer to EXACT�s performance� The di�erence between GAPS and RGAPS
also decreased� due to the smaller signi�cance of portion skips�

���

��	

���

��

�

��

�	

�

	

� 	�� ���
�� ��� ����

Norm�
perf�

Average portion length

Normalized performance of grp� varying portion length

GAPS� comp
RGAPS� comp

GAPS� no comp
RGAPS� no comp

Figure ����	 The normalized performance for the grp pattern� while varying the average portion
length�

MaxDist and Portion Length

To examine any interactions between the MaxDist parameter and the portion length� we repeated
the above portion
length variation experiment with several di�erent MaxDist values from � to ���
We only summarize the data here	

� For grp� the optimum MaxDist value depended slightly on portion length� but otherwise the
e�ects of MaxDist and portion length were independent�

� For gfp� the e�ects of MaxDist and portion length were only coincidentally correlated� Large
MaxDist values were the solution�

� MaxDist should be higher for patterns with computation� to keep the disks busy during
periods of computation�

�
 Using Both Global and Local Predictors

We have a range of predictors for both local and global patterns� We have a predictor that is
sucient for most general
purpose local
pattern workloads �IOPORT�� We also have predictors

	�	� USING BOTH GLOBAL AND LOCAL PREDICTORS ���

sucient for general
purpose global
pattern workloads �GAPS or RGAPS�� However� GAPS is
de�nitely not suitable for local patterns� and IOPORT is not suitable for global patterns� Is it
possible to implement both in a �le system� and use the appropriate predictor for each pattern�
There are several possibilities	

�� Include two predictors �one local and one global�� notify both on each access� and somehow
arbitrate between their decisions by choosing one or the other� This requires too much
overhead�

�� Include two predictors �one local and one global�� plus a fast recognition mechanism to choose
one or the other during the initial accesses of the pattern� This seems most promising�
provided the recognition is fast and accurate�

�� Include two predictors �one local and one global�� start working with one� but switch to the
other if it does not work well� The problem is determining when it does not work well� This
could use a mechanism similar to that in option � �above�� or some other mechanism�

�� Merge a local and a global predictor into a single� more general predictor� Such a general
predictor would unnecessarily complicate the simpler local pattern prediction�

We chose the second option and implemented a predictor called SWITCH� Once this predictor
recognizes a pattern as either local or global� it switches control to a local or global predictor�
respectively� SWITCH is completely independent of the particular local and global predictors� The
recognition is based on consecutive references	 whereas the individual process reference streams in
both locally
 and globally
sequential access patterns are ordered� only in local patterns are they
likely to be a consecutive set of block numbers�� The SWITCH predictor concurrently monitors
the local reference pattern for each process� If any process makes a non
consecutive reference� the
pattern is assumed to be global� If all processes make three or more consecutive references� the
pattern is assumed to be local� Once the decision is made� each process switches to the appropriate
�local or global� predictor� This involves passing the recorded reference pattern �represented by
the �rst and last block numbers of a consecutive run� plus one possibly non
consecutive reference�
to the predictor�

Local predictors do not lose any information by this technique� but global predictors lose the
inter
process interleaving order of the blocks� For global predictors� however� the number of blocks
involved in the switch is usually small� because the switch is made early in the pattern� This limits
the di�erence between the actual interleaving and the interleaving recorded during the switch�

We ran a full set of experiments using the SWITCH predictor with IOPORT as the local
predictor and GAPS as the global predictor� The record size was one block� The results for each
experiment were compared with former results for the identical experiment with either the IOPORT
or GAPS predictor� In every test case except those involving the lrp pattern� SWITCH chose the
correct predictor� The lrp pattern we used occasionally had short portions �two or three blocks�� so
the pattern did not meet the consecutive
references criterion and the global predictor �GAPS� was
used� An lrp pattern with longer portions was correctly switched to a local predictor �IOPORT�� A
fully
general solution would add some of solution � �above� to GAPS� if a local pattern is suspected�
switch back out of GAPS and into the local predictor�

We measured the percent di�erence in the total execution time between SWITCH and either
GAPS or IOPORT� whichever was appropriate for the test� This represented the percent overhead

�Note that a global pattern with large �many blocks
 records can also be viewed as a local pattern� and would be
by SWITCH�

��� CHAPTER 	� AUTOMATIC PREDICTION IN GLOBAL PATTERNS

required by the SWITCH predictor� The lrp pattern� due to the poor choice of the global predictor�
was much slower than with IOPORT �������� The di�erences for most other cases are so small
�
���� to ����� that they are essentially insigni�cant compared to measurement error� �One case�
grp with neighbor��	� synchronization� was ����� slower using SWITCH�� Thus� the overhead was
minimal� Note that� except in lrp� all of the overhead is at the start of the pattern� and essentially
represents a delay in the start of prefetching by the predictors� For longer patterns� the SWITCH
overhead percentage would be smaller�

It is therefore possible to construct a reasonably ecient general
purpose predictor for the
types of sequential access patterns we consider� SWITCH chose the correct predictor in all cases
except in the lrp pattern with short portions� Another case where it might have diculty is a
local pattern where some processes reference blocks much more slowly than other processes� Some
modi�cations may be necessary to handle these cases more intelligently� In addition� the SWITCH
overhead was usually quite small� Although SWITCH with GAPS and IOPORT may be a fair
general
purpose predictor� it may be possible to use extra information to choose the predictor that
gives best performance for a particular type of pattern �see Section ������

�� Conclusion

We present one primary global
pattern predictor �GAPS�� a variant �RGAPS�� and a specialized
predictor �GW�� In our experiments� these three predictors each managed to successfully reduce
the execution time of global access patterns in most cases� approaching the best time� represented
by the EXACT predictor� closely in many cases� The GAPS predictor had a high overhead� which
may limit its scalability �see Section ����� The overhead of the RGAPS variant was lower� and its
concurrency was high� so it should be more scalable� In our experiments� the RGAPS and GAPS
predictors were essentially equivalent in most cases� except in the grp pattern� where RGAPS was
faster than GAPS� From these experiments� it is not clear whether RGAPS was strictly better than
GAPS� Although GAPS was more robust for short
portioned gfp patterns� the next chapter shows
that RGAPS was usually superior to GAPS� In particular� Section ��� shows that GAPS could not
handle large record sizes� The GW predictor did well on gw and lw patterns� matching EXACT�
although GAPS and RGAPS came close to this performance�

We studied the e�ect of the MaxDist parameter and found that MaxDist should not be too
small �for these tests� less than about �� or �� blocks�� but a MaxDist that is too large is rarely
a signi�cant problem� There is thus a lot of latitude for this parameter� We also studied the
signi�cance of the portion length of the pattern� As expected� longer portions allow for greater
eciency and better performance from all predictors�

Any real implementation of GAPS or RGAPS might obtain better performance through further
tuning� new cache replacement algorithms� the use of programmer
supplied hints� or optimizing for
a particular workload�

Chapter �

E�ect of Architectural and Workload

Parameters

In all of the experiments described so far� most of the parameters to the RAPID
Transit �le
system testbed were �xed while we explored the potential for prefetching �in Chapter �� and the
capabilities of various on
line predictors for local and global access patterns �in Chapters � and ���
In this chapter we investigate the e�ect of some of these other parameters on prefetching across our
full range of access patterns� using a few selected predictors� We begin in Section ��� by changing
the record size� which is an important factor in predictors like GAPS as well as in the replacement
algorithm� Then� we vary the cache size in Section ���� and examine how prefetching might use
more or fewer bu�ers� In Section ��� we examine the e�ect of fast and slow disks� Section ���
discusses varying the number of disks� and Section ��� discusses varying the number of processors�
Finally� in Section ���� we pull all of this together with some overall conclusions�

��� Varying the Record Size

So far all of our experiments have used access patterns consisting of records that were all exactly
one block long ����� bytes�� The record size is the size of each request to the �le
system interface�
which converts the request into a set of individual block requests for the �le system� Note that
sequential access with records that are not an integral number of blocks results in multiple references
to some blocks� Records larger than a block can radically change the block
request sequence of
globally
sequential access patterns� These are two ways the record size can a�ect the performance
of the �le system� In this section� we explore the e�ects of di�erent record sizes on the potential
for prefetching and on the predictors�

���� Experiments

We ran experiments varying the record size from �

�
block ���� bytes� to �� blocks ������ bytes��

Note that it was the relationship between the record size and the block size that was important�
not the actual sizes in bytes� We used the NONE and EXACT predictors as well as on
line
predictors �GAPS and RGAPS� or IOPORT� as appropriate�� To keep things simple� we used
only the none synchronization style� This keeps synchronization e�ects separate from record
size
e�ects� The experiments also did not include any computation with each record� This I�O
bound
workload stresses the �le system to its maximum� All other parameters were the same as usual	 ��
processors� �� disks� � KByte block size� ��
block cache� and �ve trials per test case�

���

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

We experimented with the lfp� lw� seg� rnd� grp� gfp� and gw patterns� For any given pattern�
several variants were constructed with various record sizes� The block access pattern was identical
across all variants of a particular pattern �except for rnd�� It was not possible to build similar lrp
variants due to the short� random portion lengths� Thus� the lrp pattern was not included in these
experiments�

���� Results and Discussion

The results are presented in Figures �������� The total execution time� averaged over �ve trials� is
plotted as a function of record size� The maximum coecient of variation �cv� is noted for each
�gure� With some �noted� exceptions� the curves are tight�

To help in interpreting the results� we compare the experimental execution time to a simple
model of the ideal execution time �page ���� There is no computation in these experiments� only
���� block reads each requiring �� msec of I�O� Ideally these are spread evenly over �� disks� so
the ideal I�O time is � seconds� One exception is the lw pattern� which ideally has only ��� block
reads spread over �� disks� so the I�O time is ��� seconds� The ideal execution time is plotted as a
dotted line in all of the �gures in this section�

There is one e�ect that was common to all predictors in all patterns� Whenever blocks may
contain multiple records �either whole small records or parts of larger records�� the �le system
processes some blocks many times� We have kept the number of blocks in the pattern constant to
maintain a constant I�O time �except in the rnd pattern� see page ����� Thus the number of �le
system requests �and hence the �le system overhead� is related to the number of records in the
pattern� This e�ect was most evident as a speedup in many cases as the record size increased from
�

�
to one block�

Local Patterns

The results for the local patterns are shown in Figures �������� The NONE predictor was una�ected
by the record size except as mentioned above� �The smaller variations are noise in the data�� The
same was true for EXACT and IOPORT on the lw pattern �Figure ����� EXACT and IOPORT
were mostly una�ected by record size in the lfp pattern� We expect lrp to behave similarly to lfp�

IOPORT was erratic in the seg pattern� shown in Figure ���� The standard deviation of the
�ve trials was as large as the deviations observed for di�erent record sizes� Random runtime
�uctuations determined the order that processes were served by the disks� Because of the heavy
disk contention� shu"ing the disk service ordering could signi�cantly change the execution times�
For the same reason� the cost of mistakes by the IOPORT predictor �not an issue in the EXACT
and NONE predictors� varied wildly� It is not possible to make any signi�cant conclusions for seg
except that it was roughly independent of the record size�

Global Patterns

The results for the global patterns are shown in Figures �������� All predictors were slower for non

integral record sizes due to several e�ects� First� there were more �le system references since each
block was requested several times� so there was more overhead� Second� di�erent processes were
sometimes simultaneously reading several records within a block� which resulted in competition
for the data structures for that block� Third� until the I�O was complete several processes were
waiting for the same block� Without prefetching� no other I�O was started� and several disks were
idle at all times� The poor disk utilization is re�ected as slower execution times for NONE on the

��� VARYING THE RECORD SIZE ���

��

�	

��

��

��

�

��

��

��

�

���

��	

� 	 �
 � ��

time
�sec�

Record Size �blocks�

Record�size variation for lfp

NONE

EXACT
IOPORT

ideal

Figure ���	 Total execution time for lfp as a function of record size� Note y axis does not begin
at zero� �cv � ������

�

�

	

�

�

�

�

�

� 	 �
 � ��

time
�sec�

Record Size �blocks�

Record�size variation for lw

NONE

EXACT
IOPORT

ideal

Figure ���	 Total execution time for lw as a function of record size� �cv � ������

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

�	

��

�

��

�

��	

���

��

���

�

��	

���

� 	 �
 � ��

time
�sec�

Record Size �blocks�

Record�size variation for seg

NONE

EXACT
IOPORT

ideal

Figure ���	 Total execution time for seg as a function of record size� Note y axis does not begin
at zero� Here IOPORT had ����� � cv � ������ �cv � ����� otherwise�

non
integral sizes� with the most acute e�ects in record sizes less than one block� This e�ect was
also evident� although to a lesser extent� when prefetching for non
integral record sizes�

Finally� the replacement algorithm did not handle multiple references per block well� and some
blocks were �ushed from the cache before they had been fully used� This caused extraneous disk
I�O� This points out the need for a better replacement mechanism to avoid �ushing blocks that may
be used by di�erent processes� A simple solution is to avoid �ushing blocks until they have been
referenced a given number of times� This solution is inadequate� however� since for many record
sizes �e�g�� �

�
blocks� the number of references per block is not a single constant� It would also

add complexity and interdependence between the prediction and replacement algorithms� Another
possibility is a method similar to that used to solve the lw phase problem �see Section ������� where
blocks remained in the cache until all processes �interested� in the block had used it�

Note that for integral record sizes ��� �� �� �� �� and �� blocks� the execution time for EXACT�
NONE� and RGAPS was nearly constant �roughly ��� seconds�� and close to the ideal execution
time�� Thus� there were no other record
size dependent e�ects on these predictors�

The GAPS predictor slowed down signi�cantly for records larger than two blocks� This was
due to the increased e�ort needed to recognize sequentiality in the block access pattern� since a
mismatch between the record size and the block size made the already convoluted global reference
string even more convoluted� In each case� records larger than four blocks caused GAPS to fail
completely� prefetching no blocks and running �� times slower �the GAPS curves go o� the scale
at this point� although it worked a little for gw with �
block records�� This was planned into the
design of GAPS� with the understanding that larger record sizes can be treated as local reference
patterns �and they are more eciently treated as local patterns��

From these �gures it is now clear that RGAPS is superior to GAPS �at least for these access pat

terns�� RGAPS parallels the performance of EXACT throughout� only slightly slower� GAPS only

�We use these record sizes because they divide the ���� blocks into an integral number of �xed�size records�

��� VARYING THE RECORD SIZE ���

comes close to RGAPS for some small ���� blocks� record sizes� This reinforces the interpretation
of the GAPS slowdown as a problem with recognizing sequentiality�

�

�

��

��

	�

	�

��

� 	 � � �
 � � � ��

time
�sec�

Record Size �blocks�

Record�size variation for gfp

NONE

EXACT
GAPS

RGAPS �

�
��
�
���

�
�����

��
�
� �

�
� � � � �� � � � �

ideal

Figure ���	 Total execution time for gfp as a function of record size� �cv � ������

�

�

��

��

	�

	�

��

� 	 � � �
 � � � ��

time
�sec�

Record Size �blocks�

Record�size variation for grp

NONE

EXACT
GAPS

RGAPS �

�������
�� � �

�
�

�
�

�

� �

ideal

Figure ���	 Total execution time for grp as a function of record size� The GAPS experiments
with records larger than � blocks were highly variable �cv � ������� but the signi�cant slowdown
is still clearly evident� �cv � ����� otherwise��

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

�

�

��

��

	�

	�

��

� � 	 � � �
 � � � ��

time
�sec�

Record Size �blocks�

Record�size variation for gw

NONE

EXACT
GAPS

RGAPS �

����
���

�
���

�
������

�
������������������

ideal

Figure ���	 Total execution time for gw as a function of record size� �cv � �����

Random Pattern

In our previous experiments we used the rnd pattern to show that some predictors handled random
patterns intelligently� Those tests used �
block records� With other record sizes� there are other
issues	 parts of some blocks are unused� and some sequentiality is present� We now show how our
predictors were a�ected by these issues� We experimented with the rnd pattern by generating
random patterns with di�erent record sizes� In each pattern all references were to �xed
length
records aligned on record boundaries� much like random access to a �le of �xed
length records� We
used the NONE� IOPORT� GAPS� and RGAPS predictors�

There were several interesting e�ects� shown in Figure ���� First� the execution time improved
with longer records� This was because of a reduction in wasted I�O bandwidth� For each record of
r blocks� up to dre � blocks were read� Since the patterns were random� adjacent records were
rarely needed� wasting dre � � r blocks� The total wasted bandwidth decreased� on the whole�
with increasing r� The waste was especially large for r � �� For integral record sizes� r blocks were
read and r were used� so there was no waste� Thus� the integral record sizes were fastest�

Also note that IOPORT was faster than NONE for all but the smallest records� Once records
used more than one block �even records smaller than one block may involve two adjacent blocks��
there was some sequentiality and prefetching was possible� In other words� the block access pattern
looked to IOPORT like lrp� instead of pure rnd� On the other hand� the execution time for RGAPS
was usually a little slower than NONE� There was no sequentiality on a global scale� so RGAPS
was able to do little prefetching� GAPS was so much slower than the others that most of the curve
is o� the scale� The rnd pattern with records larger than one block had just enough sequential
access to keep GAPS in Watch mode� but not enough to do any prefetching� This overhead caused
the GAPS execution time to exceed ��� seconds in some cases�

��� VARYING THE CACHE SIZE ���

�

�

��

��

	�

	�

��

��

��

��

� 	 �
 � ��

time
�sec�

Record Size �blocks�

Record�size variation for rnd

NONE

IOPORT
GAPS

RGAPS �

�

�

�

�

�
��

�

���
�
���

�
���

�
���������

��������

ideal

Figure ���	 Total execution time for rnd as a function of record size� �cv � ������ except for
GAPS	 cv � �����

���� Conclusions

There are several signi�cant conclusions	

� GAPS had its best performance for one
block records� Since all our previous experiments
with GAPS used this record size� those results are optimistic�

� GAPS failed for large record sizes �more than � blocks�� and for random
access patterns with
records larger than one block�

� RGAPS was clearly more general than GAPS when varying the record size� at least on these
access patterns� Other than being a little slower for non
integral record sizes� its performance
was little di�erent from that in Chapter ��

� Prefetching was possible in the rnd pattern for some record sizes� and IOPORT gained some
improvement over NONE�

� There is a need for tuning the replacement algorithm� to avoid �ushing blocks before all
references �especially from separate processes� are completed�

��� Varying the Cache Size

All of our experiments so far used �� processes� Thus the minimum cache size was �� blocks �see
page ���� We used an ��
block cache� implying a prefetch limit of �� blocks when prefetching� We
chose a �� block prefetch limit based on preliminary experiments that showed it to be a reasonable
compromise� In this section we examine the e�ect of this parameter �e�ectively� the cache size� on
prefetching� We determine what cache size is appropriate for each workload� and why�

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

���� Experiments

Using all of our access patterns except rnd� we varied the prefetch limit from �� blocks to at least
��� blocks� and in some cases as high as ��� blocks� Remember that the prefetch limit is in addition
to the base cache size of �� blocks� The NONE and EXACT predictors were used in every case�
with the IOPORT predictor included for all local patterns and the GAPS and RGAPS predictors
included for all global patterns� All four synchronization styles were used� and only the I�O
bound
�no
computation� experiments were included� All other experimental parameters were the same as
usual	 �� processors� �� disks� �
KByte block size� �
block record size� and �ve trials per test case�

Although the prefetch limit does not directly a�ect experiments with the NONE predictor� to
be fair we also varied the cache size in those test cases� Although our access patterns are primarily
sequential� some patterns �grp� lrp� and rnd� have a few repeated block references and thus are
a�ected by di�erent cache sizes�

���� Results and Discussion

We only present the data for the each��	� synchronization style� since we found the behavior
depended little on the synchronization style� The total execution time was measured for all test cases
�with coecient of variation never larger than ���� This was compared with the no
prefetching
execution time in terms of the percent improvement due to prefetching� With this measure� large
positive percentages are desirable� Figures �������� plot the percent improvement as a function of
the prefetch limit�

Local Patterns

The data for local patterns are shown in Figures ��������� Here we examined the IOPORT and
EXACT predictors� The performance was heavily dependent on the prefetch limit except in the lw
pattern� To examine the e�ects of large prefetch limits� we extended the experiments for lfp� lrp�
and seg out to a prefetch limit of ��� blocks� This was more than enough bu�ers for every process
to have one prefetch outstanding on every disk simultaneously�

Both EXACT and IOPORT were able to use many prefetch bu�ers in the lfp pattern �Fig

ure ����� Since IOPORT was limited by MaxDist � �� its performance curve has a sharp knee
at prefetch limit ��� ���� ��� EXACT leveled o� at around ��� blocks� Note that EXACT was
slower than IOPORT� and both were slower than NONE �i�e�� negative improvement�� for small
caches �less than about ��� blocks�� this was due to the greedy
process problem� For prefetch limits
of ��� or more� both IOPORT and EXACT were �nally faster than NONE� For limits over ����
EXACT �nally beat IOPORT� Thus� one solution to the greedy
process problem is to increase the
cache size� The primary conclusion here is that a reasonably large prefetch limit gave the best
performance� though there were diminishing returns�

In the lrp pattern �Figure ���� the performance of EXACT improved signi�cantly with increas

ing prefetch limit� Unburdened by mistakes and most prefetch limitations� EXACT was able to
use more prefetch bu�ers to reduce both the number of misses and the wait time associated with
bu�er hits� No additional prefetching bene�ts were possible for IOPORT� since it was in OBL mode
and could not use much more than �� bu�ers for prefetching� All predictors �including NONE�
bene�ted from an increased hit ratio from random re
references in larger caches� This e�ect is
cancelled out in our presentation of percent improvement�

The lw pattern �not shown� was essentially not a�ected by the prefetch limit� EXACT was
constant at ��� improvement� and IOPORT at ��� improvement� independent of the cache size�
In other words� �� prefetch bu�ers were sucient� This is no surprise� since every block was used

��� VARYING THE CACHE SIZE ���

�	�

���

���

��

�

�

��

��

� �� �� �	� �
� 	�� 	�� 	�� �	� �
� ��� ���

Percent
improved

Prefetch limit �blocks�

Cache�size variation for lfp

EXACT
IOPORT

Figure ���	 The percent improvement of prefetching over not prefetching� for the lfp pattern�
�cv � ������

�

	

�

�

��

�	

��

�

��

� �� �� �	� �
� 	�� 	�� 	�� �	� �
� ��� ���

Percent
improved

Prefetch limit �blocks�

Cache�size variation for lrp

EXACT
IOPORT

Figure ���	 The percent improvement of prefetching over not prefetching� for the lrp pattern�
�cv � ������

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

by every process� signi�cantly reducing overall bu�er space requirements� A ��
block cache was
large enough to keep all the disk queues full� so the disks were always busy�

In contrast� it was clearly important to use many prefetch bu�ers in the seg pattern �Fig

ure ������ This was due to the high
contention disk access pattern in seg� More prefetch bu�ers
meant more prefetching� and more prefetching allowed for much better disk utilization� This was
true both for EXACT and for IOPORT�

The curves in Figure ���� leveled o� at a prefetch limit of ��� blocks� This point corresponds
to the total size of one synchronization interval ��� processors doing �� blocks each�� and re�ects
seg�s use of only �� disks during any one synchronization interval�

�

��

	�

��

��

��

�

��

� �� �� �	� �
� 	�� 	�� 	�� �	� �
� ��� ���

Percent
improved

Prefetch limit �blocks�

Cache�size variation for seg

EXACT
IOPORT

Figure ����	 The percent improvement of prefetching over not prefetching� for the seg pattern�
�cv � ������

These experiments provide valuable information about the e�ect of cache size on local pattern
prefetching� Larger caches helped to solve the greedy
process problem in lfp and to handle disk
contention in seg� but made little di�erence to lrp and lw� These results show that our previous
results about prefetching in local patterns are pessimistic� The previous results for lfp show that
our on
line predictors were slightly faster or slightly slower than not prefetching at all� whereas a
���
block cache gave a solid ��� improvement� The previous results for the seg pattern show ���
improvement� but ��� improvement was possible with a ���
block cache� Results for lrp and lw
changed little�

��� VARYING THE CACHE SIZE ���

Global Patterns

For the global patterns we studied the EXACT� GAPS� and RGAPS predictors� The data are
shown in Figures ���������� The EXACT predictor generally leveled o� in all three patterns after
a ��
block prefetch limit� Apparently �� prefetch bu�ers were sucient to keep all the disks busy
and to minimize the number of cache misses� Indeed� with all predictors the disk utilization was
consistently over ��� for grp� ��� for gfp and gw�

The performance of the GAPS and RGAPS predictors steadily declined for grp �Figure �����
and most of gfp �Figure ������ This was due to an increasing number of mistakes in the �rst
portion� where the only limit on mistakes was the prefetch limit� In gfp� there was an improvement
from a ��
block to ��
block prefetch limit� where there was a reduction in the number of cache
misses to o�set the increased number of mistakes� Note that adjustments in the prefetch limit did
not allow either GAPS or RGAPS to attain positive improvement in the grp pattern�

�

	

�

�

��

�	

� 	� ��
� �� ��� �	�

Percent
improved

Prefetch limit �blocks�

Cache�size variation for gfp

EXACT
GAPS

RGAPS �

�

� � � �
�

Figure ����	 The percent improvement of prefetching over not prefetching� for the gfp pattern�
�cv � ������

Finally� in the gw pattern �Figure ������ GAPS and RGAPS were una�ected by varying the
prefetch limit �the �uctuations were smaller than the measurement error�� In short� it seems that
�� blocks �two per process� were sucient for prefetching in global patterns� There was not much
di�erence between prefetch limit �� and ��� so our other experiments using prefetch limit �� were
close to the best performance we can expect �at least in terms of prefetch limit��

���� Conclusions

In the I�O
bound patterns that we examined� disk utilization was the key to good performance�
Prefetching �usually� improved disk utilization by �lling the disk queues with appropriate requests�
avoiding costly disk idle time� Unless the disk utilization was already nearly perfect� the availability
of more prefetch bu�ers allowed more prefetching and hence higher disk utilization and higher
performance� This e�ect is clear in the results from the local access patterns� The global access

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

���

���

��

�

�

��

��

� 	� ��
� �� ��� �	�

Percent
improved

Prefetch limit �blocks�

Cache�size variation for grp

EXACT
GAPS

RGAPS �

�

�
� � � �

Figure ����	 The percent improvement of prefetching over not prefetching� for the grp pattern�
�cv � ������

�

	

�

�

��

�	

� 	� ��
� �� ��� �	� ��� �
� ��� 	��

Percent
improved

Prefetch limit �blocks�

Cache�size variation for gw

EXACT
GAPS

RGAPS �

� � � � � � � � � �

Figure ����	 The percent improvement of prefetching over not prefetching� for the gw pattern�
�cv � ������

��� VARYING THE DISK�ACCESS TIME ���

patterns� however� had high disk utilization �over �� or ���� even for small cache sizes and thus
were not much improved by adding bu�ers� This re�ects the contrast between the cooperative
nature of global patterns and the private nature of local patterns	 in global patterns� prefetching
a block into the cache bene�ts the entire computation� whereas in local patterns it bene�ts only
one process� The self
serving nature of prefetching in local patterns� and their less
uniform disk
access patterns� may be the reason why they require more prefetching bu�ers� More prefetch bu�ers
would probably also be helpful if the application mixed computation and I�O� when more aggressive
prefetching is useful�

Our original choice of an ��
block cache was indeed a compromise between some local patterns�
which preferred large ����
block� caches� and all global patterns and the other local patterns� which
were less a�ected by cache size and which were content with a ��
block cache� Given a larger cache�
the bene�ts of IOPORT to the lfp and seg patterns were better than we report in Chapters � and
��

Because the best prefetch limit seems to depend on the access pattern� and is fairly easy to
adjust in a running system� it is possible to use the predictors� information to adjust the prefetch
limit� A simple policy is to use a large prefetch limit �e�g�� ���� for local patterns� and a small
prefetch limit �e�g�� ��� for global patterns� This could be built into the SWITCH predictor�

��� Varying the Disk�Access Time

In RAPID
Transit the physical disk is modeled by a constant disk access time� In all of our other
experiments� the disk access time �per block� was �� msec� This is roughly the average access time
for the kind of small cheap drives that might be replicated in large quantities as part of a parallel
disk system �PGK��� Sch���� This also ignores disk layout and any bene�t that might come from
physically contiguous disk access�

Although one motivation for parallel disk systems is the slow rate of improvement in disk access
time� disks are getting faster� We study the e�ect of faster and slower disks in this section� Although
we are not changing the speed of our processors �which will also happen as technology changes�
our disk
access time variation is essentially a study of the relative speed of processors and disks�
Thus� the study of slower disks is useful� since slower disks are analogous to faster processors� or
to a situation where both processors and disks are faster� but the speed di�erential is wider than
it is now� The latter is the expected future� The study of faster disks is also useful� in case some
architectures have a narrower gap between processor and disk speeds�

We also use these experiments to determine how well prefetching overlaps I�O and computation�

���� Experiments

We varied the physical disk access time from �� msec to �� msec for our usual set of experiments�
Thus� we used the lrp� lfp� lw� and seg patterns with NONE� EXACT� and IOPORT predictors�
and the grp� gfp� and gw patterns with NONE� EXACT� GAPS� and RGAPS predictors� We
used all four synchronization styles with each of the above combinations� and used both the no
computation �I�O
bound� and computation variants� The computation� when present� averaged
roughly �� msec per block� and was the same across all experiments with a given pattern� All of
the other experimental parameters were the same as usual	 �� processors� �� disks� �
KByte blocks�
�
block records� ��
block cache� and �ve trials per test case�

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

���� Results and Discussion

We present only the results for the each��	� synchronization style� The other styles usually had
similar results� and the few exceptions are pointed out� The coecient of variation of the total
execution time is provided for each �gure�

To help in interpreting the results� we compare the experimental execution time to a simple
model of the ideal execution time� Recall that the ideal time T is

T � max�I�O time� comp time��

There are ���� block references in our patterns� each requiring t seconds of I�O� with t varying
from �� to �� msec� Ideally these are spread evenly over �� disks� so the ideal I�O time is ���t�
One exception is the lw pattern� which ideally has only ��� disk reads spread over �� disks� so the
I�O time is ��t� In the I�O
bound experiments there was no computation� so the ideal execution
time is the ideal I�O time� either ���t or ��t�

In the experiments with computation� the total amount of computation �C� varied slightly since
it was randomly generated� but it was roughly ������� seconds for all patterns� There were ��
processors in all these tests� so the parallel computation time was �ideally� C��� and hence

T � max����t�
C

��
� seconds�

Similarly� for lw� the ideal is

T � max���t�
C

��
� seconds�

In all plots of these experiments� we show the �ideal� execution time as a dotted line� using the
actual value for C� The ideal curve may be somewhat obscured by the experimental
result curves�

I�O�bound Experiments

In these experiments there was only I�O� and no computation� This corresponds to the extreme
case of processors that are so fast that I�O is totally dominant� The ideal disk I�O time assumes
perfectly balanced disks and no extra overhead� If the line for a given experiment has a slope
greater than the ideal line�s slope� the experiment did not have a balanced disk load� If they have
the same slope� but di�erent intercept� then the di�erence is some other source of overhead �e�g��
synchronization time� that is independent of the disk access time�

Global Patterns� The results for I�O
bound global patterns are shown in Figures ���������� In
Figure ���� the total execution time of the gfp pattern is plotted for NONE� EXACT� GAPS� and
RGAPS as a function of the disk access time� All predictors matched at least the slope of the ideal
curve� indicating only a constant overhead� for all but the fastest disks� Our results thus scale
well to the situation when processor speed has increased relative to disk speed� represented here
by the slowest disks� An interesting e�ect� however� occurred with fast disks	 GAPS and RGAPS
degraded for disks with access times less than �� msec� EXACT also degraded� but only for disks
faster than �� msec� �The precise point also varied a little depending on the synchronization style��
There is a simple explanation for this e�ect� Prefetching in global patterns added a substantial
amount of overhead� For slow disks� there was plenty of idle processor time available to be used for
prefetching� and the overhead was absorbed by the idle time� In addition� the bene�ts of prefetching
could be quite large� by avoiding lengthy disk waits� With fast disks� however� the overhead time
remained the same� but the idle processor time and the potential bene�ts were both reduced� In

��� VARYING THE DISK�ACCESS TIME ���

this case the overhead necessary for accurate prefetching was not worth the small bene�ts obtained�
and only small speedups were obtained by using disks faster than �� msec� Indeed� for the fastest
disks GAPS and RGAPS were slower than NONE�

	

�

�

�

�

�

�

��

��

�� 	� �� �� ��

Total
Time
�sec�

Disk access time �msec�

Disk access time variation for gfp

NONE

EXACT
GAPS

RGAPS �
� � �

�

�

�

�

�

�

ideal

Figure ����	 The result of varying disk access time for the I�O
bound gfp pattern� �cv � ������

When considering the poor performance of prefetching with fast disks� remember that the
processor speed is �xed in this experiment� Also remember that� as technology improves� processor
speeds are increasing faster than disk speeds� Thus� as the fast disks become available� even
faster processors are available� Prefetching overhead will be reduced more quickly than the disk

access time� so we expect prefetching performance to remain in the linear part of the curve� where
prefetching was successful� Indeed� it may be in the rightmost end of the curve� where disks have
slowed relative to processor speed�

The results for gw �not shown� were essentially the same as those for gfp�
In Figure ����� for the grp pattern� the slope for NONE was larger than ideal� indicating

that the disk load was not quite balanced in this less
regular access pattern� EXACT behaved
much like it did on gfp� with a slight degradation below �� msec� Otherwise it seems to have
a balanced disk load� GAPS and RGAPS did not have the same sharp degradation point� but
changed more smoothly� Note also that they were slower than NONE� as usual for grp� In the
none synchronization style �not shown�� the degradation point was sharper� In the neighbor��	�
synchronization style �not shown�� GAPS had so much overhead that it degraded for disks faster
than �� msec� though these results were highly variable �typical for GAPS on grp with neighbor��	�
synchronization��

In summary� prefetching in global patterns should scale well with disk and processor technology�
given the expected increasing gap between processor speed and disk speed�

Local Patterns� The results for local patterns are shown in Figures ���������� The disk loads
were less balanced� as indicated by the slopes that were higher than ideal� In the lfp pattern
�Figure ������ EXACT and IOPORT both exhibited this e�ect� each with a di�erent slope� This

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

	

�

�

��

�	

��

�� 	� �� �� ��

Total
Time
�sec�

Disk access time �msec�

Disk access time variation for grp

NONE

EXACT
GAPS

RGAPS �

� �
�

�
�

�
�

�

�

ideal

Figure ����	 The result of varying disk access time for the I�O
bound grp pattern� �cv � ������

was due in part to the greedy
process problem �note that they were often slower than NONE�
and to a disturbance of the uniformity in the access pattern� Because NONE did not disturb the
uniform disk access pattern� it had only a constant overhead� These conclusions were supported by
the non
synchronized version of these experiments �not shown��

In the lrp pattern� shown in Figure ����� all three predictors �NONE� IOPORT� and EXACT�
had an unbalanced disk load� as indicated by the slopes that were higher than ideal� In this case�
the slopes were all about the same� since it was the pattern� not the predictor� that was unbalancing
the load�

In the lw pattern �Figure ����� the NONE predictor has a high slope because the disks were
completely unbalanced �only one disk was used at a time�� The run times of EXACT and IOPORT�
however� were independent of the disk access time� since they were able to use all of the disks and
to completely overlap all I�O�

Figure ���� shows the results for the seg pattern� NONE had poorly
balanced disk accesses�
exhibited here by the high slope� EXACT and IOPORT improved the slope� though still higher
than the ideal� In the non
synchronized experiments �not shown�� the disks were balanced naturally
by the pipeline e�ect� In that case� both NONE and EXACT were better able to balance the disks
and had lower overhead� but IOPORT tended to request blocks out of the pipeline order and was
slower than NONE for all but the fastest disks�

In summary� the I�O
bound experiments represent the most stressful test of the �le system�
Our results about local
 and global
pattern prefetching that are valid with �� msec disks seem to
scale well to the likely future hardware balance� with faster disks tied to much faster processors�

��� VARYING THE DISK�ACCESS TIME ���

	

�

�

��

�	

��

�� 	� �� �� ��

Total
Time
�sec�

Disk access time �msec�

Disk access time variation for lfp

NONE

EXACT
IOPORT

ideal

Figure ����	 The result of varying disk access time for the I�O
bound lfp pattern� �cv � ������

	

�

�

��

�	

��

�

��

�� 	� �� �� ��

Total
Time
�sec�

Disk access time �msec�

Disk access time variation for lrp

NONE

EXACT
IOPORT

ideal

Figure ����	 The result of varying disk access time for the I�O
bound lrp pattern� �cv � ������

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

�

	

�

�

��

�	

�� 	� �� �� ��

Total
Time
�sec�

Disk access time �msec�

Disk access time variation for lw

NONE

EXACT
IOPORT

ideal

Figure ����	 The result of varying disk access time for the I�O
bound lw pattern� �cv � ������

�

�

��

��

	�

	�

��

�� 	� �� �� ��

Total
Time
�sec�

Disk access time �msec�

Disk access time variation for seg

NONE

EXACT
IOPORT

ideal

Figure ����	 The result of varying disk access time for the I�O
bound seg pattern� �cv � ������

��� VARYING THE DISK�ACCESS TIME ���

Experiments with Computation

When the application performs some computation on each block read from the �le� the load on the
�le system is reduced and there is another opportunity for prefetching to improve performance	 by
overlapping I�O and computation� As long as there is more computation than I�O� it is possible for
all of the I�O to be masked by computation� This is re�ected in the ideal execution time plotted
in each �gure�

Global Patterns� The total execution time of NONE on the gfp pattern with computation
increased with the disk access time �Figure ������ Prefetching with GAPS or RGAPS was always
faster� For fast disks� the I�O time was completely overlapped with computation� so the time was
independent of disk access time� With slower disks� the I�O was the bottleneck and thus the total
execution time was dependent on the disk access time� This e�ect is more clear in Figure ����� the
non
synchronized version of Figure ����� Notice that the total time was near to the ideal disk time�
indicating that the computation was mostly overlapped by I�O� or vice�versa�

�

�

��

�	

��

�

��

	�

�� 	� �� �� ��

Total
time
�sec�

Disk access time �msec�

Disk access time variation for gfp with computation

NONE

EXACT
GAPS

RGAPS �

� � � � � �
� � �

ideal

Figure ����	 The result of varying disk access time for the gfp pattern with computation�
�cv � ������

The results for grp and gw �not shown� were similar to those for gfp� They changed gradually
from I�O
bound to compute
bound� unlike in Figure ����� As before� the tradeo�s in the non

synchronized versions were more clearly de�ned� Also� in grp GAPS and RGAPS were slower than
EXACT�

Local Patterns� The results for lfp are shown in Figure ����� EXACT and IOPORT were able
to overlap part of the I�O with computation� since the slopes of their lines were smaller than the
ideal� but NONE was not able to overlap any I�O with computation� The greedy
process problem
�page ��� was evident for slow disks�

The total execution time for lrp with computation was essentially linear for all three predictors

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

�

�

��

�	

��

�

��

�� 	� �� �� ��

Total
time
�sec�

Disk access time �msec�

Disk access time variation for gfp with computation� no synchronization

NONE

EXACT
GAPS

RGAPS �

� � � � � �
�

�
�

ideal

Figure ����	 The result of varying disk access time for the gfp pattern with computation� no
synchronization� �cv � ������

�

�

��

�	

��

�

��

	�

		

�� 	� �� �� ��

Total
time
�sec�

Disk access time �msec�

Disk access time variation for lfp with computation

NONE

EXACT
IOPORT

ideal

Figure ����	 The result of varying disk access time for the lfp pattern with computation�
�cv � ������

��� VARYING THE DISK�ACCESS TIME ���

�Figure ������ This indicates that the I�O never completely overlapped the computation time� as
it did for the global patterns� For other synchronization styles �not shown� the curves were bent
slightly� so there may have been a small amount of overlap�

�

�

��

�	

��

�

��

	�

		

�� 	� �� �� ��

Total
time
�sec�

Disk access time �msec�

Disk access time variation for lrp with computation

NONE

EXACT
IOPORT

ideal

Figure ����	 The result of varying disk access time for the lrp pattern with computation�
�cv � ������

EXACT and IOPORT were independent of the disk access time in the lw pattern �Figure ������
Nearly all I�O was overlapped with computation or other I�O�

The seg pattern results �not shown� were similar to lfp except for the greedy
process problem�

���� Conclusions

These are the primary conclusions	

� Slower disk
access times represent the likely architectural change to faster disks and much
faster processors�

� The disk speed parameter had the obvious linear e�ect on the total execution time� Based on
the slope of the line� it was clear whether the disk loads were balanced� Also� many I�O
bound
global patterns had a total execution time that was equal to the ideal disk I�O time�

� In many cases the bene�ts of prefetching �in terms of an improvement over not prefetching�
increased with the disk access time� Slower disks meant more idle time that could overlap
with overhead or computation� which is one area where prefetching �nds bene�ts� It also
meant that the cost of a cache miss was increased� increasing the value of a prefetch relative
to its cost�

� In addition to the obvious linear e�ect� in certain predictors the overhead was large enough
to make prefetching unproductive for fast disks on I�O
bound patterns� Increased processor
speeds should keep prefetching overhead ahead of the fast disks�

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

�

�

�

�

��

��

�	

��

��

��

�� 	� �� �� ��

Total
time
�sec�

Disk access time �msec�

Disk access time variation for lw with computation

NONE

EXACT
IOPORT

ideal

Figure ����	 The result of varying disk access time for the lw pattern with computation�
�cv � �������

� The lw pattern with prefetching was never a�ected by the disk speed since all I�O was
overlapped with other I�O�

� For some compute
intensive global patterns and fast disks� most or all of the I�O was over

lapped by computation� These patterns were insensitive to changes in disk speed within that
range�

��� Varying the Number of Disks

In most of our other experiments we used �� processors and �� disks� In many real multiprocessors
it is likely that there are fewer disks than processors� Also� many applications may be run with
more or fewer processors than there are disks� To understand the importance of the number of
disks� and how well prefetching can use all of the disks� we experimented with various numbers of
disks�

���� Experiments and Results

We ran several experiments using � to �� disks� using our usual set of patterns and predictors�
We used only none synchronization� which simpli�es analysis by removing synchronization e�ects�
The number of processors was �xed at ��� As usual� there was one application process on each
processor� In this section� we refer to processors instead of processes� to reinforce the fact that there
is full physical parallelism available for the �� processes� All of the other experimental parameters
were the same as usual	 �� processors� �
KByte blocks� �
block records� ��
block cache� and �ve
trials per test case�

��� VARYING THE NUMBER OF DISKS ���

The ideal execution time is derived as before	

T � max�I�O time� comp time�

There are ���� block references in our patterns� each requiring �� msec of I�O� for a total of
��� seconds �lw has ��� disk accesses� for a total of � seconds�� The ��� seconds of I�O is spread
over a variable number of disks� d� In the I�O
bound experiments there is no computation� so

T �
���

d
seconds

In the experiments with computation� the total amount of computation �C� varied slightly since
it was randomly generated� but it was roughly ������� seconds for all patterns� There were ��
processors in all of these tests� so the parallel computation time was �ideally� C��� and hence

T � max�
���

d
�
C

��
� seconds

In all plots of these experiments� we show the �ideal� execution time as a dotted line� using
the actual value for C �it may be somewhat obscured by the experimental
result curves�� We �rst
discuss the I�O
bound cases� then move on to the cases with computation�

I�O�bound Experiments

The results for the I�O
bound gfp pattern are shown in Figure ����� The overall impression is that
all predictors� including NONE� roughly followed the ideal curve� running faster with increasing
numbers of disks� Most of the speedup occurs for fewer than �� disks� with diminishing returns
after that�

�

	�

��

�

��

���

�	�

���

� � �� �� 	� 	� �� ��

Total
Time
�sec�

Number of disks

Number of disks variation for gfp

NONE

EXACT
GAPS

RGAPS �

�

�

�
�

� � � � � � � �� �

ideal

Figure ����	 The result of varying the number of disks for the I�O
bound gfp pattern� �cv � ������

There are a few interesting details� however� Note that the NONE predictor leveled o� after
�� disks� With only �� processors� and no prefetching� there was no way for NONE to use more

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

than �� disks� NONE was faster than the others� however� for fewer than � disks� At this point�
the overhead of prefetching was larger than the bene�ts� the extra parallelism provided by four or
more times as many processors as disks was enough to keep all of the disks busy� This is a common
feature of all the results in this section�

�

	�

��

�

��

���

�	�

���

� � �� �� 	� 	� �� ��

Total
Time
�sec�

Number of disks

Number of disks variation for grp

NONE

EXACT
GAPS

RGAPS �

�

�

�
�

� � � � � � � �� �

ideal

Figure ����	 The result of varying the number of disks for the I�O
bound grp pattern� �cv �
������

The overall shape of the curves for grp� shown in Figure ����� is the same as for gfp� but the
details are a little di�erent� Here NONE was faster than both GAPS and RGAPS for fewer than ��
disks� For more than �� disks� however� GAPS and RGAPS were faster than NONE� which leveled
o�� GAPS and RGAPS were further from the ideal than they were in gfp� due to the increased
mistakes and prediction overhead�

The results for gw are not shown� NONE leveled o� above �� disks� and all other predictors
matched the ideal curve throughout�

The results for lfp �Figure ����� were remarkably similar to those for gfp� With fewer disks than
processors� there were enough processors to keep the disks busy without prefetching� and NONE
ran at ideal speed� The added overhead of prefetching� coupled with the high cost of mistakes�
slowed down IOPORT� Then again� the shortage of disks limited the application so severely that
the di�erence between NONE and IOPORT was insigni�cant� For greater than �� disks� however�
�� processors could no longer keep the disks busy without prefetching� so NONE leveled o� while
IOPORT was essentially identical to both EXACT and the ideal curve� The seg pattern results
�not shown� were essentially the same as in the lfp pattern�

In the lrp pattern �Figure ������ we again note that NONE was faster than IOPORT for small
numbers of disks �here fewer than �� disks�� and IOPORT was faster than NONE for more than
�� disks� Unlike lfp� however� neither IOPORT nor EXACT were as fast as the ideal� This was
due to the added mistakes� the inability to predict over portion skips� and IOPORT�s conservative
treatment of random portions�

��� VARYING THE NUMBER OF DISKS ���

�

	�

��

�

��

���

�	�

���

� � �� �� 	� 	� �� ��

Total
Time
�sec�

Number of disks

Number of disks variation for lfp

NONE

EXACT
IOPORT

ideal

Figure ����	 The result of varying the number of disks for the I�O
bound lfp pattern� �cv � ������

�

	�

��

�

��

���

�	�

���

� � �� �� 	� 	� �� ��

Total
Time
�sec�

Number of disks

Number of disks variation for lrp

NONE

EXACT
IOPORT

ideal

Figure ����	 The result of varying the number of disks for the I�O
bound lrp pattern� �cv � ������

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

�

�

	

�

�

�

�

�

� � �� �� 	� 	� �� ��

Total
Time
�sec�

Number of disks

Number of disks variation for lw

NONE

EXACT
IOPORT

ideal

Figure ����	 The result of varying the number of disks for the I�O
bound lw pattern� The ideal
time is based on ��� disk accesses instead of ����� �cv � ������

The lw pattern results �Figure ����� were remarkably di�erent than the others� Without
prefetching� all processors in the lw pattern worked on only one block at a time� and hence only
one disk at a time� Thus� the time for NONE was roughly constant for all numbers of disks� The
other predictors leveled o� for more than � disks� This phenomenon is related to our choice to do
prefetching only during processor idle times� In lw� with prefetching and enough disks� the disks
supplied blocks faster than they could be processed� reducing the hit
wait time to zero� There was
then no idle time and hence no prefetching� Eventually the bu�ers were emptied and a demand
fetch was necessary� which provided idle time for more prefetching� These events repeated in a
cycle� causing several �time
consuming� demand fetches� and limiting the speed of lw� This was
one case where it might have been productive to force a prefetch when there was no processor idle
time available�

The rnd pattern is neither local nor global �Figure ������ This graph is a little di�erent because
it includes all of the predictors except EXACT �NONE� IOPORT� GAPS� and RGAPS�� For few
disks �i�e�� ��� disks� the �� processors were able to fully use all the disks and run close to the ideal
speed� With more disks� the random access pattern caused short
term imbalances in the disk load
that left some disks idle and thus the ideal was not reached� The disk contention was reduced when
the pattern was spread over more disks� so performance gains were possible when there were more
disks than processors�

Experiments with Computation

In our experiments with computation� the execution time had a lower bound of about � seconds�
which was the total computation time spread evenly over �� processors� This lower bound was
achieved only if all of the I�O was overlapped with computation� This was possible when there
were enough disks to make the I�O time shorter than the computation time� and if some mechanism
was used to overlap the two� Since the I�O and computation times were roughly balanced for ��

��� VARYING THE NUMBER OF DISKS ���

�

	�

��

�

��

���

�	�

� � �� �� 	� 	� �� ��

Total
Time
�sec�

Number of disks

Number of disks variation for rnd

NONE

IOPORT
GAPS

RGAPS �

�

�

�
�

� � � � � � � �� �

ideal

Figure ����	 The result of varying the number of disks for the I�O
bound rnd pattern� Note that
IOPORT� GAPS� and RGAPS are all included� �cv � ������

disks and �� processors� the ideal execution time leveled o� for more than �� disks� If there were
more computation time� the ideal curve would level o� with fewer disks� Thus� a program with
more computation needs fewer disks� while a program that has less computation needs more disks�
to attain its best performance� This comes directly from the equations on page ���� Indeed�
applications with much more computation than I�O could not bene�t from large numbers of disks
�but could still bene�t from prefetching�� For example� if our experiments had roughly ��� seconds
of computation per process �instead of ��� the ideal would be ��� seconds regardless of the number
of disks�

Figure ���� shows the results for the gfp pattern with computation� Note that NONE leveled
o� above �� disks� With �� or more disks� on average half of the processors were using the disk and
half were computing at any one time �since the average computation time is equal to the disk access
time� per block�� Hence� at most �� disks �half of ��� could be used by NONE�� For �� or fewer
disks NONE was close to ideal speed� implying that it was able to overlap I�O and computation�
This was because there were enough processors to keep all the disks busy� although some processors
were computing�

The �ideal� curve leveled o� at �� disks� and the other predictors stayed close to ideal� leveling
o� around �� or �� disks� The di�erence between these predictors� times and the ideal time is the
amount of I�O and overhead that could not be overlapped with computation� plus the extraneous
I�O caused by prefetching mistakes�

The results for grp with computation �Figure ����� were similar to those for gfp with compu

tation� except that the GAPS and RGAPS predictors were a little slower� This was typical for grp�
of course� because of the greater number of mistakes and the dicult pattern recognition� This
added overhead made them slower than NONE for fewer than �� disks�

�If there had been more computation involved� NONE would have leveled o� sooner� able to use fewer disks�

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

�

	�

��

�

��

���

�	�

���

� � �� �� 	� 	� �� ��

Total
time
�sec�

Number of disks

Number of disks variation for gfp with computation

NONE

EXACT
GAPS

RGAPS �

�

�

�
�

� � � � � � � �� �

ideal

Figure ����	 The result of varying the number of disks for the gfp pattern with computation�
�cv � ������

�

	�

��

�

��

���

�	�

���

� � �� �� 	� 	� �� ��

Total
time
�sec�

Number of disks

Number of disks variation for grp with computation

NONE

EXACT
GAPS

RGAPS �

�

�

�
�

� � � � � � � �� �

ideal

Figure ����	 The result of varying the number of disks for the grp pattern with computation�
�cv � ������

��� VARYING THE NUMBER OF DISKS ���

The results for gw with computation �not shown� were similar to those of gfp with computation�
GAPS� RGAPS� and EXACT were essentially identical in all cases� and all close to the ideal
execution time�

�

	�

��

�

��

���

�	�

���

� � �� �� 	� 	� �� ��

Total
time
�sec�

Number of disks

Number of disks variation for lfp with computation

NONE

EXACT
IOPORT

ideal

Figure ����	 The result of varying the number of disks for the lfp pattern with computation�
�cv � ������

The lfp pattern with computation �Figure ����� was similar to the gfp pattern with computa

tion� EXACT and IOPORT were essentially identical� though not quite ideal for more than a few
disks� The results for the seg pattern with computation �not shown� were similar to those of the
lfp pattern with computation�

The lrp pattern with computation� in Figure ����� performed much like the grp pattern with
computation� For fewer than �� disks� NONE was faster than IOPORT� and for �� or more disks�
IOPORT was faster than NONE� Due to the mistakes and IOPORT�s reluctance to prefetch in lrp�
IOPORT was slower than EXACT�

In the lw pattern with computation� as in the I�O
bound lw pattern� the NONE predictor
had a roughly constant execution time �Figure ������ However� so did the EXACT and IOPORT
predictors� which both came within a �xed overhead of the ideal execution time for more than
one disk� Here the ideal curve was mostly constant �equal to the computation time�� since the
total I�O time was always less than or equal to the computation time �there were only ��� total
disk accesses�� In this pattern� therefore� there was no need for a large number of disks� The
computation time dominated�

For the rnd pattern with computation �Figure ����� we again used all of the global and local
predictors� There was no possibility of prefetching� so the predictors did not come close to the
ideal time for more than a few disks� For more than �� disks� the total execution time was the
sum of the I�O and computation times� plus a little overhead� For fewer than �� disks� the added
processor parallelism allowed some overlap between computation and I�O� The rest was similar to
the I�O
bound rnd pattern in Figure �����

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

�

	�

��

�

��

���

�	�

���

� � �� �� 	� 	� �� ��

Total
time
�sec�

Number of disks

Number of disks variation for lrp with computation

NONE

EXACT
IOPORT

ideal

Figure ����	 The result of varying the number of disks for the lrp pattern with computation�
�cv � ������

�

	

�

�

��

�	

� � �� �� 	� 	� �� ��

Total
time
�sec�

Number of disks

Number of disks variation for lw with computation

NONE

EXACT
IOPORT

ideal

Figure ����	 The result of varying the number of disks for the lw pattern with computation� The
ideal time is based on ��� disk accesses instead of ����� �cv � �������

��� VARYING THE NUMBER OF PROCESSORS ���

�

	�

��

�

��

���

�	�

� � �� �� 	� 	� �� ��

Total
time
�sec�

Number of disks

Number of disks variation for rnd with computation

NONE

IOPORT
GAPS

RGAPS �

�

�

�
�

� � � � � � � �� �

ideal

Figure ����	 The result of varying the number of disks for the rnd pattern with computation�
Note IOPORT� GAPS� and RGAPS are all included� �cv � ������

���� Conclusions

These are the primary conclusions	

� Remember that achieving the ideal execution time� while a good measure of prefetching�s
e�ectiveness� is not necessarily the overall goal� It is little help to be close to the ideal when
the ideal is slow� as is the case� for example� when there are only a few disks�

� The predictors all roughly followed the shape of the ideal
time curve� except for NONE�
which could not use more than �� disks with �� processors ��� disks in the computation
experiments��

� Only with prefetching did performance continue to improve when there were more disks than
processors �except in the rnd pattern��

� NONE was often slightly faster than prefetching when there were many fewer disks than
processors �except in lw�� In this case� the parallelism in �le system requests was able
to keep the disks busy with less overhead than by prefetching� This seemingly negative
result is tempered by the fact that� in these experiments� NONE was only slightly faster than
prefetching� whereas in many other situations �fewer processors than disks� small record sizes�
high disk contention� etc�� NONE was much slower than prefetching� Overall� prefetching
was worthwhile�

��� Varying the Number of Processors

In all of our other experiments our test applications had �� processes running on �� processors� In
most of those experiments� the number of disks was also ��� When we varied the number of disks�

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

we found several interesting e�ects when the number of processors did not equal the number of
disks� We revisit these e�ects in this section� where we vary the number of processors� and we also
examine the scalability of both the �le system and the predictors�

As always� we run exactly one process on each processor� and so the number of processes equals
the number of processors� In this section we often use the word �processor� to emphasize the
variation in available physical parallelism�

���� Experiments

We used our standard set of patterns� with and without computation� All patterns �except lw�
read ���� blocks total �as always�� Thus the local patterns had to be regenerated for each number
of processors� We varied the number of processors from � to over ���� This is enough processors
to get a rough idea of scalability� though more processors are required to seriously test scalability
of the implementation� We used the NONE and EXACT predictors� plus the appropriate on

line predictors �IOPORT or GAPS and RGAPS�� We used only the none synchronization� which
simpli�es the analysis by avoiding synchronization e�ects� All other parameters were the same as
usual ��� disks� �
KByte blocks� �
KByte records� ��
block cache� and �ve trials per test case��
Wherever possible we used the same pattern� or pattern parameters� across all tests with that
pattern� Due to the random nature of the rnd and lrp patterns� the pattern we used was necessarily
di�erent for each number of processors� but we believe that the di�erence had only a minor e�ect
on these experiments�

In order to isolate the e�ect of the number of processors� we held most of the parameters
constant� In particular� the cache size� and hence prefetch limit� was �xed� For local patterns� this
meant that the prefetch limit per process varied with the number of processes� In a production
system� it would be more logical to �x the cache size per process� and vary the total cache size with
the number of processes�

���� Results and Discussion

The ideal execution time for these experiments is derived much like it is for the number
of
disks
variation� Here� however� the number of disks is �xed at ��� and the number of processors �p�
varies	

T � max�I�O time� comp time� � max���
C

p
� seconds�

Here C is the total amount of computation in the pattern� In the I�O
bound experiments C � ��
and T � � seconds� In the global patterns the computation was randomly generated� and so C
varied a little from pattern to pattern� It was usually around ��� seconds� In the local patterns we
used a �xed �� msec computation time on each block� to avoid diculties in generating patterns
that could be fairly compared as the number of processors varied� Here C � ���� except for lw�
where C � �p� The ideal curve is plotted in all of the �gures� using the actual values for C�

I�O�bound Experiments

The results for the gfp pattern are shown in Figure ����� Adding processors reduced the execution
time for the NONE predictor by helping to keep the disks busy� More than �� processors �i�e��
more processors than disks� made little di�erence� With prefetching� the ideal execution time was

�We stopped at �� because that was the maximum useful size of our machine when the tests were run� In most
local patterns we stopped at �� because it was the largest number that evenly divided the work among the processors�

��� VARYING THE NUMBER OF PROCESSORS ���

achieved with fewer processors� For EXACT� three processors were sucient to keep �� disks busy
with prefetching� Thus� the disks were fully utilized either by prefetching or by using a sucient
number of processors�

There were two interesting e�ects when there were more processors than disks� First� NONE
was faster than all other predictors �though not much faster�� At this point the parallelism alone
was enough to keep the disks occupied� whereas prefetching required more overhead for the same
task� and also made mistakes� This result was con�rmed on similar experiments with �� disks�
Second� note that GAPS �and to some extent RGAPS� slowed down for more than �� processors�
The inter
process contention was increasing� a hint that these predictors may not scale well�

�

	�

��

�

��

���

�	�

���

� � �� �� 	� 	� �� ��

Total
Time
�sec�

Number of processors

Number of processors variation for gfp

NONE

EXACT
GAPS

RGAPS �

�
� � � � � � � �

ideal

Figure ����	 Total execution time for gfp as a function of number of processors� �cv � ������

Less prefetching was possible in the grp pattern� shown in Figure ����� The NONE predictor
behaved much as it did on gfp� but the three prefetching predictors needed more processors to match
the ideal execution time than they did for gfp� NONE was fastest for more than �� processors�
This result was con�rmed by a corresponding e�ect in experiments with �� disks� GAPS began to
slow down �due to predictor contention� for more than �� processors�

The results for the gw pattern �not shown� were similar to those for gfp� The prefetchers had
nearly ideal execution time except for few processors �fewer than three��

The results for the lfp pattern� shown in Figure ����� were similar to the gfp results� EXACT
was always close to the ideal execution time� especially with more than � processors� IOPORT was
also close to the ideal for more than � processors� although it began to slow down some when the
number of processors exceeded the number of disks� In fact� for �� processors IOPORT was slower
than NONE� This was due to two factors	 increased contention for prefetch bu�ers and other
prefetching data structures� and an increasing number of prefetching mistakes� The prefetching
mistakes occurred primarily at the end of the �rst portion on each processor	 when the number of
processors increased� the number of �rst portions increased� so the number of mistakes increased�

The results for lrp are shown in Figure ����� The general form of these results is similar to
the lfp results� except that EXACT and IOPORT were able to prefetch less and thus needed more

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

�

	�

��

�

��

���

�	�

���

� � �� �� 	� 	� �� ��

Total
Time
�sec�

Number of processors

Number of processors variation for grp

NONE

EXACT
GAPS

RGAPS �

�

�
�

� � � � � �

ideal

Figure ����	 Total execution time for grp as a function of number of processors� �cv � ������

�

	�

��

�

��

���

�	�

���

� � �� �� 	� 	� ��

Total
Time
�sec�

Number of processors

Number of processors variation for lfp

NONE

EXACT
IOPORT

ideal

Figure ����	 Total execution time for lfp as a function of number of processors� �cv � ������

��� VARYING THE NUMBER OF PROCESSORS ���

processors to approach the ideal execution time� Their approach was further from the ideal than in
lfp� since the prefetching potential in lrp was more limited� NONE was faster than IOPORT for
more processors than disks� a result con�rmed in similar experiments with �� disks� Here NONE
was never faster than EXACT� but with more than three times as many processors as disks ���
processors� �� disks� it was essentially the same as EXACT �not shown�� None of the predictors
showed any sign of slowing down for large numbers of processors�

�

	�

��

�

��

���

�	�

���

� � �� �� 	� 	� ��

Total
Time
�sec�

Number of processors

Number of processors variation for lrp

NONE

EXACT
IOPORT

ideal

Figure ����	 Total execution time for lrp as a function of number of processors� �cv � ������

The lw pattern was di�erent from the other patterns� as shown in Figure ����� In this pattern�
every process read the whole �le� rather than some share of the �le� Thus� the number of �le system
requests� per process� was independent of the number of processors� and the total number of �le
system requests grew linearly with the number of processors� The amount of I�O was constant�
as in all the other experiments� As Figure ���� shows� there was no improvement in the execution
time by adding more processors� NONE could not use more than one disk at a time� regardless
of the number of processors� whereas EXACT and IOPORT were able to use all of the disks with
only one processor� Because of the increasing �le system overhead� however� the execution time
actually increased with more processors� The conclusions from similar experiments with �� disks
were the same�

Prefetching was successful in the seg access pattern� shown in Figure ����� Except for the one

processor case� and for more processors than disks� both EXACT and IOPORT ran at essentially
ideal speed� IOPORT slowed down some for �� processors� and NONE was then faster� Prefetching
reordered the disk accesses and increased the disk contention� This had two e�ects	 to reduce the
number of blocks prefetched� and to decrease the load balance between the processors by delaying
some processors more than others� With more processors� the load was less balanced� and the
execution time increased�

For the rnd pattern� we necessarily used a di�erent random pattern for each number of pro

cessors� Given the uniform distribution of block references throughout the �le �and hence over the
disks�� we believe the di�erences had only small e�ects on the timing� We used the NONE� IO

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

�

�

	

�

�

�

�

�

� � �� �� 	� 	� �� ��

Total
Time
�sec�

Number of processors

Number of processors variation for lw

NONE

EXACT
IOPORT

ideal

Figure ����	 Total execution time for lw as a function of number of processors� �cv � ������

�

	�

��

�

��

���

�	�

���

� � �� �� 	� 	� ��

Total
Time
�sec�

Number of processors

Number of processors variation for seg

NONE

EXACT
IOPORT

ideal

Figure ����	 Total execution time for seg as a function of number of processors� �cv � ������

��� VARYING THE NUMBER OF PROCESSORS ���

PORT� GAPS� and RGAPS predictors� The results are shown in Figure ����� All of the predictors
were essentially the same as NONE� None of them ever quite reached the ideal execution time�
although they all continued to speed up �albeit slightly� past �� processors� These results were
con�rmed in a similar experiment using �� disks�

�

	�

��

�

��

���

�	�

���

� � �� �� 	� 	� �� ��

Total
Time
�sec�

Number of processors

Number of processors variation for rnd

NONE

IOPORT
GAPS

RGAPS �

�

�

�

� � � � � �

ideal

Figure ����	 Total execution time for rnd as a function of number of processors� Note that not
all predictors were run at all test points� �cv � ������

Experiments with Computation

The ideal execution time for experiments with computation is attained by overlapping all computa

tion with I�O� or all I�O with computation� Note that NONE could not use more disks than it had
processors� Once there were more processors than disks� however� NONE queued multiple requests
on some disks� It was possible� therefore� for all the disks to be busy while some processors were
computing� Thus� the execution time for NONE could be less than the sum of the I�O time and the
computation time� and approach the ideal execution time� when there were more processors than
disks� This also held for all predictors in the rnd pattern� where none of them did any prefetching�

In the gfp pattern with computation �Figure ������ the prefetchers all came close to the ideal
execution time� especially once they were I�O
bound �more than �� processors�� Thus� the overlap
between computation and I�O was nearly perfect� As the number of processors increased� NONE
was closer to the ideal execution time� though it was always slower than the others� In the ��
disk
experiments �not shown�� NONE was faster than GAPS and RGAPS for �� or more processors� so
we believe that NONE would also be faster than GAPS and RGAPS with �� disks� given enough
processors�

The results for gw with computation �not shown� were similar to those for gfp with computa

tion�

The results for grp with computation are shown in Figure ����� All of the predictors� curves
follow the same rough shape� with EXACT running at close to ideal speed throughout� GAPS

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

�

��

���

���

	��

	��

� � �� �� 	� 	� �� ��

Total
time
�sec�

Number of processors

Number of processors variation for gfp with computation

NONE

EXACT
GAPS

RGAPS �

�

�
�

� � � � � �

ideal

Figure ����	 Total execution time for gfp with computation as a function of number of processors�
�cv � ������

and RGAPS were slower than EXACT� but still faster than NONE in most cases� For more than
�� processors� NONE was slightly faster than either GAPS or RGAPS� which began to level o�
about ��� seconds slower than ideal �due to the inevitable mistakes�� Once again� a surplus of
processors was able to provide the same bene�ts as prefetching� without the added overhead or
costly mistakes� GAPS and RGAPS were roughly the same� except for one processor and more
than �� processors� where RGAPS was faster� Overhead slowed GAPS down�

The results for lfp with computation� in Figure ����� were similar to those for gfp with compu

tation� EXACT was fairly close to the ideal execution time� and IOPORT was slightly slower for
fewer than �� processors� Both were always an improvement over NONE�

In the lrp pattern with computation� shown in Figure ����� IOPORT was never quite as fast
as EXACT� which in turn was never quite as fast as the ideal� Both were always an improvement
over NONE�

The results for the lw pattern with computation are shown in Figure ����� and seem to be
independent of the number of processors� Without prefetching� only one disk was used at a time�
so the I�O time was � seconds instead of ��� seconds� Computation �which for lw was independent
of p� was not overlapped with I�O� so the total execution time was about �� seconds� With
prefetching� all computation was overlapped by I�O� so the total was closer to the ideal � seconds�

In the seg pattern with computation� IOPORT was essentially the same as EXACT� and both
were close to the ideal� They were both always faster than NONE�

The rnd pattern with computation �Figure ����� was much like the I�O
bound rnd pattern�
in that all of the predictors were about the same� and none ever matched the ideal execution time�
With more processors� however� they were increasingly close to the ideal�

��� VARYING THE NUMBER OF PROCESSORS ���

�

��

���

���

	��

	��

� � �� �� 	� 	� �� ��

Total
time
�sec�

Number of processors

Number of processors variation for grp with computation

NONE

EXACT
GAPS

RGAPS ��

�

�
� � � � � �

ideal

Figure ����	 Total execution time for grp with computation as a function of number of processors�
�cv � ������

�

��

���

���

	��

	��

� � �� �� 	� 	� ��

Total
Time
�sec�

Number of processors

Number of processors variation for lfp with computation

NONE

EXACT
IOPORT

ideal

Figure ����	 Total execution time for lfp with computation as a function of number of processors�
�cv � ������

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

�

��

���

���

	��

	��

� � �� �� 	� 	� ��

Total
Time
�sec�

Number of processors

Number of processors variation for lrp with computation

NONE

EXACT
IOPORT

ideal

Figure ����	 Total execution time for lrp with computation as a function of number of processors�
�cv � ������

�

	

�

�

��

�	

��

� � �� �� 	� 	� �� ��

Total
Time
�sec�

Number of processors

Number of processors variation for lw with computation

NONE

EXACT
IOPORT

ideal

Figure ����	 Total execution time for lw with computation as a function of number of processors�
�cv � �������

��� VARYING THE NUMBER OF PROCESSORS ���

�

��

���

���

	��

	��

� � �� �� 	� 	� ��

Total
Time
�sec�

Number of processors

Number of processors variation for seg with computation

NONE

EXACT
IOPORT

ideal

Figure ����	 Total execution time for seg with computation as a function of number of processors�
�cv � ������

�

��

���

���

	��

	��

� � �� �� 	� 	� �� ��

Total
time
�sec�

Number of processors

Number of processors variation for rnd with computation

NONE

IOPORT
GAPS

RGAPS �

�

�

�

� � � � � �

ideal

Figure ����	 Total execution time for rnd with computation as a function of number of processors�
�cv � �������

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

���� Scaling both Disks and Processors

In another set of experiments� we varied both the number of disks and processors so that there was
always one disk per processor� The results from these experiments were similar to the experiments
described above� except that the theoretical and experimental total execution time never leveled
o� within our test range �� to �� processors�� as was the case when we varied only the number of
disks or the number of processors� The ideal execution time for p processors and d � p disks is

T � max�I�O time� comp time� � max�
IO

d
�
C

p
� �

max�IO� C�

p
�

Our experimental data followed the ideal curve in much the same way as described above� where
we varied the number of disks or processors independently�

���� Conclusions

These are the signi�cant conclusions	

� The ideal execution time was often achieved without prefetching� given a surplus of processors
�except in lw�� In I�O
bound applications� it suced to have more processors than disks�
With some computation� it was necessary to have many more processors than disks�

� Using prefetching� fewer processors were required to reach the ideal execution time�

� It was possible to overlap computation and I�O almost perfectly�

� In some cases� the predictors ran more slowly when given more processors� in particular� it
appears that the GAPS predictor had trouble scaling to many more processors than disks�
We expect that GAPS would not scale well if it had more processors available�

The �rst conclusion is perhaps the most important� Since we expect that most multiprocessors
will �and do� have more processors than disks� this is a common situation� Remember� however�
that in other situations �e�g�� small record sizes or unbalanced disk loads� prefetching was much
better than not prefetching� In general� it is a valuable addition with signi�cant bene�ts most of
the time� and occasionally a small slowdown�

��� OVERALL CONCLUSIONS ���

��	 Overall Conclusions

The performance of our GAPS� RGAPS� and IOPORT predictors varied a lot in some of the
experiments discussed in this chapter� Their performance relative to each other� and to EXACT�
NONE� and the ideal execution time� also varied� In an e�ort to combine all of these results� and
contrast them with the results of other chapters� we make the following conclusions	

� Disk utilization was obviously the key to performance� particularly in the I�O
bound experi

ments� Prefetching usually increased disk utilization and hence performance�

� All three predictors� GAPS� RGAPS� and IOPORT� were fairly robust across most of the
experiments in this chapter� Within limits� the number of disks� number of processors� and
disk access time could vary and prefetching came close to the ideal execution time� and was
usually faster than not prefetching� There were exceptions� usually at the extremes of the
variation �e�g�� few disks� many processors� or fast disks��

� RGAPS is clearly better than GAPS as a general
purpose choice� RGAPS was able to handle
unusual record sizes� where GAPS was sometimes �� times slower than NONE� Because of its
lower overhead and higher concurrency� we expect RGAPS to scale better than GAPS when
given more processors� judging by the e�ects we saw beginning around �� processors�

� When there were fewer processors than disks� prefetching was better able to keep the disks
busy than was NONE� In this case� the execution time with prefetching was often close to
the ideal execution time�

� When there were more processors than disks� the NONE predictor was often faster than all of
the others� The parallelism alone was able to keep the disks busy� with less overhead and no
mistakes� When there was computation involved� more processors were required for NONE to
be faster than the other predictors� since it could not overlap as much I�O with computation�

� Prefetching helped to overlap computation and I�O� and in many cases the execution time
was close to the ideal� The execution time was� of course� bounded below by the computation
time� since prefetching could only improve the I�O time�

� Limited prefetching was possible in the rnd pattern when the record size was not one block�
Thus� some execution time improvements are possible even for �random� access patterns�

� With fast disks� prefetching was sometimes slower than not prefetching� In this case� the
overhead of prefetching was not worth the small bene�ts� Increasing processor speeds will
lower this overhead faster than disk speeds will improve� so this e�ect may not be signi�cant�

� Prefetching in many local patterns was much improved with larger caches �on the order of
��� blocks instead of �� blocks��

Although there were some situations where prefetching was not helpful� it was not much worse
than not prefetching �with the exception of GAPS on unusual record sizes�� Prefetching was most
useful in these situations	

� When there were fewer processors than disks�

� When there was some computation to be performed�

� When the disk
access speed was slow relative to processor speed�

��� CHAPTER
� EFFECT OF ARCHITECTURAL AND WORKLOAD PARAMETERS

� In the lw pattern�

In addition� successful prefetching required more bu�ers than were needed without prefetching� In
general� prefetching gave huge performance increases and sometimes small performance decreases�
Thus� on the whole� prefetching was e�ective�

The results in previous chapters were based on only one assignment of the parameters we explore
in this chapter� We cannot say whether those results were consistently optimistic or pessimistic�
either in terms of the potential for prefetching or the performance of any given predictor� From
the results in this chapter	

� With larger caches� IOPORT and EXACT performed much better on some local patterns�

� With fewer processors� or more disks� the bene�ts of prefetching were more signi�cant�

� With slower disks the bene�ts of prefetching were more signi�cant�

� The all
round performance of GAPS was much worse than in Chapter ��

Thus our previous results were neither pessimistic nor optimistic� except in the case of the GAPS
predictor� where they were overly optimistic�

Our experiments were limited by the size of the machine available to us� We believe� however�
that prefetching will scale to larger machines� In any application� the bottleneck will limit perfor

mance� so for higher performance both the number of processors and the number of disks must be
increased� depending on the particular access patterns and computational loads that are expected�
To scale to much larger machines �hundreds of processors� the quality of the implementation be

comes even more important� Our experiments only began to test the scalability of the �le system
and predictors� all of which showed some stress even with �� processors� IOPORT looks like it will
scale well to larger numbers of processors and disks� and RGAPS may scale some more� but will be
more limited� GAPS� on the other hand� is not likely to scale much further at all� The �le system
itself has moderate scalability� a more careful implementation is needed for signi�cant scalability�

Chapter �

Bu�ering for Write Access

��� Introduction

In the preceding chapters we concentrate on read
only access patterns� investigating the potential
for prefetching and caching techniques to improve parallel I�O performance� In this chapter we
consider another important class	 write
only access patterns� Recall from page �� that these
patterns are writing newly created �les� not overwriting existing �les� The issue� then� is not
prefetching� since there is no data to fetch from disk� but bu�ering data written to the cache and
deciding when to write it back to disk� The timing of disk writes can have signi�cant performance
e�ects� As before� the goal is high disk utilization and minimization of mistakes� We explore several
methods in this chapter� and evaluate their performance on our write
only access patterns �page
����

We assume that the space for the �le is preallocated� so no �le
extension or other overhead is
required while the �le is written� This assumption is necessary since we do not model the disk
layout or simulate the associated �le system overhead involved with opening �les and allocating
disk space� Preallocation is already found in some supercomputer �le systems �Pow��� NNI����

��� Methods

All I�O is done to bu�ers in the disk cache� The application writes data into a cache bu�er �which
is then �dirty��� and the data are written to disk later� Cache consistency is not an issue because
there is only one� shared cache� We implemented several distinct methods for triggering the physical
disk writes	

WriteThru� the simplest scheme� forces a disk write on every �le write request from the applica

tion�

WriteBack delays the disk write until the bu�er is needed for another block�

WriteFree issues a disk write when the bu�er enters the free list� Thus� it issues a write before
the bu�er is needed for re
use� but after it is no longer in use by some processor� This is a
compromise between WriteThru and WriteBack�

WriteFull issues the disk write when the bu�er is �full�� de�ned to be when the number of bytes
written to the bu�er is exactly equal to the size of the bu�er in bytes� This assumes that
each byte of the �le is written exactly once �page ����

���

��� CHAPTER �� BUFFERING FOR WRITE ACCESS

Each of these methods is easy to implement� and has its own advantages and disadvantages�
WriteThru� for example� is ideal for blocks that are only accessed once� because the disk I�O
is started immediately� It is poor� however� for patterns where the block may be accessed many
times in a short interval �e�g�� when the record size is smaller than the block size� there are sev

eral records per block and thus several accesses per block�� WriteFull was designed for this case�
WriteBack and WriteFree provide interesting alternatives�

There are two types of mistakes possible in any write
only access pattern with non
integral
record sizes	

rewrite� A disk write is issued prematurely� The application writes to a bu�er� the bu�er is
written to disk� and then the application writes to the bu�er again� requiring another disk
write� Several rewrite mistakes are possible before a bu�er �nally leaves the cache� Each
rewrite mistake represents one extraneous disk write�

reread� A block is removed from the bu�er cache prematurely� In this case� the application writes
a bu�er and then the bu�er is written to disk and used for another block� If the application
writes to part of the �rst block again� the block must be read back into the cache before it can
be updated� Each reread mistake represents two extraneous disk operations �one premature
write� one reread��

��� Experiments

We designed a set of experiments to evaluate the e�ectiveness of our write
bu�ering policies across
variations in workload and cache size� These experiments answer the following questions	

� What is the e�ect of cache size� Is a large cache useful�

� How do the policies react to the record size�

� Which �if any� policy is the most generally successful�

� Can a cache using a smart write
bu�ering policy help an application to better use the available
parallel I�O bandwidth�

We experimented with all three write
only access patterns �page ���� both with computation
�averaging �� msec per block� and without �i�e�� I�O bound�� For each case� we tried all of the
write methods described above� �rst varying the cache size with one
block records� then varying
the record size with an ��
block cache� In all tests there were �� processes and �� disks� the RU

set size was one block� the block size was � KByte� and there was no synchronization �i�e�� none
synchronization�� The ideal execution time was � seconds for all cases except lw� with computation�
which was limited by its ��� seconds of computation�

In one �nal experiment� we varied the RU
set size using the WriteFree method �Section �������

��� Results

All results represent the average over �ve trials for each test point� In all cases cv � ������ that is�
the standard deviation was never more than ���� of the mean� Most cases had much smaller cv�

���� RESULTS ���

����� Cachesize Variation

In these experiments� the cache size varied from �� one
block bu�ers to ��� one
block bu�ers ��
to �� blocks per process�� The workload patterns all issued write requests of exactly one block
�i�e�� the record size was one block�� Thus� each block was accessed only once� The most successful
methods issued disk writes soon after the bu�er was �lled� Note that WriteFull and WriteThru are
inherently equivalent in these access patterns� because the bu�er is full when it is �rst written�

In the gw pattern� shown in Figure ���� WriteThru� WriteFull� and WriteFree were clearly
faster than WriteBack� which delayed the disk write too long� In gw with computation� shown in
Figure ���� WriteFree is also slower than WriteThru or WriteFull� This is because WriteFree delays
the disk write for a full but most
recently
used block until the next �le system access� which is
after the process�s compute cycle� This delay was too long� slowing down overall execution� Note
that �� or more bu�ers for gw� and �� or more bu�ers for gw with computation� were sucient to
run these patterns close to the ideal execution time of � seconds� Forty bu�ers corresponds to two
bu�ers per process� which allowed one to be �lled while the other is written to disk� More bu�ers
���� were required in the I�O
bound gw� because it was issuing write requests at a faster rate�

The slight rise in the time for gw with computation �Figure ���� for caches larger than ��
bu�ers was due to increasing overhead	 unready
queue scans took longer when there were more
bu�ers� With computation� this pattern was barely keeping the �� disks busy� so a slight increase
in overhead slowed it down and caused a lower disk utilization� The lower utilization led to a longer
overall execution time� The gw pattern with no computation had no trouble utilizing the disks
even with increased overhead� and so was not a�ected �Figure �����

�

�

�

�

��

��

�	

	� ��
� �� ��� �	� ��� �
� ��� 	��

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for gw

WriteBack

WriteFull
WriteFree
WriteThru �

�

�
� � � � � �

ideal

Figure ���	 Cache
size variation for write pattern gw�

The lw� patterns ran more slowly than the gw patterns� because one process could not drive all
�� disks at full eciency �Figures ��������� WriteBack was much worse than the other methods� and
WriteFree again was slow for lw� with computation� Larger caches bene�ted the lw� pattern by
allowing more disk parallelism to be used� but this e�ect was not a factor when computation clearly
dominated� as in Figure ���� Note that lw� with computation is compute
bound� ideally having

��� CHAPTER �� BUFFERING FOR WRITE ACCESS

�

��

�	

��

	� ��
� �� ��� �	� ��� �
� ��� 	��

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for gw with computation

WriteBack

WriteFull
WriteFree
WriteThru �

�

� � � � � � �

ideal

Figure ���	 Cache
size variation for write pattern gw with computation�

��� seconds of computation and � seconds of disk time� WriteThru was the fastest in both cases�
barely faster than WriteFull� presumably by having slightly less overhead in the implementation�

The write
only seg patterns� like their read
only counterparts� had a dicult disk access pattern
�all processes began on the same disk�� A large cache helped to alleviate this problem� as seen in
Figure ��� and Figure ���� since the larger cache allowed processes to continue writing even when
some disks were overloaded� In e�ect� large caches allowed a longer pipeline to form� using more
disks concurrently than with a short pipeline� This is especially important as processor speeds
increase relative to disk speeds� A ���
block cache allows �� outstanding disk writes for each of ��
processes�

Summary� From these results� bothWriteThru and WriteFull �essentially equivalent here� appear
to be good write
bu�ering methods� in that they had the best overall performance� Note that
WriteThru with a ��
block cache and a one
block record size is conceptually similar to not caching
at all� and had poor performance� Our results show that large caches can use more disk parallelism
and improve overall performance� The necessary cache size� however� depends on the workload	 a
larger cache is needed to absorb disk contention problems �as in seg� or a high write request rate
�as in gw without computation�� For the experiments in the next section we chose an ��
block
cache because that was a reasonable compromise for all workloads� based on the results in this
section�

���� RESULTS ���

��

��

��

�

��

��

	� ��
� �� ��� �	� ��� �
� ��� 	��

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for lw�

WriteBack

WriteFull
WriteFree
WriteThru �

�
�

� � � � � �

ideal �
 seconds�

Figure ���	 Cache
size variation for write pattern lw��

�	�

�	

�	�

�	�

�	�

���

���

	� ��
� �� ��� �	� ��� �
� ��� 	��

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for lw� with computation

WriteBack

WriteFull
WriteFree
WriteThru �

� � � � � � � �

ideal ��	� sec�

Figure ���	 Cache
size variation for write pattern lw� with computation�

��� CHAPTER �� BUFFERING FOR WRITE ACCESS

�

�

�

��

��

�	

��

��

��

	� ��
� �� ��� �	� ��� �
� ��� 	��

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for seg

WriteBack

WriteFull
WriteFree
WriteThru �

�

�

�
�

�
� � �

ideal

Figure ���	 Cache
size variation for write pattern seg�

�

��

�	

��

�

��

	� ��
� �� ��� �	� ��� �
� ��� 	��

Total
Time
�sec�

Cache size �blocks�

Cache�size variation for seg with computation

WriteBack

WriteFull
WriteFree
WriteThru �

�

�
� � � � � �

ideal

Figure ���	 Cache
size variation for write pattern seg with computation�

���� RESULTS ���

����� Recordsize Variation

In the experiments of this section� we varied the record size of the access pattern with a �xed cache
size of �� one
block bu�ers� The variation includes both integral and non
integral record sizes� The
latter are important because they cause multiple accesses to many blocks�

Figure ��� shows the record
size variation for the write
only gw access pattern� WriteThru is
clearly a poor choice for small record sizes� due to a huge number of rewrite mistakes� WriteFree
was smarter� waiting until the bu�er was mostly unused before issuing a disk write� but it was still
not perfect due to some mistakes and to not immediately writing the blocks to disk when they
�nally were ready to be written� �Some mistakes could be avoided by increasing the RU
set size�
see Section ������� WriteBack was sometimes faster than WriteFree because it had fewer rewrite
mistakes� Finally� the WriteFull method had a nearly perfect �
second execution time over all
record sizes� because it issued the write precisely when the block was ready to go to disk� and made
no mistakes�

Note the dips in the curves for all but WriteFull� These occur at integral record sizes ��� �� ��
�� �� and �� blocks��� where there was only one access per block� This avoided any opportunity
for mistakes� which were common in the non
integral record sizes� Note that as the record size
increased� an increasing number of blocks were accessed only once� even with a non
integral record
size� This accounts for the convergence of these three methods as the record size increases�

�

�

��

��

	�

� � 	 � � �
 � � � ��

Total
Time
�sec�

Record size �blocks�

Record�size variation for gw

WriteBack

WriteFull
WriteFree
WriteThru �

�

�

�

�

���

�

��� ���
�
���

�
���������

�
������

�

ideal

Figure ���	 Record
size variation for write pattern gw�

�We use these record sizes because they divide the ���� blocks into an integral number of �xed�size records�

��� CHAPTER �� BUFFERING FOR WRITE ACCESS

The results for lw� are shown in Figure ���� The high execution times were due to reduced I�O
parallelism� because one process could not keep �� disks busy� even with an ��
block cache� In fact�
one process could only keep ���� disks busy at any one time� a limitation due to the overhead of
�lling bu�ers and queuing them for disk I�O� With non
integral record sizes this time was increased
due to repeated accesses to some blocks� Thus� the time varies widely for non
integral record sizes�
WriteBack was usually slowest� because it delayed the write too long� WriteThru was also slower for
small non
integral record sizes� especially for the smallest record size� due to the rewrite mistakes�
No other method could have rewrite mistakes� No method had reread mistakes �since only one
process wrote the �le� and sequentially� no block could leave the cache early�� WriteFree tied
WriteFull� although in a pattern with computation it would be slower for some record sizes �see
page �����

�

��

	�

��

��

��

�

� � 	 � � �
 � � � ��

Total
Time
�sec�

Record size �blocks�

Record�size variation for lw�

WriteBack

WriteFull
WriteFree
WriteThru �

�

�
�

�

�
�

�

�

�

����

�

�

�
�

��
� � � �

�
�
� �

�
�

ideal

Figure ���	 Record
size variation for write pattern lw��

���� RESULTS ���

The record
size variation for the seg pattern �Figure ���� shows that
WriteThru was much slower than the others� This was due to WriteThru�s extreme number of
rewrite mistakes� Due to the sequential access pattern on each processor� none of the others had
rewrite mistakes� and none had reread mistakes� WriteFree delayed the writes a little more than
WriteFull or WriteBack� and was thus a little slower�

�

�

��

��

	�

	�

��

� � 	 � � �
 � � � ��

Total
Time
�sec�

Record size �blocks�

Record�size variation for seg

WriteBack

WriteFull
WriteFree
WriteThru �

�

�

�

�

���

�

�����

�

��

�

��� � � �
�
�� � �

�

ideal

Figure ���	 Record
size variation for write pattern seg�

Summary� The record size was an important factor in the performance of our write methods�
because partial
block writes could lead to rewrite and reread mistakes� This was especially bad for
records smaller than one block� where WriteThru�s de�ciency stands out� It was also signi�cant for
other non
integral record sizes larger than one block� For integral record sizes� all methods were
essentially independent of record size� WriteFull was the most successful� never making mistakes
regardless of record size�

��� CHAPTER �� BUFFERING FOR WRITE ACCESS

����� The WriteFree Method

The performance of the WriteFree method was tied to the choice of the local RU
set size� since this
size determined when a block left the local �and hence global� RU
set �page ���� As a demonstration�
consider Figure ����� With one
block records �essentially� any integral record size�� it was important
not to delay in issuing the write� so a small RU
set size was better� For quarter
block records �a
non
integral record size�� a larger RU
set size helped to delay the block from leaving the set until it
was fully written� thus reducing the number of reread and rewrite mistakes� Thus� the best choice
would depend on the record size�

�

�

�

��

��

�	

� 	 � �

Total
Time
�sec�

Local RU�set�size �blocks�

RU�set�size variation for gw under WriteFree

�

�
�block records
��block records

ideal

Figure ����	 Demonstration of the e�ect of RU
set size on the WriteFree style� Pattern is gw�
cache size is �� blocks�

��� Conclusion

Given the types of write
only access patterns we expect to be common� our exploration of four
methods shows that WriteFull� the most sophisticated of the methods� was consistently at or near
the best performance in all situations� In the lw� pattern with one
block records� WriteThru and
WriteFree did run slightly faster� but these methods were not nearly as successful in other cases�

A fairly small cache ������ blocks� i�e�� ��� blocks per process� was sucient to obtain the best
performance� except in the seg pattern� where larger caches helped mask the disk contention�� The
gw pattern had the fastest total execution time �nearly ideal�� and the �sequential� lw� pattern was
signi�cantly slower� High
performance parallel �le writing is de�nitely possible with these caching
techniques�

�With faster processors� larger caches would be needed to cover seg�s disk contention�

Chapter �	

The File System Interface

Most of this dissertation concentrates on the ability of caching and prefetching to deliver the
performance of parallel disk I�O hardware to the application� We assume that the application uses
a conventional �le system interface� through operations like open� close� read� write� and seek� to
access a �le that is interleaved across multiple disks� This interface hides the underlying parallel
nature of the �le and the �le system� so that the application programmer need not be concerned
with the details of these issues� Our results show that automated caching and prefetching in the
�le system can bridge the gap between the application� which has no knowledge of the underlying
parallelism� and the parallel disks� leading to increased performance� Indeed� they could successfully
use parallel disks even when the access pattern was not parallel �i�e�� from a single process�� More
success� however� was possible when the application used a parallel access pattern �Section �����
Based on these results� we can now consider interface issues	 ��� how convenient it is for the
programmer to specify parallel �le access patterns� ��� whether and how the �le system interface
should be changed to make such speci�cations more convenient and more amenable to caching
and prefetching� and ��� whether entirely di�erent paradigms �such as memory
mapped I�O� are
needed to realize performance� The success of prefetching and caching suggests that we consider
the �rst two issues� since it does not seem that entirely di�erent I�O paradigms are necessary
for performance reasons� Our discussion of ���� in the next section� indicates that some interface
changes are needed for programmer convenience� if not for performance�

For concreteness� we use the Unix �le system interface �RT��� as an example of a conventional
interface� The Unix �le system interface is in widespread use� even in multiprocessors �e�g�� those
made by Sequent� Encore� BBN� and Intel�� Note that some of these implement the Unix �le system
interface without the Unix �le system or the rest of the Unix operating system� The advantages to
using the Unix �or similar� interface for a multiprocessor include application portability� program

mer familiarity� and simplicity� This interface does not� however� directly support parallel disk I�O�
and thus sometimes impedes the use of parallel disks� Thus� we believe that a change is needed for
parallel systems� We propose an extension to the conventional interface that allows the use of the
conventional interface without modi�cation to existing software� Thus� all �les can be accessed by
parallel applications using the new extensions as well as by unmodi�ed traditional applications�

In the next section we outline many problems with using the Unix interface for programming
parallel �le access patterns� Note that our complaints are not with Unix speci�cally� but with
the Unix �le system model �which was never intended for a multiprocessor environment�� Then
we describe our proposed extension to the conventional �le system interface� which simpli�es the
speci�cation of parallel access patterns and which can provide valuable information to the �le system
to be used in caching and prefetching decisions� We also discuss optional semantic information that

���

��� CHAPTER ��� THE FILE SYSTEM INTERFACE

the user can give to the �le system to help it do better caching and prefetching�

��� The Conventional Interface

In the Unix �le system a �le is modeled as an addressable sequence of bytes �sometimes referred
to as a �seekable stream��� The interface is de�ned by the kernel �le system calls �RT���� not by
the stdio library package� The operations provided are open� create �called creat in Unix�� close�
read� write� and seek �called lseek in Unix�� The open and close operations mark the start and end
of activity on a given �le� Create creates a �le if necessary� Open is provided a �le name and an
intention �read� write� append� or read
write�� and returns a �le descriptor that is used in all of
the other operations� Associated with the �le descriptor is an implicit �le pointer that maintains
the current �le position� The �le pointer is used and updated by read and write� and reset by seek�
Read and write take a �le descriptor� a user bu�er� and a length in bytes� and return the actual
number of bytes read or written �zero at end of �le�� The data are written at the �le position
indicated by the �le pointer� and the �le pointer is updated to point just after the last byte read
or written� Seek requires a �le descriptor� a byte o�set� and a mode indicating that the o�set is
relative to the beginning of the �le� to the end of the �le� or to the current �le position� Seek
returns the new �le position� Extra features� such as support for logical records and indexed �les�
are not part of the basic Unix �le system�

Depending on the particular multiprocessor implementation of the Unix interface� there are
many diculties in using the interface to program a parallel �le access pattern� In some cases�
the Unix �le system operations are not atomic� leaving synchronization and atomicity to the user�
Thus� many of the diculties involve synchronization among the cooperating processes� Sometimes
other features of Unix �or some versions of Unix� can be used to satisfy the needs of parallel I�O
programming� but only in an awkward way� We discuss several problems here� sometimes by
considering how one would specify our parallel �le access patterns using the Unix interface�

In our model of parallel applications� all processes that are part of a single parallel program
access a common �le� Unless a single open operation opens the �le once for all processes in the
application� each process must open the �le independently� This requires all processes to have
access to the �le name and read�write intention� It also generates many open requests that must
be processed by the �le system� Thus� it is both inconvenient and inecient to depend on a
single
process open operation�

Note that with Unix process semantics� not necessarily included in a system supporting Unix

like �le semantics� a �le open at the time of a fork is also open in the new process created by the
fork ��LMKQ���� page ����� They also share the same �le pointer� For systems supporting this
or some other form of open
�le inheritance� the multitude of single
process open operations can be
avoided� It is� however� limited to �les open before the fork� and thus to closely related process
groups� It is not a general
purpose mechanism for opening �les in arbitrary process groups� In Unix
���BSD� an open �le can be shared with an arbitrary process by passing it through a Unix
domain
socket ��LMKQ���� page ����� although this mechanism is complicated�

Our global access patterns arise when the processes read or write the �le in a self
scheduled
order� The ideal mechanism for this is a �le pointer that is shared by all processes� and atomically
updated by the read and write operations� The Unix �le system interface does not directly provide
shared �le pointers� With Unix process semantics� however� a �le pointer can be shared when an
open �le is inherited after a fork operation or passed through a Unix
domain socket� Unfortunately�
there is not enough concurrency control in implementations of this mechanism to make accesses to

����� THE CONVENTIONAL INTERFACE ���

the shared �le pointer atomic�� Unix ���BSD supports an atomic
append mode ��LMKQ���� page
����� which handles one common case� but not the general case�

As an example of the diculties programmers have with global access patterns� consider the
case of a local programmer who wanted to create a new �le and have several processes append
records �lines of text� to the �le� The order of the records was not important� Using the Unix
interface� all processes independently opened the �le for �append�� and proceeded to write to the
�le� Since each process had an independent �le pointer� however� a record appended by one process
did not a�ect the �le pointers in other processes� Thus� each appended record was later overwritten
by other processes� and the �le ended up containing only garbage� This programmer needed an
�atomic
append� mode supported by the �le system interface� As we mentioned� some versions of
Unix do support atomic append�

A general self
scheduled access order can be implemented using only the Unix �le system se

mantics �which do not include the shared �le pointers provided by Unix process semantics�� A
shared counter is used to indicate the next byte of the �le to be read or written� The counter
is atomically incremented by the length of the record a process wishes to read �write�� using a
fetch
and
add operator�� The original value of the counter� obtained from the fetch
and
add� is
used in a seek operation� which is followed by the read or write� There are two problems with
this implementation� First� it requires care by the programmer to properly maintain the atomicity
of the overall operation� Second� the record length must be known in advance� which is dicult
when reading variable
length records� This case requires either a separate record index or more
serialization� Note that a strictly interleaved pattern� which is a special case of the self
scheduled
pattern� avoids the fetch
and
add and some of the atomicity problems� but still forces the user to
compute �le positions for seek � It also has the problem with variable
length records� Finally� if
the global pattern has sequential portions �i�e�� is not gw�� additional synchronization is needed to
detect the end of a portion� to choose the next portion� and to reset the shared counter used above�

We assume that each �le is interleaved� or at least declustered �page ��� across many disks in
the system� If the �le system does not maintain the declustering information for each �le� forcing
the programmer to specify the set of disks� disk �les� or disk blocks� then transparency is lost and
the interface is much harder to use� An example of this situation is in �Cro���� Another example is
the NCUBE �le system� which does not distribute a single �le across disks �PFDJ���� Instead� the
user must explicitly manage single
�le parallelism� We believe that it is important to have a single
name �e�g�� Unix pathname� that de�nes the parallel �le� and to leave the rest to the �le system�

Now consider programming the read
only seg access pattern� In this pattern� the �le is divided
into disjoint segments� one per process� Each process must open the �le� then locate and read its
segment� The process �or some master process� must �nd the length of the �le� use the length to
compute the length of the segments� determine the segment it is to read� seek to the beginning
of its segment� and read bytes of the �le until the end of its segment is reached� If the division
into segments is a simple matter of dividing the �le length by the number of processes� then little
work is needed� If� however� the �le contains logical records� care must be used to divide the �le at
record boundaries� Another problem is assigning segments to processes� which may be facilitated
by a shared counter or by predetermined process identi�ers� In all� this is not too dicult� but is
not convenient�

Now consider programming the write
only seg access pattern� Here� each process writes a
separate segment of the �le� The assignment of segments to processes is similar to the read
only

�One would expect the individual read and write operations to be atomic� but we found that this was not always
true� File locking is supported by some Unix versions� and could be used to enforce atomic access�

�Fetch�and�add is described in �GLR��	� Note that it can� if necessary� be implemented on top of an existing lock
primitive�

��� CHAPTER ��� THE FILE SYSTEM INTERFACE

case� but this time it is much more dicult to determine the starting position and length of each
segment� Unless the eventual length of each segment is known in advance� the starting positions
of the segments are impossible to compute� The alternative is to create a separate �le for each
process� but this �lls the �le system with many more �les than is really necessary� and makes later
manipulation of the data more dicult� It would be easier if the �le system supported the idea of
segmented �les�

Finally� note that user
level bu�ering� such as that in the Unix stdio interface� can lead to
incorrect results� If the user
level bu�ers are allocated on a per
process� per
�le basis� then bu�er
consistency problems arise� For example� one process writes some data to a �le� but the data
remains in the user
level bu�er� Another process then tries to read that part of the �le� and
receives outdated data since it �and the �le system� has no knowledge of the new data in the �rst
process�s bu�er� This same e�ect could occur with a poor implementation of kernel
level bu�ers�
Thus� any user
level bu�ering must be carefully integrated with the �le system caching mechanism�

Overall� the Unix �le system interface and semantics either cannot support our expected par

allel I�O access patterns� or can only support them with great diculty� For example� with Unix
���BSD �LMKQ��� a �le can be opened by one process� passed to a group of processes through a
Unix
domain socket� and then accessed atomically using �le locking� but the interface and mecha

nisms are complex� not usually known to the average programmer� and not portable� A higher
level
interface is needed for programmers to more easily take advantage of parallel I�O� Certainly� an
implementation of the high
level interface could use these Unix facilities where available�

��� Our Proposed Interface

Our experiments show that high performance �le I�O is possible with the conventional interface�
when assisted by caching and prefetching� The previous section demonstrates� however� that the
conventional interface is dicult to use for programming parallel I�O access� It is thus for program

mer convenience� rather than performance or functionality� that some new interface constructs are
needed� Extensions to the conventional interface retain the performance bene�ts of caching and
prefetching while adding convenience for the programmer� There are several goals for the new
interface	

� The conventional interface should still work� We want to support programs ported from other
systems� and programmers who do not require the expressive power of the extended interface�

� The parallel extensions should be easy to use� One reason for extending the interface is
programmer convenience�

� The common parallel access patterns should be supported�

� Details of the underlying parallel disk structure should be hidden from most applications� to
enhance portability�

� The interface should be consistent with caching and prefetching� Since we can depend on
caching and prefetching for high performance� our interface concentrates on convenient mech

anisms for parallel �le access patterns� In some places the interface actually helps prefetching
e�orts by exposing the programmer�s access pattern intentions to the �le system� Thus� in
some cases the new interface should further improve performance�

We describe the basic concepts� along with a few implementation notes� Each concept directly
addresses one or more of the problems outlined in the previous section� The syntax of the interface�

����� OUR PROPOSED INTERFACE ���

operation names� and parameter types depend on the language and operating system� and so ours
are only a rough sketch�

������ Concepts

Directory Structure� There should be a single �le
naming directory structure for the entire
parallel �le system� This hides the disk layout from the user and programmer� In some parallel �le
systems� the user must specify the list of disks involved �Cro��� or the list of local disk �les �PFDJ���
when opening a �le� since each disk has a separate directory structure� This is too burdensome for
the programmer� and also makes the program less adaptable to changes in the disk resources� disk
load� and so on� The name structure should be the same for parallel applications as for sequential
applications �such as �le
maintenance and directory
listing tools��

Note that a single directory structure can be physically distributed across multiple �le servers
without a central bottleneck� In the Sprite �le system� for example� the tree
structured name
space is partitioned among the disk servers� and all clients maintain a pre�x table that maps
�le pathname pre�xes to disk server locations �OCD����� Intel� whose Concurrent File System
has a single directory structure� chose to use a centralized directory manager for simplicity� since
optimizing opens and closes was not a priority �Pie����

Multiopen� For a �le to be accessed by all processes in an application� it must somehow be
opened for all processes in that application� Every process could open the �le independently� This�
as we pointed out� is inconvenient and inecient� Alternatively� if the process
creation mechanism
includes open
�le inheritance �as does Unix�s fork�� the �le could be opened before all the processes
are created� and the open �le inherited by all processes� This is insucient for our purposes� since
it is limited to �les that are open before the processes are created� to process groups that are
created from one master process� and to systems that have open
�le inheritance� We would like a
mechanism that is not dependent on such process semantics�

We propose adding amultiopen operation� which opens the �le for the entire parallel application
when run from any process in the application� This assumes a way to group the processes into
an �application�� presumably more general than the set of children of one parent process� Most
signi�cantly� the multiopen is executed after the process group exists� so the group is not limited
to pre
opened �les� In most applications the multiopen would be executed in the �master� pro

cess� Multiopen opens the �le only once� avoiding repeated directory searches and other overhead�
and gives each process in the application its own �le descriptor �through some implementation

dependent mechanism� e�g�� shared memory or Unix
domain sockets�� Multiopen can optionally
create a �le if it does not exist� In addition to the parameters required by open� multiopen requires
a pointer to the �le descriptor variable� the �le pointer type� discussed next� the access mode �and
possibly associated parameters�� discussed below under Type Coercion� and �nally� a list of optional
hints�

File pointer� When a �le is opened with multiopen� the programmer speci�es whether the �le
pointer should be local �providing each process with an independent� local �le pointer�� or global
�providing a single shared �le pointer for all processes�� These two choices correspond directly to
our local and global access patterns� A global �le pointer provides the synchronization needed to
implement global �le access patterns	 a read or write operation on a global �le pointer combines
the transfer and �le pointer update into a single atomic action� facilitating self
scheduled access

��� CHAPTER ��� THE FILE SYSTEM INTERFACE

patterns�� The �le system can ensure this atomicity without sacri�cing concurrency� Either type
of �le pointer can be changed with the seek operation�

The global �le pointer provides for atomic access to a shared �le pointer� Because this imple

ments self
scheduled access to the �le� the process has no control over exactly which record is read
or written when it uses read or write on a global �le pointer� Since it may need to know the position
of the transfer �to know� for example� the record number of the data just read�� the original value
of the �le pointer should be returned after the transfer is complete� along with the number of bytes
transferred� For compatibility� we do not change the interface of read and write� We de�ne the
readp and writep operations� which are the same as read and write� respectively� except that they
also return the original �le pointer position�

Portion support� The global �le pointer supports simple self
scheduled access� such as that in
gw read or write patterns� For global patterns that need more than sequential access �i�e�� that
have multiple portions�� more synchronization support is necessary to handle the transition between
portions� It is not clear how common these pattern types will be� If it is determined that they are
commonly used� we have a mechanism to support them� Otherwise� this new mechanism can be
omitted with no e�ect on the rest of the interface� Note that its use is optional to the programmer�
and that although it is intended for global �le pointers and read
only patterns� it also works for
local �le pointers or write patterns�

The problem is to control portion skips when using self
scheduled access within each portion�
A process examining the global �le pointer may satisfy itself that the �le pointer is still within the
current portion� but a subsequent read may occur outside of the portion due to concurrent read
operations incrementing the �le pointer� Unless the processes have some external mechanism to
limit their access to the current portion� they will read past the end of the portion� With readp
they can detect the condition� but only after reading data that they did not need� What is needed
is a way to tell the �le system where the portion ends�

The idea is to provide the �le system with the position of the beginning and end of the current
portion� The global �le pointer is moved to the beginning of the portion� and subsequent reads or
writes atomically increment the �le pointer through the portion� At the end of the portion� reads
or writes block until the next portion has been speci�ed� If the next portion is fully speci�ed before
the end of the current portion� there is no delay or loss of concurrency between portions�

The primary method for specifying the next portion is through a user
speci�ed upcall func

tion �Cla���� When necessary� the �le system calls the function to request the position of the next
portion� Normally� the function returns this information� Alternatively� it may specify that there
is no next portion �which is treated as an end of �le�� that the current portion should be extended�
or that the portion mechanism should be disabled� All of these release blocked read and write
operations�

As an optimization� the nextportion operation speci�es the next portion�s bounds before the up

call is needed� Another optimization allows the �le system to use the upcall prematurely� although
the application need not make a decision until it is necessary� The purpose of these optimizations
is to avoid delay at portion transitions�

Logical Records� Dibble �Dib��� argues for direct support for logical records in the �le system�
The Unix �le system does not have any built
in support for logical records� in contrast to some
traditional systems �typi�ed by commercial mainframes�� Such support increases the complexity

�Note that an alternative is to add a �le�position argument to the read and write operations� This does not help�
though� to make a self�scheduled pattern�

����� OUR PROPOSED INTERFACE ���

of the �le system� but there are good reasons for logical record support in a parallel �le system�
even when not supported in a similar uniprocessor �le system	

� The record support can be combined with global �le pointer synchronization to provide atomic
operations for reading and writing records� This is particularly useful if the records have
variable length�

� By understanding logical records� the �le system can avoid splitting a record over two blocks�
In some parallel access patterns� this increases concurrency �justi�ed by the results in Sec

tion ����� It can also increase performance in random access patterns �at the cost of wasted
space��

� The �le system can provide record locks as a convenience to the programmer�

In our interface� then� we divide the �les into byte �les and record �les� The �le type is an
attribute of the �le� All references to �position� in a record �le are record numbers instead of
byte o�sets� This a�ects the read� readp� write� writep� seek� and portion operations� Fixed
size
logical records are trivial to support� since the location of any record is easily calculated from the
record number� Variable
sized records are more dicult� since an implementation must be able to
atomically read the next record and update the �le pointer� with high concurrency�

Multiles� In most parallel programs� a data set is divided among the processes in the program�
In the conventional �le system� however� a single data set is usually represented as a single �le� For
a parallel program to use a conventional �le system� the individual process subsets of the data set
must either be combined into one �le or stored in separate �les� one per process� Neither option
is convenient� as we showed in our examples using the seg patterns� We provide a new type of
�le called a multi�le for these situations� To the �le system a multi�le is a single �le� with one
directory entry� but it is di�erent from a plain �conventional� �le in that it is not a single sequence
of bytes� Instead� it is a collection of sub�les� each of which is a separate sequence of bytes� A
multi�le is created by a parallel program with a certain number of sub�les� usually equal to the
number of processes in the program� Once created� the number of sub�les is �xed� Each process
writes its own sub�le� Later� when the multi�le is opened for reading� each process reads its own
sub�le� �Note that a multi�le implies local �le pointers�� Each process has the illusion of reading
an independent small �le� since each sub�le is independently addressed with its own �rst byte and
end
of
�le marker� Each sub�le can be extended or truncated without a�ecting the addressing
in any of the others� Thus� a multi�le combines the advantages of a single �le �single name for
a single data set� with those of multiple �les �independently addressable and extendible� easily
located beginning and end��

When opening an existing multi�le� an optional mapping may be speci�ed that indicates the
assignment of sub�les to processes� With the default mapping� the number of sub�les must match
the number of processes� and an arbitrary one
to
one mapping is used� With a user
speci�ed
mapping� there is no requirement on the number of processes� In fact� the mapping may specify
that some sub�les are not used� or that some processes have no sub�le� For applications that want
to manipulate many sub�les with few processes� we provide a newsub�le operation that switches
the mapping for that process to a given sub�le� Although a multi�le is de�ned to be an unordered
set of sub�les� the sub�les should be given some �xed� if not deterministic� order� This allows the
sub�les to be numbered� which is needed for specifying mappings and for the newsub�le operation�

Multi�les are most useful between parallel programs� so data can be written as separate subsets
and later read as separate subsets� They are also useful for output intended for sequential programs�
An example is a single �le that contains debugging output� with a separate sub�le for each process�

��� CHAPTER ��� THE FILE SYSTEM INTERFACE

There are two primary possibilities for the storage of multi�les in a parallel disk system	 in

terleaved� where all sub�les are interleaved over all disks� and localized� where the sub�les are
distributed over all disks� but with each sub�le stored entirely on a single disk� The localized
approach reduces contention and communication delays� but su�ers if the �le is read as a plain
�le by a single process �see coercion below�� since there is no way to use the disks concurrently�
The interleaved approach spreads the load over all disks� at the risk of increased contention and
communication delays� Our experiments with the seg access pattern indicate the danger of starting
all subpatterns on the same disk �page ���� so the interleaved multi�le format begins each sub�le�s
interleaving pattern on a di�erent disk� This helps to start the pipeline� The storage mode for a
multi�le defaults to interleaved� unless indicated by the user in a storage hint�

Type Coercion� Our �le system interface supports four �le types	

byte record
plain byte plain �le record plain �le

multi�le byte multi�le record multi�le

Note that the �byte plain �le� is the same as conventional �les� Every �le in the �le system is
stored as one of these four types� These �le types also represent four access modes that can be
speci�ed at the time the �le is opened� For compatibility� all �les in the �le system can be read as
a byte plain �le� In fact� for convenience we allow any �le to be read in any mode� with the �le
system coercing the stored �le into that mode� Note that coercion is just a mapping operation� the
stored �le does not change� We do not allow a �le to be opened for writing if coercion is necessary�
since it is not always clear how to map some write operations�

Although most coercions are done transparently� some applications may want to adjust them

selves to the stored �le type� The type operation can be used to request information about �le type
�plain or multi�le� byte or record�� This operation may be merged with existing mechanisms that
query other �le attributes �stat in Unix��

To coerce a record �le into a byte �le� we ignore record boundaries� fragmentation overhead
�empty space in blocks�� and any other overhead� such as length �elds or indexes� To coerce a byte
�le into a record �le� the user provides either a �xed record size or a record delimiter character
�e�g�� newline�� The details depend on the particular implementation of records�

To coerce a multi�le into a plain �le� the sub�les are ordered in some way �for sanity the same
order is used every time�� and concatenated together to form the illusion of one long �le� A plain
�le can also be coerced into a multi�le� This is a useful way to divide a �le�s data into contiguous
chunks for a variable number of processes� The user speci�es the desired number of sub�les �usually
the number of processes�� and the �le is divided roughly evenly among the sub�les� with each sub�le
assigned a contiguous portion of the original �le� If the �le is a byte �le� the division is by bytes�
if the �le is a record �le� or coerced into a record �le� the division is made at record boundaries�
In any case� the end of a coerced sub�le appears as an end
of
�le to the process assigned to the
sub�le�

������ Implications

Note that this interface has few implications for the underlying parallel �le system� The parallel
�le system must support �les interleaved across all disks� optionally restrict a �le to a single disk�
and provide a simple block interface to the �les� The interface� including the directory hierarchy�
multiopen� global and local �le pointers� portion support� multi�les� and logical records� can all be
built on top of this primitive parallel �le system� For good performance� it is best for the caching

����� ADDITIONAL SEMANTIC INFORMATION ���

and prefetching mechanisms to be integrated with the interface� or at least to allow the interface
implementation to interact closely with the caching and prefetching mechanisms� so that knowledge
of record size� portion length� etc�� can be used for caching and prefetching policy decisions�

Within the interface� there are many synchronization issues� In particular� the support of global
�le access patterns requires atomic access to a shared �le pointer� This is particularly complicated
if the �le
pointer update involves checking for the end of a portion� or �nding the length of the
next logical record� The latter may require reading data from disk� unless there is a separate record
index�

Note that most of the functionality we propose in our interface is already supported by some
Unix systems� or could be added in a relatively transparent way through Unix operations such as
ioctl� This would not� however� accomplish the primary goal of our interface	 to encourage parallel
I�O programming by making it easier to use�

������ Examples� Our Access Patterns

Every one of our parallel �le access patterns can be easily supported by the new interface� The
local or global �le pointer choice is clearly intended to support local and global access patterns�
Thus� all of the local access patterns �including the rnd access pattern� involve a multiopen with
a local �le pointer� and use read� write� and seek to access the portions of the �le� One special case
is the seg access pattern� which clearly motivates multi�les� The seg pattern �read or write� is
directly supported by the multi�le construct� whether coerced or not� Another special case is the
lw� pattern� for which the original open operation suces�

The global �le access patterns �the gw� grp� and gfp read patterns� and the gw write pattern�
are supported by the global �le pointer construct� The global �le pointer and the semantics of
the new read and write operations directly support self
scheduled access within portions� and the
portion mechanism supports portion skips�

��� Additional Semantic Information

Often the programmer has knowledge about the access pattern that would help the �le system�s
caching and prefetching e�orts� If the �le system interface provides a way for the programmer to
communicate this information to the �le system� then the performance may increase� It is optional
for the programmer to provide this information� and it is optional for the �le system to use it� but
its use may help improve performance� When the information is not guaranteed to be correct� it
is called a hint� The hint may be explicitly provided by the programmer� or implicit in other �le
system calls or parameters� We �rst describe the types of information that are useful� then some
mechanisms for providing it to the �le system�

������ Types of Information

There is much optional information that a programmer can provide� The inspiration can be from the
�le system documentation� which describes the factors that a�ect performance� the characteristics of
access patterns� and the kind of information that can be helpful to the �le system� Inspiration may
also come from the �le system itself� in the form of statistics and other feedback� The information
that can be supplied by the programmer includes	

� Local or global access pattern� This is implicit in the choice of a local or global �le pointer�

� Sequential or random access pattern� Prefetching can be avoided in random patterns�

��� CHAPTER ��� THE FILE SYSTEM INTERFACE

� Whole �le access pattern� If it is known in advance that the whole �le will be read� a bold�
simple prefetching method �such as IBL or GW� can be used�

� Speci�c access pattern style� Knowing the access pattern style �e�g�� lfp� allows the �le system
to choose an appropriate predictor�

� Access pattern details� The location and length of portions are invaluable prefetching infor

mation� and are implicit in the portion support operations�

� Speci�c predictor� Here the user explicitly states which predictor or write method to use�

� Record size� The logical record size is useful in global pattern prefetching� This is implicit
when record
mode access is used� but is useful even when the application manages its own
records�

� Amount of data sharing� Whether any data will be used by more than one process�

� Rate of data use� An estimate of the data throughput needs of the application�

� Phase change is coming� This hint warns that the access pattern is changing� An example is
a jump to a new portion� or a change from one pattern to another� A seek is an implicit hint
of a phase change �although a little late to help prefetching much��

� Preallocate� Knowing the eventual size of a new �le can cut the overhead used for repeated
automatic extensions�

� Do not cache� There are times when caching is not appropriate�

� Do not prefetch� There are times when prefetching is not appropriate�

� Prefetch this record� A speci�c request useful in non
sequential patterns� This is more
general than the common asynchronous read operation� which is limited to one outstanding
asynchronous read� The prefetch hint could be arbitrarily mixed with normal read operations�

� Done with this record� Encourages removing this record from the cache� possibly causing a
write to disk�

� Storage� Disk storage recommendations� such as which disks to use� interleaving unit size�
and so on�

This information can help choose the right predictor� provide key information for prefetching� avoid
mistakes� or make storage recommendations� Thus they can increase performance�

������ Mechanisms

The mechanism for providing semantic information varies with the rest of the implementation
details� We propose the hint operation� with parameters code and value� to supply one hint with
its associated argument� The hintv operation accepts a hintlist � which is a vector of �code� value�
pairs� In addition� the multiopen operation accepts a �possibly empty� hintlist as a parameter�

Note that a hintlist is stored by the �le system with the other �le system attributes� and is
loaded when the �le is opened� The stored hintlist is constructed by the �le system from information
that the �le system accumulates while managing a �le	 the predictor used� the type of access
pattern and parameters� and the general success of prefetching� This is essentially a long
term

����� RELATED WORK ���

prediction mechanism� These hints should be considered less trustworthy than any provided by the
application� since they may be based on information from entirely di�erent uses of the �le� The
�le system should be able to provide this accumulated information �and more� including statistics�
to the user on request� perhaps in a human
readable report format� to suggest hints or changes to
the application�

��� Related Work

������ Interface

Several researchers have discussed parallel I�O interfaces for MIMD multiprocessors� Dibble� in
his design of the Bridge �le system �Dib���� de�nes three interfaces	 standard� which is essentially
our conventional interface� parallel open� in which a control process issues all the read and write
requests� automatically transferring one record in or out of every process� and tools� Tools have
transparent access to the local �le systems of each disk� allowing the data on each disk to be
handled by the attached processor� minimizing data �ow in the processor interconnection network�
The standard interface is there for compatibility� the tools for performance� and the parallel
open
interface is a compromise� Our proposed interface hides the underlying disk layout �unlike Dibble�s
tools�� and has powerful constructs for expressing parallel access patterns� with the �le system
handling much of the optimization�

Intel�s �le system for their iPSC�� multiprocessor� CFS �Pie���� also provides three inter

faces �AS���	 standard �conventional�� random
sequential access� which uses a self
scheduled global
�le pointer� and coordinated� which is for interleaved access with either a �xed or variable record
size� The last is interesting� since it uses some serialization when the record size is variable� essen

tially implementing atomic append�

Another parallel �le system is based on ways to lay out a �le on parallel disks �Cro��� Cro����
One interface provides self
scheduled access with a global �le pointer� Another provides local �le
pointers� A �uni�ed� access mode provides the standard interface for compatibility� One de�ciency
in this interface is that the user must supply a list of disks to the open operation�

The �le system for the NCUBE hypercube multiprocessor ��PFDJ���� is primitive� in the sense
that each disk has a local �le system independent of the others� and no global �le system is provided�
Parallel I�O must be managed explicitly by the user� using separate �les on each disk�

The CUBIX �le system for the CrOS system on hypercubes �FJL���� connects a sequential
�le server to a parallel application program� It has two interfaces	 singular� in which all processes
simultaneously write the same data� and multiple� in which variable
length records are interleaved
by process� Variable
length records are bu�ered until complete� then atomically written to the �le�

Our interface grew out of an understanding of parallel I�O as determined by the results of our
experiments with caching and prefetching� It is designed to conveniently support what we think will
be common parallel access patterns� by combining many ideas from these other researchers along
with several new ideas� supporting both sequential and parallel I�O� local and global pointers�
logical records� and multi�les�

������ Hints

The idea of hints is not a new one� One distributed �le system proposal uses the �le type �deter

mined by directory and �le name extension� to make caching decisions �whether to cache� what
replacement algorithm to use�� based on past knowledge of access patterns for each �le type �Kor����
A similar system is used in �THY���� where the �le type is either random or sequential� and either

��� CHAPTER ��� THE FILE SYSTEM INTERFACE

temporary or permanent� File caching is controlled by the system administrator in �Gro���� decid

ing what �les to cache� and in what way� Intel�s CFS �AS��� allows the user to choose the disks to
use and to preallocate �les� The Casper distributed �le system �FE��� Flo��� associates a property
list with each �le� which could contain �le usage information and hints�

��� Summary

Our new interface allows for parallel open �with multiopen�� synchronization for global �le access
�including portion support�� support for logical records� and a new �le organization �multi�les��
All of the new features are compatible with the conventional interface� so that a �le can be used by
both a sophisticated� high
performance parallel application and a general
purpose sequential �le

maintenance tool� Our interface also allows the user to provide hints that may improve performance�
and the �le system to provide feedback in the form of suggestions and statistics� We believe that
this interface would make the task of programming parallel disk applications much easier� and
would also increase performance�

Chapter ��

Conclusions and Future Work

We built a �le system testbed called RAPID
Transit� which runs on a BBN GP���� multiprocessor�
and used it to evaluate prefetching and caching techniques for parallel �le
access patterns in a
scienti�c workload� In this chapter we outline the key results� and list some possible areas for
future work�

���� Summary of Results

The bene�ts of caching and prefetching depended on the workload and other parameters� Fortu

nately� the best performance was often in �what we expect to be� the most common access patterns	
lw� lw�� and gw�

������ SingleProcess Access Patterns

In applications that are directly ported from a uniprocessor� or in which the programmer has not
bothered to explicitly use parallel I�O� �les may be read or written by a master process while other
processes idle waiting for data� In a �le system where �les are spread over many disks� the full
multi
disk bandwidth is not used by these simple access patterns� Prefetching� however� can be
provided transparently by the �le system and attain signi�cant speedup ����� in a ��
process� ��

disk experiment� on an otherwise sequential part of the computation� by exercising the parallelism
in the disk system� In a similar experiment �Chapter �� where a single process wrote a �le to ��
disks� intelligent bu�er replacement improved performance by ���� Despite our short study of
these lw� patterns� we believe they will be commonly used in a parallel �le system� so these results
are encouraging�

������ Readonly Parallel Access Patterns

In parallel applications where all processes read the �le� caching and prefetching can sometimes
signi�cantly improve disk performance� We �rst established the potential for improvements due to
prefetching using the EXACT predictor� Then we de�ned and evaluated several local and global
on
line predictors� We varied the access pattern� synchronization style� computation load� record
size� cache size� disk
access time� number of disks� and number of processors� These are the main
conclusions	

� Caching alone can have a tremendous a�ect on performance� particularly when the record size
is less than the block size �Section ����� It does this by reducing the number of disk accesses

���

��� CHAPTER ��� CONCLUSIONS AND FUTURE WORK

when there is strong locality �caused� for example� by sequential access to small records� or
by inter
process data re
use� as in lw��

� The best prefetching improvements were for the lw� seg� and gw patterns� Since these will
probably be the most common parallel access patterns� this is encouraging� Prefetching was
less successful for the other patterns �lfp� lrp� gfp� and particularly grp�� but then these will
probably be less common� Thus� the common case has the best improvements�

� IOPORT appeared to be the best general
purpose local predictor� in that it provided high
performance to a wide variety of patterns without causing poor performance for any pattern�
Its performance was often better when supplied with a larger cache� In half of our test cases
IOPORT was within �� of the best predictor�

� The GAPS� RGAPS� and GW predictors each managed to successfully reduce the execution
time of global access patterns in most cases� They also approached the best time� represented
by the EXACT predictor� closely in many cases� GW was e�ective only for the gw and lw
patterns� but may be useful because we expect these two patterns to be commonly used�

� The RGAPS and IOPORT predictors were fairly robust across all parameter variations� Al

though our initial experiments found that the RGAPS and GAPS predictors were essentially
equivalent� the parameter
variation experiments show that RGAPS was usually superior to
GAPS�

� An automatic switch mechanism was devised that was able to quickly determine whether a
pattern was local or global� and switch to either IOPORT or GAPS� respectively� It added
little overhead�

� Prefetching helped to overlap I�O with computation� �le system overhead� and other I�O�
Nearly ideal execution times were observed in some cases�

� In the less
predictable grp and lrp patterns� conservative predictors were more successful�
When computation was mixed with I�O� it was better to be a little less conservative� to take
advantage of the potential for overlapping I�O and computation�

� All of our experiments accessed ���� blocks ���� for lw� in the �le� which corresponds to
� MBytes of data transferred� Certainly many scienti�c applications use larger data �les�
Our results should scale to larger �les� with the bene�ts of prefetching probably increasing
as the start
up overhead �e�g�� recognizing the pattern� early mistakes� is amortized over the
longer pattern� In no case should the bene�ts of prefetching decrease�

� When there were fewer processors than disks� the disks were better utilized with prefetching
than without� In this case� the execution time with prefetching was often close to the ideal
execution time� When there were more processors than disks� it was often faster to not
prefetch at all� The parallelism alone was able to keep the disks busy� with less overhead and
no mistakes�

� With fast enough disks �relative to processor speed�� the overhead of prefetching was not
worth the small bene�ts� That is� prefetching was sometimes slower than not prefetching�
We expect� however� that increasing processor speeds will avoid this e�ect by lowering the
cost of overhead�

����� FUTURE WORK ���

� Our study of slower disks simulates the increased gap in speed between future processors and
future disk drives� In this case prefetching was an important bene�t in managing the disk
bottleneck�

In short� prefetching was most useful when there were fewer processors than disks� when there
was some computation to be performed in addition to the I�O� or when the lw pattern was used�

Our experiments were limited by the size of the machine available to us� We believe� however�
that prefetching will scale to larger machines� For high performance the number of processors and
the number of disks must be increased simultaneously� The precise ratio between the number of
disks and the number of processors depends on their relative speeds and on the I�O and computation
requirements of the workload�

������ Writeonly Access Patterns

Given the types of write
only access patterns we expect to be common� our exploration of four
methods shows that WriteFull� the most sophisticated of the methods� was consistently at or near
the best performance in all situations� It timed the disk writes correctly� without making any
mistakes that caused extraneous disk I�O�

������ Interface

Our proposed �le system interface should make it easier to use parallel disks� and would aid auto

matic prefetching� It has many new features� including multiopen� synchronization for global �le
access� logical records� and a new �le organization called multi�les� All of the new features are
compatible with the traditional interface� Our interface also allows the user to provide hints that
may improve performance� and the �le system to provide feedback in the form of suggestions and
statistics�

���� Future Work

Although prefetching is well explored by this dissertation� there are many possible extensions that
examine architecture and workload alternatives� new prefetching and caching techniques� and issues
such as fault tolerance�

������ Techniques

In this dissertation we concentrate on one replacement algorithm and one prefetching technique
�with several predictors�� There are inevitably more algorithms and techniques that we have not
yet discovered� One general idea is to loosen the replacement algorithm� so that mistakes may be
removed without an explicit request from the predictor� This may decrease the complexity and
increase the concurrency of some predictors� at the expense of accuracy� Currently� for example�
a prefetched block is not removed from a bu�er until it is either used or speci�cally marked as a
mistake by the predictor� A heuristic technique could use aging to �ush unused prefetched blocks�
relieving the predictor from catching its own mistakes�

������ Workload

The workload we use with our testbed is entirely synthetic� consisting of a set of likely access
patterns� Its composition is based on our knowledge of uniprocessor access patterns and on discus

sions with parallel applications programmers� A study of parallel �le access patterns is necessary to

��� CHAPTER ��� CONCLUSIONS AND FUTURE WORK

improve our understanding of the workload� Unfortunately� parallel access patterns are probably
in�uenced by the interface and �le system architecture� so general characterization may be dicult�

This study leaves out �les that are open for both reading and writing because we believe
that they are less commonly used� In addition� it is not clear what read
write patterns would be
used� and therefore what prefetching or write
back techniques might be useful� A related subject is
overwriting �les� This study assumes that all �les open for writing are new �les and are preallocated
to their full size� We should consider disk
block allocation overhead and �le
overwriting issues�

Finally� this study concentrates on scienti�c applications� General
purpose systems and
transaction
processing systems have di�erent workload characteristics� possibly requiring di�er

ent caching and prefetching techniques� For example� program
development systems tend to have
single
process applications� small �les� and hence small transfers� Parallelism comes from running
many sequential applications rather than a few parallel applications� Multiprogramming is more
important� Caching commonly
used small �les is more important than caching blocks within a
large �le� In another example� transaction
processing systems have large databases with unusual
access patterns� In this case� caching and prefetching may be best left to the programmer� A
low
level interface to the disks and simple caching support might be helpful to the programmer�

������ Architecture Changes

Our techniques are intended for shared
memory MIMD multiprocessors� with disks attached inde

pendently to several processors� There are many architectural issues� some changing those assump

tions	

� How can these techniques be used on a non
shared
memory machine� Would entirely new
techniques be necessary� or simply a new implementation� Our implementation of global
predictors depends on centralized� shared data structures� these predictors may need to be
relaxed for a non
shared
memory machine� Indeed� the self
scheduled global access patterns
may be more dicult to implement� interleaved patterns may be more common� Bu�ers may
need to be localized to particular processors� Blocks from a disk would be read into a bu�er
on the processor attached to the disk� then copied to a bu�er in the requesting processor� If
several processors need the block� replication or migration of the block among their caches
might be useful �although consistency issues arise��

� What if some processors are dedicated to I�O� and some to processing� In this case� the I�O
nodes would probably handle the prefetching and caching decisions� The pattern might then
be viewed from the disk �I�O node� instead of from the process� which may be bene�cial in
scheduling disk accesses�

� What is the e�ect of Non
Uniform Memory Access �NUMA�� as compared to UMA� Here�
NUMA refers to either memory access times or disk access times�

� How much of a bottleneck is the disk controller� Do we really need one controller per pro

cessor�disk pair� Or could we put several disks on one controller on one processor� To some
extent� this is a hardware balance issue�

� Our experiments use a �xed disk access time� What is the e�ect of a more realistic variable
disk access time� To answer this question a disk layout must be determined�

� What disk layout is important� Should �les be stored contiguously� Contiguous �les are
bene�cial for sequential access� particularly for large �les� since the sequential disk access

����� FUTURE WORK ���

time is much lower than random access times� How would this a�ect our prefetching results�
The prefetching strategy should account for this kind of layout with new techniques� For
example� a common technique for prefetching in contiguously
stored �les is to piggyback
prefetches on each disk access� saving disk overhead�

� We assume that a parallel program consists of a set of processes� each assigned to its own
processor� There is no multiprogramming� If multiprogramming were used� the idle time we
currently use for prefetching could be �lled by switching to another process� What are the
tradeo�s here� When do we switch contexts and when do we prefetch�

������ Multiple Files

In this study we concentrate on a single application reading or writing a single �le� with no outside
contention for the disks� In many applications� of course� several �les are in use simultaneously�
And� of course� the disks may be busy with other trac� There are many dicult issues involving
bu�er allocation� prefetching� and disk scheduling	

� How does one allocate bu�ers between the �les� Should bu�er allocation be local �one pool
per �le� or global �one pool for all �les�� If local� should one �le have more bu�ers than
another �le� Is a static allocation sucient� or should a complex dynamic assignment be
used�

� How should prefetching e�orts be divided between �les� How do you determine what �le to
prefetch �rst�

� When a disk is used for several �les at once� can you control the disk schedule to increase
performance�

������ Reliability

One of the major problems with parallel disk systems is the reduced hardware reliability� Roughly
speaking� if n disks are involved in one �le system� the �le system breaks n times sooner than a
single
disk �le system� The Berkeley RAID project �PGK��� solves this problem by using parity
blocks to recover information lost when a disk fails� Since any real parallel I�O system must use
some error
recovery technique� what is the best way to incorporate both prefetching and fault

tolerance techniques in a single system�

������ Implementation

Certainly the current implementation can be improved and tuned� My testbed is a research pro

totype� and could be streamlined with careful tuning� It is not directly useful as a �le system
component� since it is intended only for research purposes� An interesting future project� however�
would add my techniques �perhaps using some of the same code� to a working �le system� and
evaluate the system experimentally using real workloads and real disks� In a real implementation�
concurrency is critical to performance� Ideally� all aspects of the �le system would be highly con

current	 �le opens and closes� directory management� cache initialization� and so on� Reliability
would be a key concern� Some of the architectural issues would need to be resolved �e�g�� disk
layout��

��� CHAPTER ��� CONCLUSIONS AND FUTURE WORK

���� Conclusion

We believe that high
performance parallel �le systems can �and should� be built for MIMD multi

processors� and that ecient caching and prefetching methods can boost �le system performance�
Most of these �le system e�orts are transparent to the user� We propose an interface that helps pro

grammers to make the most of parallel I�O� with several parallel constructs as well as a sequential
compatibility interface� and a mechanism to give hints to the �le system� All of these techniques
can alleviate the I�O crisis by scaling �le system performance with multiprocessor performance�

Glossary

For some de�nitions� the page number with more information or �rst de�nition is given in paren

theses�

access pattern ���� The list of logical records of the �le� in the order they are accessed by the
program� The predictors see the block access pattern� which is a list of blocks in the order
that they are accessed�

ADAPT ���� Local predictor� ADAPT uses statistical methods to predict the eventual length of
the current portion given its current length�

average block read time The average amount of time required to read one block from the �le
system� This averages the cost of cache misses and cache hits together�

block ���� A block is a contiguous set of bytes of the �le� The size is determined by the disk� The
logical blocks of the �le are mapped to physical disk blocks� although we do not specify the
mapping� Contrast this with a bu�er � which is a space in memory that can hold one block�
Also contrast with a record�

bu	er ���� A space in memory that is exactly the size of one block� The cache is a collection of
bu�ers�

cache ���� A collection of bu�ers in main memory to hold blocks of the �le�

cache hit ���� A block is hit in the cache if the block�s data is currently resident in some bu�er
in the cache� A cache hit is this event� See cache miss�

cache miss ���� A block misses in the cache if the block�s data is not currently resident in some
bu�er in the cache� A cache miss is this event� In this case� the block will be demand
fetched
from the disk� See cache hit and demand fetch�

coe�cient of variation ���� The standard deviation divided by the mean� abbreviated as cv�
We use this as a simple measure of measurement error� For example� cv � ���� means that
the standard deviation was �� of the mean� Note cv � ��

cv See coe�cient of variation�

declustered ��� The blocks of a �le are scattered among the disks� The disks are accessed inde

pendently� though they may be connected to the same disk controller� This does not imply
interleaving�

demand fetch When a block is read from the disk into the cache after a cache miss�

���

��� CHAPTER ��� CONCLUSIONS AND FUTURE WORK

each�x� ���� Synchronization style� Barrier synchronization after reading x blocks each� Contrast
with total�x��

EXACT ���� The predictor that is given full knowledge of the access pattern in advance� For
local and global patterns� Contrast with on�line predictors�

free list ���� In our testbed� the bu�ers available for replacement are kept on a free list� which is
implemented as two queues	 the ready queue and the unready queue�

GAPS ���� Global predictor� GAPS tries to detect sequentiality in a global access pattern� and
then to use it to do prefetching much like IPORT�

gfp ���� Global read
only access pattern �Global Fixed
length Portions�� In this pattern� proces

sors cooperate to read what appears globally to be sequential portions of �xed length and
spacing�

global predictor A predictor for global patterns�

global access pattern ���� A global access pattern is a globally
sequential access pattern� That
is� all processes in an application cooperate together to read the �le �or sequential portion�
in a roughly sequential order� Contrast with local access pattern�

greedy�process problem ���� In local patterns� where one fast process uses most of the bu�ers�
and the other processes slow down due to lack of bu�ers� Then all wait at the next barrier
for the slowest process�

grp ���� Global read
only access pattern �Global Random Portions�� Processors cooperate to
globally read sequential portions with random length and spacing�

gw ���� Global read
only access pattern �Global Whole �le�� This global pattern reads the entire
�le from beginning to end� the processors reading distinct blocks from the �le� so that globally
the entire �le is read exactly once� but locally each processor only reads some small subset of
the �le with no discernible portions�

gw ���� Write
only access pattern� This pattern writes records of the �le in a self
scheduled order�
roughly sequentially from start to �nish� with all processes cooperating to write the �le�

GW ���� Global predictor� GW predicts that the whole �le will be accessed� much like IBL� but
for global patterns�

hit See cache hit�

hit�wait ���� The amount of time spent waiting for a cache hit� due to uncompleted I�O�

IBL ���� Local predictor	 in�nite
block lookahead� IBL predicts that every block following the
most recent access will be used in the future�

ideal execution time ���� The absolute lower bound on the execution time� assuming no over

head and perfect load balance of the processors and disks�

interleaved ��� This refers to the way the blocks of the �le are partitioned among the disks� The
blocks are allocated to the disks in a round
robin fashion� the �rst block on the �rst disk� the
next block on the second disk� and so on� This is a special case of declustering� and does not
imply striping�

����� CONCLUSION ���

IOBL ���� Local predictor	 hybrid of IBL and OBL� IOBL begins as IBL but then switches to
OBL if a non
sequential access is detected�

IPORT ���� Local predictor	 hybrid of IBL and PORT� IPORT begins as IBL but switches to
PORT when a non
sequential access is detected�

IOPORT ���� Local predictor	 hybrid of IBL� OBL� and PORT� IOPORT begins as IBL but
switches to OBL when a non
sequential access is detected� If regular portions are detected�
PORT is used�

jump�back ���� In a sequential pattern� the block numbers should be nondecreasing� A jump

back is the point where a process�s pattern is decreasing� i�e�� where a block number is less
than the previous block number�

lfp ���� Local read
only access pattern �Local Fixed
length Portions�� In this local pattern� the
sequential portions have regular length and spacing �although at di�erent places in the �le
for each process��

local access pattern ���� A local access pattern is a locally
sequential access pattern� That is�
each process is independently reading the �le in a sequential manner� It is represented as a
set of per
process access patterns� Contrast with global access pattern�

local predictor A predictor for local patterns�

lrp ���� Local read
only access pattern �Local Random Portions�� This local pattern uses portions
of irregular �random� length and spacing� Portions may overlap by coincidence�

lw ���� Local read
only access pattern �Local Whole �le�� In this local sequential pattern� every
process reads the entire �le from beginning to end�

lw� ���� Write
only access pattern� A single process writes the entire �le from start to �nish�

MaxDist A parameter to the PORT� IPORT� IOPORT� ADAPT� GAPS� and RGAPS predictors�
that controls the maximum distance they will predict into the future�

MIMD ���� Multiple instruction stream� multiple data stream� A class of parallel architecture�

mirror ��� To store identical data on two independent disk drives� All writes are sent to both
drives� and reads can be serviced by either drive� A mirrored disk is also called a shadow
disk�

miss See cache miss�

mistake See prefetch mistake�

neighbor�x� ���� Synchronization style� Pairwise synchronization� where each processor synchro

nizes with its neighbor after reading x blocks�

none ���� Synchronization style� No explicit inter
process synchronization�

NONE ���� The name of the predictor that predicts nothing� Thus� it is the same as not prefetch

ing�

NUMA ���� Non
Uniform Memory Access� A class of shared
memory architecture�

��� CHAPTER ��� CONCLUSIONS AND FUTURE WORK

OBL ���� Local predictor	 one
block lookahead� OBL predicts that block i � will follow a
reference to block i�

on�line predictor ���� A predictor required to predict the future in real time� based on the access
pattern seen so far�

overrun ���� The amount of delay added to a process idle period by a prefetching action that
took longer than the time available�

parallel� independent disks ��� Multiple disks attached to multiple processors so that the disks
are completely independent� having separate controllers and paths to memory�

pattern See access pattern�

PFO ���� Prefetch For Others� a possible solution to the greedy
process problem�

PID See parallel� independent disks�

PPL ���� Private Prefetch Limits� a possible solution to the greedy
process problem�

PORT ���� Local predictor� PORT is able to track sequential portions� and use any regularity to
predict the end of the current portion and possibly blocks in future portions�

portion ���� A contiguous set of blocks in the �le� Although a single block is technically a portion�
for prefetching purposes we do not usually consider it to be a portion�

predictor ���� A policy algorithm that analyzes the access pattern and predicts the future access
pattern� It accepts requests from the prefetching code for a block number to be prefetched�

prefetch ��� To read a block from the disk into the cache before any part of the block is requested
by the application�

prefetch limit ���� In our testbed� we limit the number of bu�ers in the cache holding blocks
that have been prefetched but not yet used� This limit is the prefetch limit�

prefetch mistake ���� An incorrect prediction� or a block prefetched into the cache based on an
incorrect prediction�

RAPID�Transit ���� Name of the testbed� RAPID stands for �Read
Ahead for Parallel
Independent Disks��

read ahead See prefetch�

ready queue ���� A queue of free bu�ers that have no outstanding I�O activity� and are thus
available for immediate replacement� Part of the free list� See unready queue�

record ���� The unit that is requested by the application from the �le system� The record size is
not necessarily the same as the block size�

replacement strategy ���� The algorithm used to select blocks for removal from the cache when
a free bu�er is needed for another block� Ours moves bu�ers to the free list when they leave
the global RU�set�

RGAPS ���� Global predictor� This is similar to GAPS� except that it assumes the pattern is
sequential unless it appears random�

����� CONCLUSION ���

rnd ���� Local and global access pattern� Accesses random blocks of the �le�

RU�set ���� The recently
used set of blocks for either one process or all processes in the applica

tion�

seg ���� Local read
only access pattern �Segmented�� In this local pattern� the �le is divided into
a non
overlapping set of contiguous segments� one per process� Each process thus has one
sequential portion�

seg ���� Write
only access pattern� This pattern divides the �le into segments� one per process�
and each process writes its segment from start to �nish�

self�scheduled access ���� When asynchronous processes access the �le by atomically accessing
the globally �next� record� The global interleaving of processes in the order is determined by
dynamic run
time �uctuations�

sequential access pattern ���� An access pattern consisting of sequential portions�

sequential portion ���� A portion that is read or written sequentially� Note that a global access
pattern using self
scheduled access only follows a loose sequential ordering�

shadow ��� See mirror�

striped ��� The blocks of the �le are interleaved among the disks� and the disks are controlled by a
single controller� which reads a block from all disks simultaneously� Each disk may contribute
as little as one bit at a time� There are two varieties� depending on whether the disks are
rotationally synchronous�

SWITCH ����� Local and global predictor� SWITCH watches the early stages of the access
pattern� switching to either a local or global predictor as appropriate�

synchronization style ���� The mode of inter
process synchronization� One of none� each�x��
total�x�� and neighbor�x��

total�x� ���� Synchronization style� Barrier synchronization after reading x blocks total� Contrast
with each�x��

unready queue ���� A queue of free bu�ers that have some outstanding I�O activity� either due
to a disk write �ushing dirty data to disk� or to a disk read from a prefetch mistake� Part of
the free list� See ready queue� We also track the soonest time that a bu�er in the queue is to
become ready� so that we know when not to search the queue for ready bu�ers�

WriteBack ����� Write bu�ering policy� Delays the disk write until the bu�er is needed for
another block�

WriteFree ����� Write bu�ering policy� Issues a write when the bu�er enters the free list� This
is a compromise between WriteThru and WriteBack�

WriteFull ����� Write bu�ering policy� Issues the write when the bu�er is �full��

WriteThru ����� Write bu�ering policy� Forces a disk write on every write request from the
application�

��� CHAPTER ��� CONCLUSIONS AND FUTURE WORK

Bibliography

�ABS� Jitendre Apte� Jack Briner� and Peter Suaris� Personal communication�

�AS��� Raymond K� Asbury and David S� Scott� FORTRAN I�O on the iPSC��	 Is there
read after write� In Fourth Conference on Hypercube Concurrent Computers and
Applications� pages �������� �����

�BAC���� Haran Boral� William Alexander� Larry Clay� George Copeland� Scott Danforth�
Michael Franklin� Brian Hart� Marc Smith� and Patrick Valduriez� Prototyping Bubba�
a highly parallel database system� IEEE Transactions on Knowledge and Data Engi�
neering� ����� March �����

�BBN��� BBN Advanced Computers� The Butter�y RAMFile system� Technical Report �����
BBN Advanced Computers� September �����

�BBN��� BBN Advanced Computers� Buttery Products Overview� �����

�BBW��� Micah Beck� Dina Bitton� and W� Kevin Wilkinson� Design and evaluation of a
parallel sort utility� In Proceedings of the ���� International Conference on Parallel
Processing� pages �������� �����

�BD��� H� Boral and D� DeWitt� Database machines	 an idea whose time has passed� In
Proceedings of the Fourth International Workshop on Database Machines� pages ����
���� Springer
Verlag� �����

�Ber��� David Bernholdt� Personal communication� University of Florida� February �����

�BG��� D� Bitton and J� Gray� Disk shadowing� In ��th International Conference on Very
Large Data Bases� pages �������� �����

�Bit��� Dina Bitton� Arm scheduling in shadowed disks� In Proceedings of IEEE Compcon�
pages �������� Spring �����

�BKZS��� J�
L� Baer� S� C� Kwan� G� Zick� and T� Snyder� Parallel tag
distribution sort� In
Proceedings of the ���� International Conference on Parallel Processing� pages ����
���� �����

�BM��� B� T� Bennett and C� May� Improving performance of bu�ered DASD to which some
references are sequential� IBM Technical Disclosure Bulletin� �����	���������� August
�����

�Boz��� G� P� Bozman� VM�XA SP� minidisk cache� IBM Systems Journal� �����	��������
�����

���

��� BIBLIOGRAPHY

�BRW��� Andrew Braunstein� Mark Riley� and John Wilkes� Improving the eciency of UNIX
�le bu�er caches� In Proceedings of the Twelfth ACM Symposium on Operating Systems
Principles� pages ������ December �����

�BS��� Jean
Loup Baer and Gary R� Sager� Dynamic improvement of locality in virtual
memory systems� IEEE Transactions on Software Engineering� SE
����	������ March
�����

�BSTY��� S� Berbec� A� Shibamiya� S� Togasaki� and H� Yoshida� Use of direct access storage
devices by MVS customers � Guide survey results� In Proceedings of the Guide ��
Conference� pages ���������� November �����

�Cab��� Luis
Felipe Cabrera� Technical summary of the second IEEE workshop on workstation
operating systems� ACM Operating Systems Review� �����	����� July �����

�CGKP��� Peter Chen� Garth Gibson� Randy Katz� and David Patterson� An evaluation of
redundant arrays of disks using an Amdahl ����� In Proceedings of the ���	 ACM
Sigmetrics Conference on Measurement and Modeling of Computer Systems� pages
������ May �����

�Cla��� David D� Clark� The structuring of systems using upcalls� In Proceedings of the Tenth
ACM Symposium on Operating Systems Principles� pages �������� December �����

�Cro��� Thomas W� Crockett� Speci�cation of the operating system interface for parallel �le
organizations� Publication status unknown �ICASE technical report�� �����

�Cro��� Thomas W� Crockett� File concepts for parallel I�O� In Proceedings of Supercomputing
���� pages �������� �����

�DEC��� Digital Equipment Corporation� VAX Disk Striping Driver for VMS� December �����
Order Number AA
NY��A
TE�

�DGS���� David J� DeWitt� Shahram Ghandeharizadeh� Donovan A� Schneider� Allan Bricker�
Hui
I Hsaio� and Rick Rasmussen� The Gamma database machine project� IEEE
Transactions on Knowledge and Data Engineering� ����	������ March �����

�DHS��� Monty M� Dennau� Peter H� Hochschild� and Gideon Schichman� The switching net

work of the TF
� parallel supercomputer� Supercomputing Magazine� pages �����
Winter �����

�Dib��� Peter C� Dibble� A Parallel Interleaved File System� PhD thesis� University of
Rochester� March �����

�Die��� Marge Dietz� Personal communication� Duke University� March �����

�DO��� Eliezer Dekel and Istvan Ozsvath� Parallel external merging� In Proceedings of the
���� International Conference on Parallel Processing� pages �������� �����

�DSE��� Peter Dibble� Michael Scott� and Carla Ellis� Bridge	 A high
performance �le sys

tem for parallel processors� In Proceedings of the Eighth International Conference on
Distributed Computer Systems� pages �������� June �����

�FB��� P� A� Franaszek and B� T� Bennett� Adaptive variation of the transfer unit in a storage
hierarchy� Technical Report RC
���� �������� IBM Yorktown� November �����

BIBLIOGRAPHY ���

�FE��� Richard Allen Floyd and Carla Schlatter Ellis� Directory reference patterns in hierar

chical �le systems� IEEE Transactions on Knowledge and Data Engineering� ����	����
���� June �����

�FE��� Richard A� Floyd and Carla Schlatter Ellis� Pushing the limits of transparency in
distributed �le systems� Technical Report CS
����
��� Dept� of Computer Science�
Duke University� December �����

�FH��� Robert J� Flynn and Haldun Hadimioglu� A distributed Hypercube �le system� In
Third Conference on Hypercube Concurrent Computers and Applications� pages �����
����� �����

�FJL���� G� Fox� M� Johnson� G� Lyzenga� S� Otto� J� Salmon� and D� Walker� Solving Problems
on Concurrent Processors� volume �� chapter � and ��� Prentice Hall� Englewood
Cli�s� NJ� �����

�Flo��� Rick Floyd� Short
term �le reference patterns in a UNIX environment� Technical
Report ���� Dept� of Computer Science� Univ� of Rochester� March �����

�Flo��� Richard Allen Floyd� Transparency in Distributed File Systems� PhD thesis� University
of Rochester� �����

�FP��� Donald E� Freeman and Olney R� Perry� I�O Design� Data Management in Operating
Systems� Hayden Book Company� �����

�FPD��� James C� French� Terrence W� Pratt� and Mriganka Das� Performance measurement
of a parallel input�output system for the Intel iPSC�� hypercube� Technical Report
IPC
TR
��
���� Institute for Parallel Computation� University of Virginia� ����� Ap

peared in� Proceedings of the ���� ACM Sigmetrics Conference on Measurement and
Modeling of Computer Systems�

�GHK���� Garth A� Gibson� Lisa Hellerstein� Richard M� Karp� Randy H� Katz� and David A�
Patterson� Failure correction techniques for large disk arrays� In Third International
Conference on Architectural Support for Programming Languages and Operating Sys�
tems� pages �������� April �����

�GLR��� Allan Gottlieb� B� D� Lubachevsky� and Larry Rudolph� Basic techniques for the
ecient coordination of very large numbers of cooperating sequential processors� ACM
Transactions on Programming Languages and Systems� ����	�������� April �����

�GMS��� Hector Garcia
Molina and Kenneth Salem� The impact of disk striping on reliability�
IEEE Database Engineering Bulletin� �����	������ March �����

�Gro��� C� P� Grossman� Cache
DASD storage for improving system performance� IBM Sys�
tems Journal� �������	�������� �����

�Hai��� Chris Haight� ����� Personal communication with engineer at Sequent Computer� Inc�

�Int��a� Intel beefs up its iPSC�� supercomputer�s I�O and memory capabilities� Electronics�
November �����

�Int��b� iPSC�� I�O facilities� Intel Corporation� ����� Order number ������
����

��� BIBLIOGRAPHY

�Int��� Concurrent I�O application examples� Intel Corporation Background Information�
�����

�Jos��� M� Joseph� An analysis of paging and program behavior� The Computer Journal�
�����	������ February �����

�KBK��� Bob Knighten� Joseph Boykin� and Terry Kelleher� ����� Personal communication
with engineers at Encore Computer� Inc�

�KD��� John P� Kearns and Samuel DeFazio� Diversity in database reference behavior� ACM
SIGMETRICS Performance Evaluation Review� �����	������ May �����

�Kim��a� Michelle Y� Kim� Synchronized disk interleaving� IEEE Transactions on Computers�
C
������	�������� November �����

�Kim��b� Michelle Y� Kim� Synchronously Interleaved Disk Systems with their Application to
the Very Large FFT� PhD thesis� IBM Thomas J� Watson Research Center� Yorktown
Heights� New York ������ ����� IBM Report number RC������

�Kon��� Alan J� Kondo�� The MPE XL data management system exploiting the HP Precision
architecture for HP�s next generation commercial computer systems� In Proceedings
of IEEE Compcon� pages �������� Spring �����

�Kor��� Kim Korner� Intelligent caching for remote �le service� In Proceedings of the Tenth
International Conference on Distributed Computer Systems� pages �������� �����

�Lee��� Roland Lun Lee� The E�ectiveness of Caches and Data Prefetch Bu�ers in Large�
Scale Shared Memory Multiprocessors� PhD thesis� University of Illinois� May �����
CSRD tech report number UILU
ENG
��
�����

�LMKQ��� Samuel J� Le"er� Marshall Kirk McKusick� Michael J� Karels� and John S� Quar

terman� The Design and Implementation of the ���BSD UNIX Operating System�
Addison
Wesley� �����

�LYL��� Roland L� Lee� Pen
Chung Yew� and Duncan H� Lawrie� Data prefetching in shared
memory multiprocessors� In Proceedings of the ���� International Conference on
Parallel Processing� pages ������ �����

�M���� T� J� M� Now	 Parallel storage to match parallel CPU power� Electronics� ������	����
December �����

�Man��� Tom Manuel� Breaking the data
rate logjam with arrays of small disk drives� Elec�
tronics� �����	������� February �����

�Mar��� David Michael Marcovitz� A multiprocessor cache performance metric� Technical
Report UILU
ENG
��
����� University of Illinois� August �����

�Mea��� Wes E� Meador� Disk array systems� In Proceedings of IEEE Compcon� pages ��������
Spring �����

�MH��� Jai Menon and Mike Hartung� The IBM ���� disk cache� In Proceedings of IEEE
Compcon� pages �������� Spring �����

BIBLIOGRAPHY ���

�Mok��� Nicholas Mokho�� Parallel disk assembly packs ��� GBytes� runs at � MBytes�s�
Electronic Design� pages ������ November �����

�Ng��� Spencer Ng� Some design issues of disk arrays� In Proceedings of IEEE Compcon�
pages �������� Spring ����� San Francisco� CA�

�NLS��� S� Ng� D� Lang� and R� Selinger� Trade
o�s between devices and paths in achieving
disk interleaving� In Proceedings of the ��th Annual International Symposium on
Computer Architecture� pages �������� �����

�NNI��� H� Nishino� S� Naka� and K Ikumi� High performance �le system for supercomputing
environment� In Proceedings of Supercomputing ���� pages �������� �����

�NWO��� Michael N� Nelson� Brent B� Welch� and John K� Ousterhout� Caching in the Sprite
network �le system� ACM Transactions on Computer Systems� ����	�������� February
�����

�OCD���� John Ousterhout� Andrew Cherenson� Fred Douglis� Michael Nelson� and BrentWelch�
The Sprite network operating system� IEEE Computer� �����	������ February �����

�OCH���� John Ousterhout� Herv#e Da Costa� David Harrison� John Kunze� Mike Kupfer� and
James Thompson� A trace driven analysis of the UNIX ��� BSD �le system� In
Proceedings of the Tenth ACM Symposium on Operating Systems Principles� pages
������ December �����

�OD��� John Ousterhout and Fred Douglis� Beating the I�O bottleneck	 A case for log

structured �le systems� ACM Operating Systems Review� �����	������ January �����

�O�L��� Bernard T� O�Lear� Pitfalls and triumphs of mass storage systems� Colloquium at
North Carolina Supercomputing Center� October �����

�Pan��� Ricardo D� Pantazis� Personal communication� Duke University� March �����

�PFDJ��� Terrence W� Pratt� James C� French� Phillip M� Dickens� and Stanley A� Janet� Jr� A
comparison of the architecture and performance of two parallel �le systems� In Fourth
Conference on Hypercube Concurrent Computers and Applications� pages ��������
�����

�PGK��� David Patterson� Garth Gibson� and Randy Katz� A case for redundant arrays of
inexpensive disks �RAID�� In ACM SIGMOD Conference� pages �������� June �����

�Pie��� Paul Pierce� A concurrent �le system for a highly parallel mass storage system� In
Fourth Conference on Hypercube Concurrent Computers and Applications� pages ����
���� �����

�Pow��� Michael L� Powell� The DEMOS File System� In Proceedings of the Sixth ACM
Symposium on Operating Systems Principles� pages ������ November �����

�RB��a� A� Reddy and P� Banerjee� Evaluation of multiple
disk I�O systems� IEEE Transac�
tions on Computers� ��	���������� December �����

�RB��b� A� Reddy and P� Banerjee� An evaluation of multiple
disk I�O systems� In Proceedings
of the ���� International Conference on Parallel Processing� pages I	�������� �����

��� BIBLIOGRAPHY

�RBA��� A� L� Reddy� P� Banerjee� and Santosh G� Abraham� I�O embedding in hypercubes�
In Proceedings of the ���� International Conference on Parallel Processing� volume ��
pages �������� �����

�RCCT��� Randall D� Rettberg� William R� Crowther� Philip P� Carvey� and Raymond S� Tomlin

son� The Monarch Parallel Processor hardware design� IEEE Computer� �����	������
April �����

�Res��� Cray Research� DS
�� disk subsystem� ����� Sales literature number MCFS
�
�����

�RRR��� Niklaus Ragaz and Juan Rodriguez
Rosell� Empirical studies of storage management
in a data base system� Technical Report RJ
���� �������� IBM San Jose� October
�����

�RT��� D� M� Ritchie and K� Thompson� The UNIX time
sharing system� The Bell System
Technical Journal� ����	���������� July
August �����

�SBN��� Daniel P� Siewiorek� C� Gordon Bell� and Allen Newell� editors� Computer Structures�
principles and examples� McGraw
Hill� �����

�Sch��� Martin Schulze� Considerations in the design of a RAID prototype� Technical Report
UCB�CSD ������� UC Berkeley� August �����

�SGK���� Russell Sandberg� David Goldberg� Steve Kleiman� Dan Walsh� and Bob Lyon� Design
and implementation of the Sun Network Filesystem� In Proceedings of the ���� Usenix
Conference� pages �������� �����

�SGM��� Kenneth Salem and Hector Garcia
Molina� Disk striping� In IEEE ���� Conference
on Data Engineering� pages �������� �����

�Smi��a� Alan Jay Smith� On the e�ectiveness of bu�ered and multiple arm disks� In Proceedings
of the �th Annual International Symposium on Computer Architecture� pages ��������
�����

�Smi��b� Alan Jay Smith� Sequential program prefetching in memory heirarchies� IEEE Com�
puter� pages ����� December �����

�Smi��c� Alan Jay Smith� Sequentiality and prefetching in database systems� ACM Transac�
tions on Database Systems� ����	�������� September �����

�Smi��a� Alan Jay Smith� Input�Output optimization and disk architectures	 A survey� Per�
formance Evaluation� ����	�������� �����

�Smi��b� Alan Jay Smith� Optimization of I�O systems by cache disks and �le migration	 A
summary� Performance Evaluation� ����	�������� �����

�Smi��� Alan Jay Smith� Cache memories� Computing Surveys� �����	�������� September
�����

�Smi��a� Alan Jay Smith� Cache evaluation and the impact of workload choice� In Proceedings
of the �
th Annual International Symposium on Computer Architecture� pages ������
�����

BIBLIOGRAPHY ���

�Smi��b� Alan Jay Smith� Disk cache
miss ratio analysis and design considerations� ACM
Transactions on Computer Systems� ����	�������� August �����

�Sto��� Michael Stonebraker� Operating system support for database management� Commu�
nications of the ACM� �����	�������� July �����

�Sym��� Symult Systems� Monrovia� CA� Programmer�s Guide to the Series
	�	 System� �rst
edition� March �� �����

�Tab��� David Taber� MetaDisk driver technical description� SunFlash electronic mailing list
������ October �����

�TCB��� D� Towsley� K� M� Chandy� and J� C� Browne� Models for parallel processing within
programs	 Application to CPU	 I�O and I�O	 I�O overlap� Communications of the
ACM� ������	�������� October �����

�Ter��� DBC������ Teradata Corporation Booklet� �����

�THY��� T� Tokunaga� Y� Hirai� and S� Yamamoto� Integrated disk cache system with �le
adaptive control� In Proceedings of IEEE Compcon� pages �������� Fall �����

�TMC��� Connection Machine model CM
� technical summary� Technical Report HA��
��
Thinking Machines� April �����

�Tow��� Donald F� Towsley� The e�ects of CPU	 I�O overlap in computer system con�g

urations� In Proceedings of the �th Annual International Symposium on Computer
Architecture� pages �������� April �����

�TR��� Lewis W� Tucker and George G� Robertson� Architecture and applications of the
Connection Machine� IEEE Computer� �����	������ August �����

�Tri��� K�S� Trivedi� Prepaging and applications to array algorithms� IEEE Transactions on
Computers� C
�����	�������� September �����

�Tri��a� Kishor S� Trivedi� Prepaging and applications to the STAR
��� computer� In Proceed�
ings of the Symposium on High Speed Computer and Algorithm Organization� pages
�������� April �����

�Tri��b� Kishor S� Trivedi� On the paging performance of array algorithms� IEEE Transactions
on Computers� C
������	�������� October �����

�Tri��� Kishor S� Trivedi� An analysis of prepaging� Computing� �����	�������� �����

�Tri��� Kishor S� Trivedi� Probability and Statistics with Reliability� Queueing� and Computer
Science Applications� Prentice
Hall� �����

�TvRvS���� Andrew S� Tanenbaum� Robbert van Renesse� Hans van Staveren� Gregory J� Sharp�
Sape J� Mullender� Jack Jansen� and Guido van Rossum� Experiences with the
Amoeba distributed operating system� Communications of the ACM� ������	������
December �����

�WCM��� Andrew Witkowski� Kumar Chandrakumar� and Greg Macchio� Concurrent I�O sys

tem for the Hypercube multiprocessor� In Third Conference on Hypercube Concurrent
Computers and Applications� pages ���������� �����

��� BIBLIOGRAPHY

�WSB���� W� W� Wilcke� D� G� Shea� R� C� Booth� D� H� Brown� M� F� Giampapa� L� Huisman�
G� R� Irwin� E� Ma� T� T� Murakami� F� T� Tong� P� R� Varker� and D� J� Zukowski�
The IBM Victor multiprocessor project� In Fourth Conference on Hypercube Concur�
rent Computers and Applications� pages �������� �����

Biography

I was born in Ashton
upon
Mersey� Cheshire� England on July ��� ����� and spent most of my
childhood in Oneonta� New York� My high school diploma� received in ����� is from Choate
Rosemary Hall in Connecticut� I graduated magna cum laude with an A�B� in both Computer
Science and Physics from Dartmouth College in ����� While at Duke University� NSF twice awarded
me honorable mention in their graduate fellowship competition� I was an MCNC graduate fellow
my �rst year� and was awarded a DARPA�UMIACS Parallel Processing Assistantship for my �nal
two years�

I have always loved outdoor activities� including hiking� backpacking� climbing� and skiing� In
high school my backpacking interest expanded with winter expeditions in the Adirondack moun

tains� Much of my spare time at Dartmouth was spent with the Dartmouth Outing Club� playing
in the mountains of Vermont and New Hampshire� I was leading hiking trips� building trails� skiing�
repairing equipment� competing on the woodsmen�s team� and directing Freshman Trips� I spent
the summer of ���� as a backcountry ranger in Olympic National Park� While at Duke University
I have taken time to explore the Southern Appalachians� the islands of Fiji �where I managed to
break my neck while bodysur�ng�� and the mountains of Washington State�

���

