Dynamic File-Access Characteristics of a
Production Parallel Scientific Workload

David Kotz Nils Nieuwejaar

PCS-TRY4-211~
Department of Computer Science
Dartmouth College, Hanover, NH 03755-3510
{dfk,nils}0@cs.dartmouth.edu

Revised: August 3, 19947

Abstract

Multiprocessors have permitted astounding increases in computational performance; but
many cannot meet the intense I/O requirements of some scientific applications. An important
component of any solution to this I/O bottleneck is a parallel file system that can provide
high-bandwidth access to tremendous amounts of data in parallel to hundreds or thousands of
processors.

Most successful systems are based on a solid understanding of the expected workload, but
thus far there have been no comprehensive workload characterizations of multiprocessor file
systems. This paper presents the results of a three week tracing study in which all file-related
activity on a massively parallel computer was recorded. Our instrumentation differs from pre-
vious efforts in that it collects information about every 1/0 request and about the mix of jobs
running in a production environment. We also present the results of a trace-driven caching
simulation and recommendations for designers of multiprocessor file systems.

1 Introduction

Many scientific applications have intense computational and 1/O requirements. Although multi-
processors have permitted astounding increases in computational performance, the formidable 1/0
needs of these applications cannot be met by current multiprocessors and their 1/O subsystems.
To prevent 1/O subsystems from forever bottlenecking multiprocessors and limiting the range of
feasible applications, new 1/0O subsystems must be designed.

The successful design of computer systems (both hardware and software) depends on a thorough
understanding of their intended usage. A system’s designer optimizes the policies and mechanisms
for the cases expected to be most common in the user’s workload. In the case of multiprocessor
file systems, however, designers have been forced to build file systems based only on speculation
about how they would be used, extrapolating from file-system characterizations of general-purpose
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workloads on uniprocessor and distributed systems or scientific workloads on vector supercomput-
ers. To fill this gap, the CHARISMA project began in June 1993 to CHARacterize I/O in Scientific
Multiprocessor Applications from a variety of production parallel computing platforms and sites.
The CHARISMA project is unique in recording individual read and write requests in live, mul-
tiprogramming, parallel workloads (rather than from selected or non-parallel applications). This
paper presents the first results from the project: a characterization of the file-system workload on
an iPSC/860 multiprocessor running production, parallel scientific applications at NASA’s Ames
Research Center. We use the resulting information to address the following questions:

e What does the job mix look like: how many jobs run concurrently? how many processors did
each use? how many files did each use?

¢ How many files were read and written? What were their sizes? Which were temporary files?

o What were typical read- and write-request sizes, and how were they spaced in the file? Were
the accesses sequential, and in what way?

o What forms of locality were there? How might caching be useful?

e What are the implications for file-system design?

In the next section we describe previous studies of file-system workload, multiprocessor file
systems, and file-system caching. In Section 3 we outline our research methods, and in Section 4
present our results. Section 5 draws the overall conclusions.

2 Related work

As background, we describe many of the previous studies of file-system workload as well as some
current multiprocessor file systems and caching studies.

2.1 Workload

There has never been an extensive study of a production scientific workload on a multiprocessor
file system. Related file-system workload studies can be classified as characterizing general-purpose
workstations (or workstation networks), scientific vector applications, or scientific parallel applica-
tions.

General-purpose workstations. Uniprocessor file access patterns have been measured many
times. Floyd and Ellis [Flo86, FE89] and Ousterhout et al. [OCHT85] measured isolated Unix
workstations, and Baker et al. measured a distributed Unix (Sprite) system [BHK*91]. All of these
studies cover general-purpose (engineering and office) workloads with uniprocessor applications.

Scientific vector applications. Some studies specifically examined scientific workloads. Del
Rosario and Choudhary provide an informal characterization of grand-challenge applications [dC94].
Powell measured a set of static characteristics (file sizes) of a Cray-1 file system [Pow77]. Miller
and Katz traced specific I/O-intensive Cray applications to determine the per-file access pat-
terns [MK91], focusing primarily on access rates. Miller and Katz also measured secondary-tertiary
file migration patterns on a Cray [MK93], giving a good picture of long-term, whole-file access pat-
terns. Pasquale and Polyzos studied 1/O-intensive Cray applications, focusing on patterns in the
I/0 rate [PP93, PP94]. All of these studies are limited to uniprocess applications on vector super-
computers.



Scientific parallel applications. Crockett [Cro89] and Kotz [KE93b] hypothesize about the
character of a parallel scientific file-system workload. Cormen and Kotz [CK93] discuss the needs
of parallel-1/0 algorithms. Reddy et al. chose five sequential scientific applications from the
PERFECT benchmarks and parallelized them for an eight-processor Alliant, finding only sequential
file-access patterns [RB90]. This study is interesting, but far from what we need: the sample size
is small; the programs are parallelized sequential programs, not parallel programs per se; and
the 1/0 itself was not parallelized. Cypher et al. [CHKM93] studied individual parallel scientific
applications, measuring temporal patterns in I/O rates. Galbreath et al. [GGL93] present a useful
high-level characterization based on anecdotal evidence.

2.2 Existing file systems

To increase parallelism, all large multiprocessor file systems decluster blocks of a file across many
disks, which are accessed in parallel. Most extend a traditional file abstraction (a growable, ad-
dressable sequence of bytes) with some parallel file-access methods. The most common provide I/0
“modes” that specify whether and how parallel processes share a file pointer [Cro89, Pie’9, Roy93,
BGST93, Kot93]. Some are based on a memory-mapped interface [KSR92, KS93]. Some provide
a way for the user to specify per-process logical views of the file [CFPB93, DdR92]. Some provide
SIMD-style transfers [TMC87, Mas92, GGL93]. PIFS (Bridge) [Dib90] allows the file system to
control which processor handles which parts of the file, to encourage memory locality. Clearly, the
industrial and research communities have not yet settled on a single new model for file access. Some
aspects of the workload, therefore, are dependent on the particular file-access model provided to
the user. The implications of this fact for our study are discussed in Section 5.

2.3 Caching in multiprocessor file systems

In our previous work, we found that caching and prefetching are successful in multiprocessor file
systems [KE93a, KE93b]. Pratt and French found that the caching and prefetching supplied with
Intel’s Concurrent File System (CFS) does improve performance [FFPD93]. Recent studies have
found that CFS caching and prefetching work well in limited situations, but that the throughput
of CFS can be disappointing relative to the capabilities of the hardware [Nit92, BCR93]. Miller
and Katz drove a cache simulation using traces from a Cray supercomputer and found that access
locality was not high enough for significant benefits to be realized from a file system cache [MK91].

2.4 Intel iPSC/860 and CFS

The iPSC/860 is a distributed-memory, message-passing, MIMD machine. The compute nodes are
based on the Intel i860 processor and are connected by a hypercube network. I/0 is handled by
dedicated 1/0 nodes, which are each connected to a single compute node rather than directly to
the hypercube interconnect. The I/O nodes are based on the Intel i386 processor and each has
a port for SCSI disk drives. There may also be one or more service nodes that handle Ethernet
connections or interactive shells [NAS93].

Intel’s Concurrent File System (CFS) [Pie89, FPD93, Nit92] provides a Unix-like interface to
the user with the addition of four I/0 modes to help the programmer coordinate parallel access to
files. Mode 0 gives each process its own file pointer; mode 1 shares a single file pointer among all
processes; mode 2 is like mode 1, but enforces a round-robin ordering of accesses across all nodes;
and mode 3 is like mode 2 but restricts the access sizes to be identical. CFS stripes each file across
all disks in 4 KB blocks. Compute nodes send requests directly to the appropriate I/O node. Only
the 1/0 nodes have a buffer cache.



3 Methods

To be useful to a system designer, a workload characterization must be based on a realistic workload
similar to that which is expected to be used in the future. For our purposes, this meant that we had
to trace a multiprocessor file system that was in use for production scientific computing. The Intel
iPSC/860 at NASA Ames’s Numerical Aerodynamics Simulation (NAS) facility met this criterion
(their three newer multiprocessors, an Intel Paragon, a Thinking Machines CM-5, and an IBM
SP-2, do not yet have a mature production workload). Their iPSC has 128 compute nodes, each
with 8 MB of memory, and 10 1/O nodes, each with 4 MB of memory and a single 760 MB disk
drive [NAS93]. There is also a single service node that handles a 10-Mbit Ethernet connection to
the host computer. The total I/O capacity is 7.6 GB and the total bandwidth is less than 10 MB/s.

Ideally, a workload characterization is an architecture-independent representation of the work
generated by a group of users in a particular type of computing environment. However, since the
architectures of different parallel I/O subsystems are so diverse, any observed workload will be tied
to a particular machine. While we try to factor out these effects as much as possible, we must note
that some care should be taken in generalizing the results.

3.1 Data collection

For our study, one trace file was collected for the entire file system. We traced only the I/O that
involved the Concurrent File System. This means that any 1/O which was done through standard
input and output or to the host file system (all limited to sequential, Ethernet speeds) was not
recorded. We collected data for about 156 hours over a period of 3 weeks. While we did not trace
continuously for the whole 3 weeks, we tried to get a realistic picture of the whole workload by
tracing at all different times of the day and of the week, including nights and weekends. The period
covered by a single trace file ranges from 30 minutes to 22 hours. The longest continuously traced
period was about 62.5 hours. Tracing was usually initiated when the machine was idle. For those
few cases in which a job was running when we began tracing, the job was not traced. Tracing was
stopped in one of two ways: manually or by a system crash. The machine was usually idle when a
trace was manually stopped.

The trace files begin with a header record containing enough information to make the file self-
descriptive, and continue with a series of event records, one per event. Figure 1 shows a high-level
view of the event record formats. We use the term client to refer to the compute node that generated
the event. A job is a set of clients cooperating in one run of an application. Since one of the goals
of the CHARISMA project is to organize and facilitate a multi-platform file system tracing effort,
we have defined a large set of event records suitable for both SIMD and MIMD systems. We have
included here only those records that were actually used on the iPSC/860.

On the iPSC/860, high-level CFS calls are implemented in a library that is linked with the
user’s program. We instrumented the library calls to generate an event record each time they were
called. The event records were buffered at each compute node and periodically sent to a data
collector running on the service node. The collector then wrote the data to the central trace file
(itself on CF'S). The collector’s use of CF'S was not recorded in the trace.

Since our instrumentation was almost entirely within a user-level library, there were some jobs
whose file accesses were not traced. These included most system programs (e.g., 1s, cp, and ftp)
as well as user programs that were not relinked during the period we were tracing. We did, however,
record all job starts and ends through a separate mechanism. While we were tracing, 3016 jobs were
run on the compute nodes, of which 2237 were only run on a single node. We actually traced at least
429 of the 779 multi-node jobs and at least 41 of the single-node jobs. As a tremendous number of



Notes:

UserID — Unix UID
SystemID — Internet IP address

FileID — (disk, block number) of File Header Block
ClientID — number of node requesting 1/0

Header:
Magic number

Format version number
Start date (standard Unix date format)

System type (iPSC)
SystemID

System Configuration (procs, disks, memory)
Timestamp unit (in seconds, 64-bit float)

Job load:
record type code
timestamp
program name
path to executable
UserID

list of ClientIDs (nodes running the job)

Client completion:
record type code
timestamp
ClientID

Client Open file:
record type code
timestamp
ClientID
FilelD
file descriptor
file name
file size
file creation time

open mode (r, w, rw, create, efc.)

Client Close file:
record type code
timestamp
ClientID
file descriptor
file size

Read/Write request:

record type code
operation type

(r/w, sync/async, etc.)
timestamp

ClientID

file descriptor

file offset

size of 1/0

Truncate/Extend:

(explicit operations only)
record type code
timestamp

ClientID

file descriptor

original file size

new file size

Link/Unlink:

record type code
timestamp
ClientID

FilelD

new number of links to file

Set I/O mode:

record type code
timestamp
ClientID

file descriptor
new access mode

Figure 1: Event record formats.




the single-node jobs were system programs it is not surprising nor necessarily undesirable that so
many were untraced. In particular, there was one single-node job which was run periodically, and
which accounted for over 800 of the single-node jobs, simply to check the status of the machine.
There was no way to distinguish between a job which was untraced from a job which simply did
no CFS 1/0, so the numbers of traced jobs are a lower bound.

One of our primary concerns was to minimize the degree that our measurement perturbed the
workload. We identified three ways that our instrumentation might affect the workload.

Our first concern was network contention. We expected users’ jobs to generate a great many
event records. Had we chosen to send a message to the data collector for each event record, we
would certainly have created unreasonable congestion near the collector or perhaps in the overall
machine. Since large messages on the iPSC are broken into 4 KB blocks, we chose to create a buffer
of that size on each node to hold local event records. This buffer allowed us to reduce the number
of messages sent by over 90% without stealing much memory from user jobs.

The second concern was local CFS overhead. Since we were tracing every 1/O operation in a
production environment, it was imperative that the per-call overhead be kept to a minimum to
avoid inconveniencing the users. By buffering records on the compute nodes we were able to avoid
the cost of message passing on every call to CFS.

Our final concern was that we might increase contention for the I/O subsystem. We tried to
minimize this by creating a large buffer for the data collector and writing the data to CFS in large
sequential blocks. Although we collected about 700 MB of data, our trace files accounted for less
than 1% of the total traffic.

Simple benchmarking of the instrumented library revealed that the overhead added by our
instrumentation was virtually undetectable in many cases. The worst case we found was a 7%
increase in execution time on one run of the NAS NHT-1 Application-1/O Benchmark [CCFN92].
After the instrumented library was put into production use, anecdotal evidence suggests that there
was no noticeable performance loss.

3.2 Analysis

The raw trace files required some simple postprocessing before they could be easily analyzed. This
postprocessing included data realignment, clock synchronization, and chronological sorting.

Since each node buffered 4 KB of data before sending it to the central data collector, the
raw trace file contained only a partially ordered list of event records. Ordering the records was
complicated by the lack of synchronized clocks on the iPSC/860. Each node maintains its own
clock; the clocks are synchronized at system startup but each drifts significantly and differently after
that [Fre89]. We partially compensated for the asynchrony by timestamping each block of records
when it left the node and again when it was received at the data collector. From the difference
between the two we could approximately adjust the event order to compensate for each node’s clock
drift relative to the collector’s clock. This technique allowed us to get a closer approximation of the
event order. Nonetheless, it is still an approximation, so much of our analysis is based on spatial,
rather than temporal, information.

4 Results

We characterize the workload from the top down, beginning with the number of jobs in the machine
and the number and use of files by all jobs. We then examine individual 1/O requests by looking
for sequentiality, regularity, and sharing in the access pattern. Finally, we evaluate the effect on
caching through trace-driven simulation.



Table 1: Overview of the traces we collected, and of files opened. Only those jobs whose file
accesses were caught by our library are included here. We classify files by whether they were
actually read, written, or read and written within a single open period, rather than by the mode
used to open the file. Some files were opened but neither read nor written before being closed.

Trace Traced Megabytes Number of files
name Jobs Read  Written | Opened | Read Written Both Neither
feb10 73| 2977.63  1311.35 3609 | 2659 573 280 97
feb11 46 129.79  1161.70 5281 41 4185 803 252
febl4pl 9 334.81 395.14 1610 791 819 0 0
feb14p2 15 1701.25  1691.18 783 313 309 147 14
feb14p3 1 40.18 45.92 130 97 33 0 0
feb14p4 12 98.22 121.97 1392 165 919 292 16
feb15 34 || 18835.90 19265.64 4968 698 3622 442 206
feb1l6pl 37 || 12860.40 12593.27 2893 | 2468 406 2 17
feb16p2 30 32.66 505.09 2159 176 1709 0 274
feb17 20 517.74 398.28 3068 | 1447 1242 292 87
feb18pl 3 54.78 117.45 735 162 541 0 32
feb18p2 9 196.33 284.34 1248 521 567 0 160
feb18p3 12 28.30 307.49 838 128 676 0 34
feb21 6 114.83 224.47 684 198 294 0 192
feb22pl 27 325.78 386.63 3679 534 3025 1 119
feb22p2 14 16.71 228.49 3500 188 3269 0 43
feb22p3 7 21.44 79.44 2573 247 2217 0 109
feb23pl 17 96.64  3698.34 8168 688 7440 0 40
feb23p2 63 216.51 381.98 9512 | 1166 7680 0 666
feb24 5 142.96  1261.17 1751 702 981 0 68
marl 30 69.54 265.96 5198 | 1151 3993 0 54
Totals 470 || 38812.40 44725.29 63779 | 14540 44500 2259 2480
100.0% | 22.8% 69.8% 3.5% 3.9%
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Figure 2: Amount of time the machine spent with the given number of jobs
running. This data includes all jobs, even if their file access could not be traced.
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Figure 3: Distribution of the number of compute nodes used by jobs in our
workload (even those whose file access could not be traced). The iPSC limits the
choice to powers of 2.

4.1 Jobs

As a first look into the details behind Table 1, Figure 2 shows the amount of time the machine
spent running a given number of jobs. For more than a quarter of the traced period, the machine
was idle (i.e., zero jobs). For about 35% of the time it was running more than one job, sometimes
as many as eight. Although not all jobs use the file system, a file system clearly must provide
high-performance access by many concurrent, presumably unrelated, jobs. While uniprocessor file
systems are tuned for this situation, most multiprocessor file-systems research has ignored this
issue, focusing on optimizing single-job performance.

Of course, some of the jobs in Figure 2 were small, single-node jobs, and some were large
parallel jobs. Figure 3 shows the distribution of the number of compute nodes used by each job.
One-node jobs dominated the job population, although large parallel jobs dominated node usage.
This dichotomy would be larger in new “self-hosting” parallel systems. A successful file system
must allow both small, sequential jobs and large, highly parallel jobs access to the same files under
a variety of conditions and system loads.



4.2 Files

In Table 1 above, note that many more files were written than were read (indeed, more than three
times as many). It appears that the programmers of traced applications often found it easier to open
a separate output file for each compute node, rather than coordinating writes to a common output
file, as evidenced by the substantially smaller average number of bytes written per file (1.2 MB)
than average bytes read per file (3.3 MB). Note also that there were extremely few files that were
read and written in the same open. This latter behavior is common in Unix file systems [Flo86]
and may be accentuated here by the difficulty in coordinating concurrent reads and writes to the
same file (note the CFS file-access modes are of little help for read-write access).

Table 2: Among traced jobs, the number of files opened by jobs was often small (1-4).

Number of | Number
Files of Jobs

1 71

2 15

3 24

4 120

5+ 240

Table 2 shows that most jobs opened only a few files over the course of their execution, although
a few opened many files (the maximum was one job that opened 2217 files). Some of the jobs which
opened a large number of files were opening one file per node. Although not all files were open
concurrently, file-system designers must optimize access to several files within the same job.

We found that only 0.61% of all opens were to “temporary” files (defined as a file deleted by the
same job that created it), and nearly all of those may have been from one application. The rarity
of temporary files and of files that were both read and written indicates that few applications chose
to use files as an extension of memory for an “out of core” solution. Many of the Ames applications
are computational fluid dynamics (CFD) codes, for which they have found that out-of-core methods
are in general too slow.

Figure 4 shows that most of the files accessed were large (10 KB to 1 MB).! It is important to
note that each of the largest jumps is primarily due to one or two applications, so undue emphasis
should not be placed on the specific numbers as opposed to the general tendency towards larger
files. Although these files were larger than those in a general-purpose file system [BHKT91], they
were smaller than we would expect to see in a scientific supercomputing environment [MK91]. We
suspect that users limited their file sizes due to the small disk capacity (7.2 GB) and limited disk
bandwidth (10 MB/s peak).

! As there was a large number of small files as well as a number of distinct peaks across the whole range of sizes,
there was no constant granularity that captured the detail we felt was important in a histogram. We chose to plot
the file sizes on a logarithmic scale with pseudo-logarithmic bucket sizes; the buckest size between 10 and 100 bytes
is 10 bytes, the buckets between 100 and 1000 are each 100 bytes, and so on.
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Figure 5: CDF of the number of reads by request size and of the amount of
data transferred by request size.

4.3 1/0 request sizes

Figures 5 and 6 show that the vast majority of reads are small, but that most bytes are transferred
through large reads.

Indeed, 96.1% of all reads were for fewer than 4000 bytes, but those reads transferred only 2.0%
of all data read. Similarly, 89.4% of all writes were for fewer than 4000 bytes, but those writes
transferred only 3% of all data written. The number of small requests is surprising due to their poor
performance in CFS [Nit92]. The jump at 4 KB indicates that some users have optimized for the
file-system block size, but it appears that most users prefer ease of programming over performance.

Figures 5 and 6 show spikes in the number of small requests as well as in the data transferred
by 1 MB requests. While the spikes of small requests occurred throughout the tracing period, one
trace alone (probably one job alone) contributed the spike at 1 MB. Although the specific position
of the spikes is likely due to the effect of individual applications, we believe that the preponderance
of small request sizes is the natural result of parallelization by distributing file data across many
processors, and would be found in other workloads using a similar file-system interface.
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Figure 7: CDF of sequential access to files on a per-node basis.

4.4 Sequentiality

A common characteristic of file workloads, particularly scientific workloads, is that files are accessed
sequentially [OCHT85, BHKT91, MK91]. To grasp the notion of “sequential” access in a parallel
application, we define a sequential request to be one that is at a higher file offset than the previous
request from the same compute node, and a consecutive request to be a sequential request that
begins where the previous request ended. Figures 7 and 8 and Table 3 show the amount of sequential
and consecutive access (on a per-node basis) to files with more than one request in our workload.

The most notable features of these graphs are the spikes at 0% and 100%; most files were
either entirely sequential (or consecutive) or not at all. Not surprisingly, access to read-write files
was primarily non-sequential. By far, most read-only and write-only files were 100% sequential.
Most (86%) write-only files were 100% consecutive, but that was largely due to the fact that most
write-only files were written only by one processor. Only 29% of read-only files, however, were
100% consecutive. The remainder (non-consecutive, sequential read-only files) were the result of
interleaved access, where successive records of the file are accessed by different nodes; from the
perspective of an individual node, some bytes must be skipped between one request and the next.
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Table 3: Sequential and consecutive access in the traced files. Here we look at each file on each
node, and record the fraction of all accesses that were sequential (seq) or consecutive (cons). Each
row is mutually exclusive, that is, “> 90” does not include “100”.

Percent of Read Written Both All
node-files || Seq | Cons | Seq | Cons | Seq | Cons || Seq | Cons
0 0.9 164 | 0.0| 10.0 | 682 726 || 4.9 | 15.8
~0 0.0 51.2| 0.0 0.4 1 0.0 0.0 0.0 | 13.0
< 10 0.0 0.2 0.0 0.0 0.0 0.5 0.0 0.1
10 — 50 0.0 0.0 0.2 3.0 2.1 7.7 0.2 2.6
50 — 90 0.1 0.1 0.3 0.3 | 21.2| 15.7 1.7 1.3
> 90 2.6 2.8 1 0.0 0.1 0.3 0.2 0.7 0.8
100 || 96.5 | 29.4 | 99.5 | 86.3 | 8.1 3.3 1925 | 66.5
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Figure 8: CDF of consecutive access to files on a per-node basis.

4.5 1/O-request intervals

We define the number of bytes skipped to be the interval size. Consecutive accesses have interval
size 0. The number of different interval sizes used in each file, across all nodes that access that file,
is shown in Table 4. A surprising number of files were read or written in one request per node (i.e.,
there were no intervals). Over 99% of the 1-interval-size files were consecutive accesses (i.e., the
one interval size was 0). The remainder of l-interval-size files, along with the 2-interval-size files,
represent 5% of all files, and indicate another form of highly regular access pattern. Only 1.2% of
all files had 3 or more different interval sizes, and their regularity (if any) was more complex.

To get a better feel for this regularity, we also counted the number of different request sizes
used in each file, as shown in Table 5. Over 90% of the files were accessed with only one or two
request sizes. Combining the regularity of request sizes with the regularity of interval sizes, many
applications clearly used regular, structured access patterns, presumably because much of the data
was in matrix form.

12



Table 4:

Zero represents those cases where only one access was made to a file, per node.

Table 5:

with zero different sizes were opened and closed without being accessed.

The number of different interval sizes used in each file across all participating nodes.

Number of Number | Percent of
different intervals of files | total files
0 23291 36.5

1 37148 58.2

2 2561 4.0

3 105 0.2

44+ 674 1.0

The number of different request sizes used in each file across all compute nodes. Files

Number of | Number | Percent of
different sizes of files | total files
0 2480 3.9

1 25523 40.0

2 32779 51.4

3 2510 3.9

44+ 487 0.8

4.6 Synchronization

Given the regular request sizes and interval sizes shown in Tables 4 and 5, Intel’s “I/O modes”
(see Section 2.4) would seem to be helpful. Our traces show, however, that over 99% of the files
used mode 0; that is, less than 1% used modes 1, 2, or 3. Tables 4 and 5 give one hint as to why:
although there were few different request sizes and interval sizes, there were often more than one,
something not easily supported by the automatic file modes. It may also be that these modes were
slower than mode 0, so that programmers chose not to use them.

4.7 Sharing

A file is shared if more than one job or process opens it. It is concurrently shared if the opens
overlap in time. It is write-shared if one of the opens involves writing the file. In uniprocessor and
distributed-system workloads, concurrent sharing is known to be uncommon, and concurrent write
sharing rare [BHKT91]. In a parallel file system, of course, concurrent file sharing among processes
within a job is presumably the norm, while concurrent file sharing between jobs is likely to be
rare. Indeed, in our traces we saw a great deal of file sharing within jobs, and no concurrent file
sharing between jobs. The interesting question is how the individual bytes and blocks of the files
were shared. Figure 9 and Table 6 show the percentage of files (which were concurrently opened
by multiple nodes) with varying amounts of byte- and block-sharing. There was more sharing for
read-only files than for write-only or read-write files, which is not surprising given the complexity
of coordinating write sharing. Indeed, 70% of read-only files had 100% of their bytes shared, while
90% of write-only files had no bytes shared at all. While a half of all read-write files (not shown in
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Figure 9: CDF of file sharing between nodes in Read-Only and Write-Only
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Figure 9) were 100% byte-shared, 93% of them were 100% block-shared, which would stress a cache
consistency protocol, if present. Overall, the amount of block sharing implies strong interprocess
spatial locality, and suggests that caching may be successful.

Table 6: Byte and block sharing in the traced files. Non-shared and completely shared files were
most common. Note that false sharing occurred (where no bytes were shared but some blocks were
shared). Fach row is mutually exclusive, that is, “> 99” does not include “100”.

Percent of files

Percent Read Written Both All
Shared || byte | block | byte | block | byte | block || byte | block
0 7.9 0.0 | 88.7| 10.6 | 19.1 0.0 || 29.5 2.7
~ 0| 10.7 0.2 1.9 23.1| 0.0 0.0 7.3 5.9
< 10 0.0 0.0 09| 12.7] 0.0 0.0 0.2 3.2
10— 50 || 10.7 0.0 6.1 13.2] 4.8 4.8 8.9 3.9
50 — 90 0.3 0.7 0.0 1.2 3.7 2.1 0.6 1.0
> 90 0.1 3.2 0.0 7.5 | 19.7 0.0 2.3 3.9
100 || 70.3 | 96.0 | 2.4 | 31.8 | 52.7| 93.1| 51.2 | 794

4.8 Caching

Buffering and caching are common in traditional file systems, and with the right policies can
be successful in multiprocessor file systems. One advantage of buffers is to combine several small
requests (which were common in this workload) into a few larger requests that can be more efficiently
served by disk hardware. Indeed, with RAID disk arrays commonly seen on today’s multiprocessors
(such as the Intel Paragon and the KSR-2) it is even more important to avoid small requests at the
disk level. Fortunately, the small requests seen in Figures 5 and 6, when coupled with small interval
size, lead to spatial locality. Other potential benefits may come from temporal or interprocess
locality in the access pattern.
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Figure 10: Results of compute-node caching simulation. Hit rates differed
from job to job, with three distinct clumps, indicating that the cache either helped

or did not. One buffer was as good as many buffers.

In a distributed-memory machine, it is possible to place a buffer cache at the compute nodes,
at the I/O nodes, or both. We evaluated all three with trace-driven simulation.

4.8.1 Compute-node caching

The amount of block sharing in write-only and read-write files show that any attempt to maintain
write-buffers at the compute nodes would necessitate a cache consistency protocol, so we restricted
our effort to read-only files. The results of a simple trace-driven simulation of a compute-node
cache of 4 KB (one block), read-only buffers with LRU replacement are shown in Figure 10. We
consider a hit to be any request that was fully satisfied from the local buffer (i.e., with no request
sent to an I/0 node).

Caching success, as indicated by a high hit rate, was limited to a subset of the jobs: 40% of the
jobs had a greater than 75% hit rate, but 30% of the jobs had a 0% hit rate. Further, for those jobs
where a cache was beneficial, a single one-block buffer per compute node was usually sufficient.
A single buffer could maintain a high hit rate in patterns with a small request size (which was
common; see Figures 5 and 6) and a short (perhaps zero) interval size. Clearly there was spatial
locality in our workload, and not much temporal locality, or multiple buffers would have helped
more 2. In short, it appears that a one-block buffer per compute node, per file, may be useful for
read-only files, but a careful performance analysis is still necessary.

4.8.2 1I/0-node caching

Given the apparent interprocess locality, I/O-node caching should be successful. To find out, we
ran a trace-driven simulation of I/O-node caches, with 4-KB buffers managed by either a LRU or
FIFO replacement policy. These I/O-node caches served all compute nodes, all files, and all jobs,
according to our best guess of the event ordering within our traces as described in Section 3. We
assumed the file was striped in a round-robin fashion at a one-block granularity. No compute-node
cache was used. Figure 11 shows the results of the simulation. With LRU replacement, a small

?multiple buffers were useful in a very few jobs, apparently those which were interspersing reads from more than
one file. In those cases a single buffer per file would have been appropriate.
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Figure 11: Results of I/O-node caching simulation. Each line represents a
complete run of the simulation with a fixed number of I/O nodes ranging from 1
to 20.

cache (4000 4-KB buffers over all I/O nodes) was sufficient to reach a 90% hit rate. With FIFO
replacement, nearly 20000 buffers were needed to obtain a 90% hit rate, because FIFO does not give
preference to blocks with high locality. It made little difference whether the buffers were focused
on a few I/0 nodes or spread over many I/O nodes (that is, the hit rates were similar; performance
is another issue). The success of such a small cache, coupled with the apparent lack of intraprocess
locality in many jobs (Figure 10), reconfirms the presence of interprocess spatial locality.

As a final test, we simulated the combination of a single buffer per compute node and a cache
at each of 10 I/O nodes. The result was a only a 3% reduction in the I/O node hit rate when
each 1/0 node had a small cache of 50 buffers. This further suggests that most of the hits in the
I/0 node cache were indeed a result of interprocess locality because, as Figure 10 shows, the limited
intraprocess locality was filtered out by the compute-node cache.

Note the contrast with Miller and Katz’s tracing study [MK91], which found little benefit from
caching. (They did notice a benefit from prefetching and write-behind.) Both their workload
and ours involve sequential access patterns; the difference is that the small requests in our access
pattern lead to intraprocess spatial locality, and the distribution of a sequential pattern across
parallel compute nodes leads to interprocess spatial locality, both of which could be successfully
captured by caching.

5 Conclusions and recommendations

Although this workload had many characteristics in common with those in previous studies of
scientific applications and file systems (large file sizes, sequential access, little inter-job concurrent
sharing), parallelism had a significant effect on some workload characteristics (smaller request sizes,
and lots of intra-job concurrent file sharing) and added some new characteristics (non-consecutive
sequential access and interprocess spatial locality). A multiprocessor used for scientific applications
will not be well served by a file system ported from a distributed system, which was tuned for a
different set of workload characteristics. In particular, parallelism leads to new, interleaved access
patterns with no temporal locality, and high interprocess spatial locality at the I/O node.
Compute-node caches are probably best implemented as a single buffer per file (but only if
carefully managed for consistency). I/O-node caches can effectively combine small requests from
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many compute nodes, avoiding extraneous disk 1/O and raising the potential for large disk I/Os, a
significant benefit when the I/O nodes serve RAIDs (which favor large transfers) rather than indi-
vidual disks. Replacement policies other than LRU or FIFO should be developed (e.g., [KE93a]), to
optimize for sequential access and interprocess locality rather than traditional spatial and temporal
locality.

Ultimately, we believe that the file-system interface must change. The current interface forces
the programmer to break down large parallel I/O activities into small, non-contiguous requests.
While compute-node and 1/0-node caching can help, it would be better to support strided I/0
requests from the programmer’s interface to the compute node, and from the compute node to
the I/O node. A strided request can express a regular request and interval size (which were
common in our workload), effectively increasing the request size, lowering overhead, and perhaps
eliminating the need for compute-node buffers. Strided requests are available in some file-system
interfaces [CFPB93, DdR92, Kot93]. For some applications, collective /0 requests can lead to even
better performance [Kot94].

Dependence on Intel CFS. We caution that some of our results may be specific to workloads
on Intel CFS file systems, or to NASA Ames’s workload (computational fluid dynamics). Although
the exact numbers are workload-specific, we believe that the conclusions above are applicable to
scientific workloads running on loosely-coupled MIMD multiprocessors with a CFS-like interface,
that is, an interface which encourages interleaved access and an independent file pointer for each
node. This category includes many current multiprocessors.

6 Future Work

There are many avenues for future work, some of which we are exploring.
¢ Gain a deeper understanding of the file access patterns (perhaps using temporal information).

o Collect traces from other machines and environments, to broaden and deepen the experimental
data, and strengthen the generality of our conclusions.

e Convert these results into a meaningful, synthetic benchmark of parallel 1/0.
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