
   

  

   

   
 

   

   

 

   

   Int. J. Communication Networks and Distributed Systems, Vol. 2, No. 4, 2009 375    
 

   Copyright © 2009 Inderscience Enterprises Ltd. 
 
 

   

   
 

   

   

 

   

       
 

Towards collaborative data reduction in 
stream-processing systems 

Ming Li* and David Kotz 
Department of Computer Science, 
Institute of Security Technology Studies, 
Dartmouth College, 
Hanover, NH 03755, USA 
E-mail: ming.li.adv08@alum.dartmouth.org 
E-mail: kotz@cs.dartmouth.edu 
*Corresponding author 

Abstract: We consider a distributed system that disseminates high-volume 
event streams to many simultaneous monitoring applications over a  
low-bandwidth network. For bandwidth efficiency, we propose a collaborative 
data-reduction mechanism, ‘group-aware stream filtering’, used together with 
multicast, to select a small set of necessary data that satisfy the needs of a 
group of subscribers simultaneously. We turn data-compressing filters into 
group-aware filters by exploiting two overlooked, yet important, properties of 
monitoring applications: 

1 many of them can tolerate some degree of ‘slack’ in their data quality 
 requirements 
2 there may exist multiple subsets of the source data satisfying the quality 
 needs of an application. 

We can thus choose the ‘best alternative’ subset for each application to 
maximise the data overlap within the group to best benefit from multicasting. 
We provide a general framework that treats the group-aware stream filtering 
problem completely; we prove the problem NP-hard and thus provide a suite of 
heuristic algorithms that ensure data quality (specifically, granularity and 
timeliness) while collaboratively reducing data. The framework is extensible 
and supports a diverse range of filters. Our prototype-based evaluation shows 
that group-aware stream filtering is effective in trading CPU time for data 
reduction, compared with self-interested filtering. 
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1 Introduction 

Recent years have seen data-intensive applications that feed on near-real time ‘context’ 
information, such as location, environmental status and surrounding resources, collected 
from distributed data sources leveraging sensor networks. Those data sources, such as 
click-streams, stock quotes and sensor data, are often characterised as fast-rate  
high-volume ‘streams’ (Babcock et al., 2002a). Distributed stream-processing systems 
acquire and aggregate high-resolution data for monitoring applications that come from 
many different domains; these applications range from RFID-based inventory 
management, pipeline monitoring for civil engineering, real-time stock-price analysis, 
mining of web click-streams, habitat monitoring, to vital-sign monitoring and medical 
triage. 

In this paper, we consider a distributed stream-processing system that disseminates 
high-volume data streams to many simultaneous monitoring applications over a  
low-bandwidth network. At the scene of a large fire, we imagine, fire-spread prediction 
may require sub-second updates on temperature, wind speed and direction from the 
sensor networks deployed near the fire; command-and-control applications need frequent 
updates on first responders’ locations. Systems that disseminate data for those monitoring 
applications often use wireless networks for rapid deployment and cost-effectiveness. In 
the emergency-response scenario, such an infrastructure can be a wireless mesh network 
formed by computers on police cars or fire trucks on the scene. It is well recognised that 
the effective bandwidth of a wireless network is usually much lower (more than ten times 
less) than its link capacity (Akyildiz et al. 2005; Strix Systems, 2005), and that the  
high-volume data acquisition needs of monitoring applications may push the envelope of 
the bandwidth-constrained network. For bandwidth efficiency, we propose a 
collaborative data-reduction mechanism, group-aware stream filtering, used together 
with multicast, to select a small set of necessary data that satisfy the needs of a group of 
subscribers simultaneously. 

Our group-aware stream filtering approach hinges on the fact that many applications 
that subscribe to the same data source may need different portions of the data. This may 
be due to applications’ different requirements on data granularity, varying capacity of 
their data-receiving nodes, or other factors. It thus reduces bandwidth consumption to 
deploy a filter on the source node that chooses only the data important to its 
corresponding application before transporting the data. (The output of a filter in our 
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consideration is a subset of its input data.) Further, if we multiplex and then multicast the 
outputs of those source-sharing filters, we can eliminate redundant communication in the 
network. Such a combination of data filtering and multicasting is illustrated in Figure 1: 
two applications, A and B, share the same data source D, but each application’s filter 
selects a different subset on the source node. The multicast protocol allows us to label 
each tuple with the list of the applications that should receive that tuple; thus each tuple is 
transmitted at most once on any link. In this setting, the objective of our group-aware 
stream filtering is to make each filter ‘group-aware’ such that the combined outputs of the 
filters is minimised in size, while still satisfying the applications’ needs simultaneously. 
This reduced total output can better reap the benefit of multicast. 

Figure 1 Filtering for multicasting 

 

The key characteristic of a group-aware filter is its capability to select an output from 
multiple quality-equivalent potential outputs that satisfy the requirements of its 
application. For many exploratory monitoring applications, data streams provide a series 
of state updates about an interested environment, and filters that compress the state 
updates based on applications’ data granularity are of special interest for saving network 
bandwidth. Those compressing filters can be turned group-aware based on two 
overlooked, yet important, properties of the applications: 

1 many applications can tolerate some degree of ‘slack’ in their data quality 
requirements 

2 there may exist multiple subsets of the source data satisfying the quality needs of an 
application. 

We can thus make filters group-aware and choose the ‘best alternative’ subset for each 
application, maximising the data overlap within the group to best benefit from 
multicasting. This paper makes the following key contributions: 
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• We thoroughly treat the group-aware stream filtering problem by formally proving 
its NP-hardness, and by providing a suite of heuristics-based algorithms, which 
ensure data timeliness and data granularity. Thus our approach is  
quality-managed. 

• We provide a general framework for group-aware filtering, for a variety of  
data-selection operators, such as delta-compression (DC) filters and stratified 
sampling filters. We describe application scenarios where group-aware filtering may 
be beneficial. 

• We built a prototype system for evaluation. Our results, based on real-world data 
sets, show that group-aware filtering can effectively save bandwidth with low CPU 
overhead when compared with self-interested filtering. We also evaluate the effect of 
each algorithm on temporal freshness of the data. 

In the next section, we describe the foundation of group-aware filtering. In Section 3, we 
formally define the problem and prove its NP-hardness, and introduce the framework and 
algorithms for group-aware stream filtering. In Section 4, we evaluate our approach with 
a prototype system. In Section 5, we show that our framework is extensible to support 
diverse filters for different application scenarios. We discuss related work in Section 6 
and summarise in Section 7. 

2 Two key observations 

We base our filtering approach on two key observations about data-quality requirements 
of monitoring applications. Data quality is normally measured as the accuracy, 
granularity, timeliness and completeness of the data. Implications of data quality at 
different parts of the data acquisition process may be different. For filtering, ensuring 
accuracy and completeness may mean that filters must not tamper with the input data 
(enforcing accuracy), and that filters must output all tuples in the input data stream that 
satisfy applications’ needs (enforcing completeness). We assume that the chosen filters 
can always ensure these two qualities. The filters’ main job is to select an appropriate 
subset of input data that meets the applications’ data granularity requirement. For 
example, an application would like to get a temperature reading of a place whenever the 
reading has changed by n  degrees. This -degreen  data granularity requirement can be 
enforced by a DC filter that removes values that have changed less than n  units from the 
filter’s previous output, in effect compressing the stream data at ‘delta’, in this case ,n  
units. (We consider other types of filters in Section 5.) The higher the data granularity (in 
the case of DC filters, the lower the ‘delta’ interval), the more output a filter should 
normally produce. Data granularity thus directly affects bandwidth consumption. The 
timeliness requirement at the filter can be measured by the amount of delay introduced by 
filtering. The faster a filter processes and outputs the data, the more timely is the data 
delivered to applications. 

1 First observation. Monitoring applications may tolerate some degree of ‘slack’ in 
their data quality. Consider a temperature source and DC filtering, for example. 
Given a time-ordered nine-tuple sequence from the source,  
{0, 35, 29, 45, 50, 59, 80, 97, 100},1 the output that satisfies compression at 50-unit 
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granularity is {0, 50, 100}. We recognise that applications may find it harmless to 
tolerate a small deviation from the ideal compression granularity in the output. For 
instance, the application may be able to tolerate a maximum of 10 degrees ‘slack’ 
with regard to its ideal 50 degrees granularity requirement. We denote such filters as 
a (slack, delta) DC filter, which selects data at delta-unit with slack-unit of quality 
deviation. 

2 Second observation. There may exist more than one sequence from a data source 
that can satisfy an application’s approximate quality requirements. In the previous 
example, if the application tolerates a maximum of 10 degrees slack in the 50 
degrees compression granularity, it is easy to validate that the following sequences 
each satisfy the approximate granularity requirements as well: {0, 45, 100},  
{0, 59, 100}, {0, 50, 97}, {0, 45, 97}, {0, 59, 97}, as 45, 59 are close by tuples 
within 10 degrees deviation from ‘ideal’ output 50 after initial output 0 and 97 from 
‘idea’ output 100 as a third output. 

3 Group-awareness. Let us call the above DC application A. Suppose application B 
shares the same source as A and tolerates a maximum of 5 degrees slack in a 40 
degree compression granularity. By the above definitions, it is easy to validate that 
the following sequences satisfy B’s requirements: {0, 45, 97},  
{0, 50, 97}, {0, 50, 100}, {0, 45, 100}. 

Individually, A may choose {0, 50, 100} as its output; B may choose {0, 45, 97} as 
its output; there are thus five tuples to output when multiplexing the output streams 
for multicasting. If A and B are aware of each other’s filtering needs, and both decide 
on, say, {0, 50, 97} as their individual output, then only three tuples need to be 
multicast to A and B to satisfy both filtering requirements. In effect, the  
‘group-awareness’ reduces the bandwidth demand by two tuples. 

3 Framework 

In this section, we show that the group-aware stream filtering problem is NP-hard and 
provide a framework using a suite of heuristics-based algorithms to solve the problem 
approximately. 

3.1 Problem definition 

We assume that the input data stream is a time-ordered continuous sequence of tuples. 
Each tuple consists of several attributes, including a unique time stamp. We abstract our 
group-aware stream filtering method into two stages: In the first stage, compute 
candidate outputs, each filter processes the input stream and computes a set of candidate 
outputs; in the second stage, decide on final outputs, an output decider chooses a 
candidate output from each filter to be multicast. For a continuous stream, group-aware 
filtering iteratively goes through these two stages, processing one segment at a time. 
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3.1.1 Reference-based candidate sets 

For the first stage, there exist many domain-specific ways for quality-slack tolerating 
filters to compute the candidate outputs. Here we introduce a reference-based approach 
to find candidate outputs for filters. The idea is for the filter to compute a candidate set 
for each tuple that the self-interested filter would select. We call the tuples that would be 
chosen by a self-interested filter reference tuples. Choosing any tuples from the candidate 
set corresponding to a reference tuple would be quality-equivalent to choosing the 
corresponding reference tuple for the output. Figure 2 shows how a DC filter that can 
tolerate ten units slack in 50-unit compression can select a vicinity of tuples around the 
reference tuple, here tuple 50, that are no more than ten units from the reference tuple, to 
form its candidate set. In this case, tuples whose values are 45, 50, 59 are within the ten 
units vicinity of, and contiguous with, the reference tuple 50 and thus make the candidate 
set. We assume for now that every candidate set is finite or closable. 

Figure 2 Candidate set of a reference tuple (slack = 10) 

 

Below, we define the group-aware filtering problem formally (In Appendix A, we prove 
its NP-hardness by reducing the problem to the minimum hitting-set problem). The 
minimum hitting-set problem has been studied extensively in the computer science 
literature. It is proved that the greedy algorithm produces a ( )ρ n  approximation to the 
optimal solution (Cormen et al., 2001), where ( ) ( {| |:H C Cρ =n max  is a set in the 
hitting-set problem}) and where H is a harmonic function and n  is the total number of 
sets in the problem. We can apply this bounded approximation algorithm directly to the 
group-aware filtering problem. 

Problem Definition 1. Given an input stream segment S, n  filters F1, F2, .., Fn in the 
group, and a collection C containing all candidate sets produced by the filters. The 
objective is to pick a tuple jo  from each candidate set in C, such that the set 

{ }U j jOutput = o  has minimal size. 

An important property of computing candidate sets based on reference points is that the 
selectivity (or compression ratio) of each group-aware filter is exactly the same as that of 
the corresponding self-interested filter, as the number of candidate sets of a  
group-aware filter is the same as the number of reference outputs selected by the 
corresponding self-interested filter. Yet, thanks to overlapping of candidate sets, the size 
of the overall outputs of group-aware filters is smaller or no bigger than that of the 
overall outputs of the corresponding self-interested filters of the group. In other words, 
group-aware filtering performs no worse than self-interested filtering, in term of 
reduction of bandwidth consumption. 
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3.2 Region-base stream segmentation 

Notice the problem we defined assumes that the input is a finite-length time series. For a 
continuous event stream that is potentially infinite in length, we consider a group-aware 
filtering optimisation problem for all its finite prefixes of a time-ordered input data 
sequence. 

For a long stream, it is not time-efficient, if not impossible, to collect all the data 
before applying filtering algorithms. So we consider the problem of whether there exists a 
way to segment the input time series in such a way that the segmentation does not affect 
the optimality of the solution. Here we propose region-based segmentation for applying 
minimum hitting-set algorithms. 

The intuition behind region-based segmentation is that we would like to divide the 
collection of candidate sets in the problem into time-wise-clustered subsets such that 
there is no overlapping of any candidate set in a subset with any candidate set in another 
subset. This way, minimum hitting-set algorithm can be time-progressively applied to 
each subset to produce solutions that can be added to the overall solution without 
affecting the optimality of the total solution. Further, the segmentation scheme ensures 
that each subset is minimised in size, so that minimum hitting-set algorithm can be 
applied to each subset as early as possible. We call each such minimised subset a region. 
Appendix B shows the formal definition of region and two important properties of 
region-based stream segmentation: 

1 region-based segmentation preserves solution’s optimality, if optimal 

2 it preserves the approximate ratio of sub-optimal solutions. 

Figure 3 Two regions for three DC filters 

 

Figure 3 shows two regions for three DC filters’ candidate sets: region1 = {cands1-1, 
cands2-1, cands3-1}, region2 = {cands1-2, cands2-2, cand3-2, cands1-3, cands2-3}. Each 
filter computes its candidate sets one after another. In this example, we assume that the 
closure of a candidate set is signalled by the first tuple that is not a candidate. Thus, 
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cands2-1 is closed when tuple 35 comes, as 35 is more than 5 units away from the 
reference tuple 0. Filter B now anticipates the next reference tuple to be at least 40 and it 
admits tuple 35 into its next candidate set, as the tuple is within 5 units away from 40. 
When tuple 29 comes, it is not qualified as a candidate tuple and it also invalidates tuple 
35’s candidacy, as in this example we assume that a candidate set is made of tuples that 
comes consecutively in time. When tuple 45 comes, it is at least 40 units away from the 
previous reference tuple and thus is admitted into B’s candidate set. B admits tuple 50 
and closes the candidate set when tuple 59 comes. Note that before a candidate set is 
closed, a filter has the ability to adjust its current candidate set by removing invalid 
candidates, for instance when a filter discovers the real reference tuple in a candidate set, 
or find unqualified tuples. It is easy to verify that adding any candidate set outside a 
region to the region will invalidate the region, as the added candidate set has no 
overlapping with the rest of the sets in the region. 

Now we introduce REGION-BASED-GREEDY-FILTERING, a region-based greedy 
algorithm, for a continuous stream S in Figure 4. First, assume that we have instantiated 
each filter according to its specification from each application. A filter specification 
specifies the type and parameters of the filter, and how its internal state should be 
initiated and updated. We use a global object globalState to coordinate the filtering. The 
global state mainly consists of  

1 the group utility of each tuple, which counts the number of filters that have included 
the tuple in their candidate set 

2 the current region that keeps track of the connected candidate sets since the last 
region. 

Figure 4 Region-based greedy algorithms for group-aware stream filtering. 

 

Each filter uses its isAdmissible (line 3) method to decide whether a tuple is admissible to 
its candidate set. If so, the tuple is added to the filter’s candidate set (line 5), and the 
tuple’s group utility is incremented in the globalState (line 7). A filter’s isAdmissible 
method may trigger the filter to find the next reference tuple as internal state for 
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admitting its candidate tuples. Next, if the filter finishes computing the current candidate 
set (line 8) when detecting that the current tuple does not belong to the current candidate 
set, the filter’s current candidate set is closed. It then checks whether all connected 
candidate sets are closed. This check is done at the globalState, which keeps track of 
currently closed candidate sets not included in the previous region and tracks the group 
utilities of each tuple. If the utility of any tuple in a closed candidate set is greater than 
the number of currently closed candidate sets, then the region is not closed, as there must 
be a not-yet-closed candidate set admitting this tuple (line 10). When the current region is 
closed, it consists of all the closed candidate sets that are connected. Next, we apply a 
greedy hitting-set algorithm, GREEDY-HITTING-SET in Figure 5, to the current region  
(line 12) and send the solution for multicast (line 13). The solution contains a set of 
tuples chosen from the region that have high group utilities and hit all candidate sets in 
the region. 

Figure 5 Greedy hitting-set algorithms 

 

GREEDY-HITTING-SET (in Figure 5) picks the tuple with the highest group utility  
(line 3). If multiple tuples have the same highest utility, we use tuples’ time stamps to 
break the ties and choose the tuple with the latest time stamp to favour time freshness. 
Then, remove all the candidate sets that contain the chosen tuple (line 5). The group 
utility of any tuple included in the removed candidate sets is decremented by the number 
of removed candidate sets containing the tuple (line 6). The algorithm then greedily picks 
the next tuple with the highest utility and the same hitting-set process continues until no 
candidate set is left to be hit. The chosen tuples constitute the solution. 

Figure 6 shows how the region-based greedy algorithm is applied to the three group-
aware filters A, B and C in the previous example. The upper part of the figure shows the 
candidate sets of the filters. The lower part shows the time-progressive computation of 
group utilities of the tuples, status of regions, and chosen outputs for the group. 

At each time slot, each filter checks whether the newly arrived tuple is admissible. If 
so, the filter increments group utility of the tuple. At time slot 2, all three filters’ 
candidate sets are closed, thus the region is closed to run greedy hitting-set algorithm. 
The output 0 is chosen for all filters. The next region closes at time slot 10, when all 
filters close their candidate sets. Tuple 100 is chosen as it is one of the tuples with the 
highest group utility. That is, cands1-3, cands2-3, cands3-2 are ‘hit’ by tuple 100. Next, 
tuple 50 is chosen, as it has the next highest group utility. Cands1-2 and cands2-2 are 
both hit by tuple 50. Now, all candidate sets have been hit in region 2. Thus, the outputs 
chosen at time slot 10 are tuple 100 for filter A, B and C, and tuple 50 for filter A and B. 
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Figure 6 Region-based greedy algorithm for three DC filters 

 

3.3 Region’s timely cuts 

The region-based group-aware algorithm computes the smallest input stream segment to 
apply the hitting-set algorithm so that the optimality of the solution will not be affected. 
Beyond preserving bandwidth, we aim to ensure data timeliness as well. 

Long candidate sets affect the timeliness of the output, because a region has to wait 
for all its member candidate sets to close before choosing outputs. In the case of a  
DC filter, after admitting a tuple in the candidate set, it waits for the first tuple that does 
not fall into the valid range for this candidate set to close the current candidate set. If the 
stream data changes little, and the filter’s quality slack is relatively large, the candidate 
set can grow long, which affects the timely outputs of all its connected candidate sets. 

Here we propose a mechanism, cuts, to curb the computation of long candidate sets 
according to filters’ time constraints. We assume that each filter specifies a maximum 
tuple delay for group-aware filtering and we simply use the minimum of all the time 
specifications, we call it the groupTime, to enforce the data timeliness for the group. To 
derive the time cover of a region that satisfies groupTime, we build a latency model based 
on on-line observations of the most recent ten regions’ performance, specifically the 
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correlation between region sizes and CPU time for computing the regions and choosing 
output for the regions. From our experiments, we found that a linear model was a pretty 
accurate fit. The last tuple in a region should not have a timestamp that exceeds 
(groupTime − intercept)/slope, where intercept and slope are coefficients of the current 
linear time model. 

To enforce timely cuts to our previous algorithm, we extend it to check the time 
constraint after each filter finishes processing the new input tuple (after line 7 in  
Figure 4). Then, if the time constraints are about to be violated if we wait any longer, we 
force all open candidate sets to close. These closures will make the current region close 
automatically and then we can apply the GREEDY-HITTING-SET to choose the output, 
as before. Finally, after line 13 in Figure 4, we let the globalState, which keeps track of 
CPU time for computing a region; update the time model to compute a new group time 
constraint, which will be used in the next region. 

It should be easy to see that cuts may reduce the sizes of candidate sets and thus 
reduce the likeliness of overlapping candidate sets, which may reduce the  
bandwidth-saving performance of group-aware filtering. Nevertheless, we can prove that 
the worst case for group-aware filtering algorithms with timely cuts is that each candidate 
set contains only one tuple and thus it is no different from self-interested filtering. Thus, 
although a timely cut may affect the bandwidth-saving performance of group-aware 
filtering, it performs no worse than self-interested filtering in terms of bandwidth 
consumption. 

3.4 Stateful candidate sets 

The above algorithms compute candidate sets based on reference tuples that are chosen 
by the self-interested filters with predicates. In other words, computing a filter’s current 
candidate set does not depend on the chosen output of its previous candidate set. We call 
this stateless computation of candidate sets for a filter. For some applications, an 
alternative semantics for computing a candidate set is to base its reference on the chosen 
output of the previous candidate set. We call this stateful computation of candidate sets, 
and call the candidate sets stateful candidate sets. 

For stateful candidate sets, the filter needs to choose the output as soon as its current 
candidate set closes, as the reference for the next candidate set depends on the chosen 
output (Figure 7). We use group state to track already-chosen tuples of each stateful 
candidate set in addition to the group utilities of tuples, and propose the following two 
heuristics for choosing output tuples from stateful candidate sets: 

1 choose the tuple that has been chosen by other filters 

2 choose the tuple that has the highest group utility. 

Figure 7 Stateful candidate sets 
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The first heuristic takes precedence over the second heuristic. Both are subject to the 
tiebreaking rule, preferring the more recent tuple. After a filter chooses a tuple from a 
candidate set, the group utilities of all tuples in its candidate set are decremented by 1. 
Group state will keep track of the tuples chosen by each filter. If there are stateless filters 
in the group, identifying regions is still useful, as it is the earliest possible time to 
multicast decided tuples that have not yet been output in the region, when a region closes. 
In that case, we can still apply the greedy hitting-set algorithm upon the time the region is 
closed, only that the stateful filters’ candidate sets become singleton sets with one chosen 
tuple in each. The logic for computing regions and timely cuts is the same as in the 
previous algorithm. 

3.5 Output strategy 

There are several output strategies we can use to enforce different output patterns. First, 
by computing regions, we get the earliest possible time for output tuples of a region 
without hurting the optimality of the solution. Second, by enforcing group time 
constraints, we get the earliest possible subject to group time constraint output pattern. 
Third, filters may opt for a batched output pattern, i.e., for a fixed-sized (time or tuple) 
batch of the input stream, select and output tuples. 

In the case of a group with all stateful filters, it may be desirable to output tuples at 
the time each candidate set is closed, if the applications can tolerate disordered output 
within the predefined time frame. We call this per-candidate set output pattern. The 
benefit of using this pattern is that the delay of average tuple is less than that with a 
region-based earliest possible output strategy. The downside of it is that it may cause 
disorder in the output for the candidate sets in a region. 

4 Evaluation 

The goal of evaluation is to see how well group-aware filtering works in comparison to 
self-interested filtering, in terms of network bandwidth consumption and its effect on data 
timeliness. 

4.1 Prototype system 

We implement and integrate the group-aware filtering prototype with Solar (Chen et al., 
2004), a general purpose data dissemination system developed at Dartmouth College. The 
core of Solar is a p2p overlay infrastructure in which each overlay node supports a suite 
of data-dissemination services, such as naming, data fusion and multicasting. We package 
group-aware filtering as a new service, working together with Solar’s basic services on 
each overlay node. 

Solar uses a content-based publish/subscribe model for flexible and scalable data 
dissemination. Publishers of context sources in Solar are called ‘sources’ and applications 
can ‘subscribe’ to sources in Solar to get the desired context information. Solar also 
allows an application to specify data operators, such as filters for pre-processing the 
source data. 

For our testing, we replay real-world data traces as Solar sources and let a group of 
applications subscribe to the sources. Each subscribing application specifies a filter for its 
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processing needs. The group-aware filtering service then deploys, according to a filter’s 
type and quality requirements, a group-aware filter object on the source node. The union 
of the output of all source-sharing filters is published via Solar’s overlay multicasting 
service to the remote applications. To compute end-to-end latency based on time stamps, 
we deploy the subscribing applications on the same node as the data source to eliminate 
time skew in a network. Here we assume the real end-to-end latency is the time 
difference we will measure between a tuple published from the source and the time it 
arrives in an application, plus a constant number that captures overlay multicasting cost. 
In past deployments of Solar in a small (7-node) overlay network in Emulab2, Solar’s 
overlay multicasting delay was about 130 ms. This paper does not focus on the network 
aspects of group-aware filtering and we do not measure network behaviour while 
performing group-aware filtering. We thus measure the performance on the node where 
stream data were filtered. The source node was an Apple Powerbook with 1.67 GHz 
PowerPC G4 and 1 GB memory. Our code is written in Java and ran with Java 1.5.0 on 
Mac OS 10.4.9. Computing power of our testing nodes is reasonable for wireless mesh 
networks used for large-scale data dissemination in scenarios like emergency response. 

4.2 Data sources 

We chose data from real deployments of sensing devices for which the data stream has a 
sub-second data rate, so filtering is necessary and saving bandwidth for dissemination of 
the data is important. The networked aquatic microbial system (NAMOS) of the CENS 
project at UCLA3 deployed embedded and networked sensors in Lake Fulmor for a 
marine scientific study during August 2006. The water was monitored by an array of 
thermistors and fluoro-meters, among others, installed on buoys of the lake. The data 
traces have data rates of 100 measurements per second and contain more than ten 
thousand measurements. These measurement traces make ideal data sources for our 
testing. Each NAMOS buoy trace tuple contains six temperature readings (we call them 
tmpr readings), one reading from a fluoro-meter (we call it the fluoro reading), a 
timestamp, and some other weather-related readings. We created a source in solar that 
replayed the NAMOS buoy trace at about 10 ms per tuple, observing the original time 
intervals of the trace data. 
Table 1 Specifications for groups of DC filters (attribute, delta, slack) 

Group name Filter 

DC(fluoro, 0.0301, 0.0150) 
DC(fluoro, 0.0702, 0.0301) 

DC_Fluoro 

DC(fluoro, 0.0500, 0.0250) 
DC(fluoro, 0.0702, 0.0100) 
DC(tmpr2, 0.0460, 0.0153) 

DC_Hybrid 

DC(tmpr4, 0.0310, 0.0103) 

DC(tmpr4, 0.0310, 0.0155) 
DC(tmpr4, 0.0620, 0.0310) 

DC_Tmpr 

DC(tmpr4, 0.0480, 0.0240) 
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4.3 Filters for testing 

The goal of the NAMOS buoy deployment was to help marine biologists to collect  
multi-scale high-resolution information, such as the spatial and temporal distribution of 
the chlorophyll level in the lake, for scientific analysis. Using DC filters or sampling 
filters is a valid way to enforce multi-scale granularity of the collected buoy data for 
these applications. 

Due to limited space, we only show our experiments with DC filters (for experiments 
with other types of filters, see Lee (2008). Each DC filter has three parameters: the data 
attribute(s) that the filter is interested in, a delta value for compression and a 
corresponding quality slack it can tolerate. Table 1 shows the groups of filters we used 
for our testing. To set parameters for the DC_Fluoro and DC_Tmpr filter groups, we 
computed the average changes, srcStatistics, of two consecutive tuples in the source time 
series and then randomly picked delta values in the range of srcStatistics and 
3*srcStatistics, which ensured a reasonable data compression that had a non-trivial output 
data volume. Then we set slack values to be about 50% of the corresponding delta values. 
This approach prevented a tuple from being included in more than one candidate set for a 
filter, and also ensured large candidate sets for us to see the benefit of group-aware 
filtering. For the DC_Hybrid filter group, we randomly picked delta values from the 
range of srcStatistics and 20*srcStatistics and randomly picked slack values that were 
less than 50% of corresponding delta values. Below, we also evaluate slack’s effect on 
the performance of the DC filtering. 

4.4 Metrics and results 

4.4.1 Basic performance 

The metric we use to measure the benefit of our group-aware filtering approach is the  
O/I ratio, that is, the output vs. input ratio defined as the total number of output  
tuples over the number of input tuples. A lower O/I ratio means low bandwidth 
consumption. It measures the bandwidth-saving benefit of group-aware filtering. We 
expect group-filtering should have an O/I ratio no more than that of self-interested 
filtering. We measured the filtering cost with CPU time per tuple, representing  
the CPU overhead of group-aware filtering. We also measured data timeliness with 
source-to-application latency per tuple, which shows the delay induced by group-aware 
filtering to each output tuple. 
Table 2 Filter type notations 

Abbreviation Meaning 

SI Self-interested filter 
RG Region-based greedy filter 
PS Per-candidate-set greedy filter 
+C with timely cuts 
+C(x) with timely cuts, x is the name of a time spec. 
(B) with batched output strategy 
(B)-x with batched output strategy, x is input tuple window 
(Pcs) with per-candidate-set output strategy 
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Table 2 shows the notation we use for filters in the results. Figure 8 shows the  
O/I ratios for three groups of filters. All group-aware filtering algorithms consumed less 
than 80% of the bandwidth consumed by self-interested filters. PS filters had a 
performance comparable to RG filters, which in theory should have better performance 
guarantee. The addition of timely cuts had little impact on O/I ratio in this experiment, as 
we set the group time constraint big enough that few regions were cut. 

Figure 8 O/I ratios for three groups of group-aware filters (see online version for colours) 

 

Figure 9 (a) CPU cost for DC_Fluoro (b) Latency for DC_Fluoro 

 

Figure 9(a) shows the CPU cost per tuple for the DC_Fluoro group. (The results are in a 
boxplot, which plots a summary of the minimum, 25% quartile, median, 75% quartile and 
maximum of the ten results. The circles represent outliers.) Group-aware filters were 
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more than 10 times more expensive than self-interested filters. This is understandable as 
the algorithms for group-aware filters are much complex than those of self-interested 
filters. However, it took only 1ms for processing each tuple for group-aware filters, 
which is fast enough for an input stream with a data rate of 100 tuples per second.  
Figure 9(b) shows the latency per tuple for the DC_Fluoro group. Since the group-aware 
filtering gathers tuples in a region before releasing output, it is understandable that the 
latency incurred for group-aware filters (about 70 ms per tuple) was much greater than 
that for self-interested DC filters (about 12 ms). The average region size of the filters was 
about 6 tuples; since tuples arrived at 10 ms intervals, it is clear that the 58 ms difference 
of latency was mainly due to waiting for the tuples to arrive for processing in segments. 
Due to limited space, we omit the CPU and latency results for the other two groups, but 
the conclusion was similar to that of DC_Fluoro group. 

4.4.2 Performance of timely cuts 

Next, we compare the performance of algorithms that enforce timely cuts. By decreasing 
the maximum time for closing a region from 125 ms in RG+C(01) filters, to a time  
16-fold less in RG+C(05) (8 ms), the resulting average latency per tuple consistently 
dropped from above 70 ms/tuple to about 20 ms/tuple [see Figure 10(a)], thus proving 
that timely cuts were effective. Figure 10(b) shows that the CPU cost to enforce cuts, less 
than 1.5 ms, is acceptable for a fast stream with a 10 ms tuple interval. Cuts affected the 
O/I ratio only slightly (less than 3%), which is understandable because cutting a region 
will affect the optimality of the solutions found and it is a necessary trade-off for a 
latency-sensitive filter. 

Figure 10 (a) Cuts affect latency for DC_Fluoro (b) CPU cost of cuts for DC_Fluoro 

 

4.4.3 Evaluate output strategies 

Finally, we evaluate the output strategies with DC_Fluoro filter group (Figure 11). The 
latency was affected mostly by the size of the average region a group-aware filter used 
before producing outputs. In the batched output pattern, when the batch size was much 
bigger than the size of a natural region, the latency increased dramatically due to 
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backlogging of the tuples in the filters until enough tuples were processed. The  
per-candidate-set output strategy helped to decrease the latency from above 70 ms to a 
little above 50 ms. In terms of CPU cost, the batched output pattern did not require 
sophisticated checking on whether a natural region is closed, which cut 1ms from the 
original 1.3 ms CPU time. 

Figure 11 (a) Output strategy affects data timeliness (b) CPU cost of output strategies 

 

4.4.4 Summary of results 

To sum up, our prototype-based experiments validated the effectiveness of group-aware 
stream filtering in further saving of the bandwidth, compared with self-interested 
filtering. Worth noting, group-aware filtering is a tool to help data dissemination systems 
to explore further opportunities to save bandwidth consumption, but it does not guarantee 
the benefit, if the outputs of the filters intrinsically have no overlapping. 

Its low CPU overhead indicates that group-aware stream filtering is suitable for fast 
stream processing (e.g., the incoming data rate in our experiment with DC filters was as 
fast as 10ms per tuple). The bottom line for using group-aware filtering is that the CPU 
overhead per tuple should not be consistently bigger than the arrival rate of the incoming 
data; that is, group-aware filtering should not cause congestion to the input buffers of the 
filters. Notice that the CPU cost is dependent on many factors, such as the complexity of 
the group-aware filters, the group size and the CPU power. It is thus hard to  
predict the performance of group-aware filtering well beforehand. It is advised  
to use online performance monitoring to dynamically decide whether or when to use 
group-aware filtering for long-running data-dissemination requirements. This leads to a 
direction of future work. 

The increased delay in output tuples was due to the batch processing in group-aware 
filtering. Compared with the application-level multicast delay we measured, it is 
considered minor. Timely cuts were effective in curbing the latency in output tuples, yet 
its CPU overhead and its effect on O/I ratio were both small. Output strategies had the 
anticipated effect on output’s timeliness, thus they provide knobs for the system to tune 
the performance of group-aware stream filtering for data timeliness. 
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We also evaluated some of the key factors that affect the performance of group-aware 
filters. Due to the space limit, we summarise the results in Figure 12. First, we decreased 
the slack values from 50% to 3% of the corresponding delta values, and the O/I ratios 
increased from 72% to 99%. Thus, slack values directly improved the data-reducing 
performance. Second, group size also showed positive effect on data reduction. This 
effect was due to the increased chance of overlapping among candidate sets. Finally, the 
characteristics of source data fundamentally determine the performances of the filtering. 
We summarise results for three other data sets: a cow’s orientation changes (Schwager et 
al., 2007), seismic readings for the volcano (Werner-Allen et al., 2006) and the HRR(Q) 
reading changes in a fire experiment (Raghavan et al., 2007) respectively. The data sets’ 
key values behave differently, and their plots are distinctive in the shape. The cow’s 
orientation had brief changes over time. The seismic update pattern and HRR(Q) change 
pattern have relatively smoother curves. The difference in the features in the source data 
dictated the difference in their data-reduction performance. 

Figure 12 Key factors that affect the performance of group-aware filters (see online version  
for colours) 

 

5 Extensible framework 

Here we discuss how group-aware filtering supports a variety of filters beyond simple 
DC filters. Filters in our consideration are selection-only operators that output a subset of 
tuples from an input source stream. 

5.1 Slack-based filters 

Slack-based filters concern a type of filters whose candidate sets are computed based on 
their tolerance to slacks in the quality requirements. The DC filters used in the previous 
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chapters are simple slack-based filters in that the quality slack is directly computed based 
on the raw values of an attribute in the time series. More generally, filters may apply 
functions to pre-process each tuple for computing candidate sets. For instance, if an 
application is interested in the changing rates or the ‘trends’ of temperature values, the 
filter may want to compute the ratio of the temperature change over a certain time span 
for each tuple. If the ratio is greater than some threshold, the application admits the tuple 
to the candidate set. Also, the functions may apply to more than one attributes of the data. 
For example, if a data stream consists of readings from multiple sensors of similar 
sensing capacities deployed in close vicinity, a filter may compute the ‘average’ readings 
over multiple attributes of the source data to see if it is above some threshold value. The 
distance functions used for computing the thresholds for admitting candidates can be 
more complex than numerical difference. For example, if a tuple contains  
two-dimension coordinates of a location, the Euclidean distance function will be used. 
Also, for classification-based candidate admission, domain-specific membership 
functions, such as fuzzy logic-based rules for ‘safe’ zones, may be used. 

5.2 Sampling filters 

For many exploratory data-analysis applications, sampling filters are of special interest. 
Sampling filters derive interesting properties by choosing a small set of data from a 
population. The notion of candidate sets is inherent in many commonly-used sampling 
methods, such as reservoir sampling, subset-sum sampling and stratified sampling 
(Johnson et. al, 2005; Thompson, 2002). For example, reservoir sampling chooses a fixed 
number of samples from a given population. Each tuple in the result can be replaced 
randomly by another tuple in the population. In this case, the candidate set of each output 
tuple is the whole data sequence in a predefined window. Reservoir sampling  
can be useful to bound the output bandwidth demands for some applications. For 
detection-oriented analysis, predicates that recognise interesting patterns can first be 
applied to the time series to distinguish important data sequences from less important 
ones, and then a higher sample rate can be applied to the more important data segments. 
This sampling theme belongs to stratified sampling, as it first decides strata of data with 
different characteristics and then samples each stratum with a different sample rate. 

5.3 Rules for equivalence in quality 

Some monitoring applications may employ sophisticated rules to define quality 
equivalence among tuples. For instance, given a data source that contains sensed 
information from many distributed sensing devices, the application may treat tuples 
equivalent in quality if they come from devices that are ‘close’ in physical and temporal 
distance and in sensing capacity. Reasoning on the closeness and similarity of the 
properties of the data is domain specific. 

5.4 Framework extensions 

We capture the diverse range of group-aware filters with a taxonomy (Li, 2008) of filters, 
based on how candidate sets should be computed, how outputs are selected and the 
dependency of candidate sets. Our framework provides many mechanisms for 
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applications to flexibly extend the two-stage process for group-aware filtering. First, 
applications can specify their filtering needs based on customisation of distance, 
membership and aggregate functions that system library provides, or based on  
self-defined domain-specific functions uploadable from uniform resource identifiers 
(URI) specified in the subscription file. We use object-oriented programming model to let 
applications extend the filtering procedures and interfaces flexibly. For example, we 
allow each filter to extend the basic group-aware filter’s isAdmisible method to apply 
domain-specific functions in candidate admission. Second, our group-aware filtering 
service dynamically invokes pertinent group-aware filtering algorithms based on the 
applications’ specifications. For instance, if the applications specify that the filter’s 
candidate sets are dependent on one other, we invoke the per-candidate-set based 
algorithm, rather than the region-based algorithm. Finally, we expand the classic  
hitting-set problem and solutions for filters that need to select more than one output from 
each candidate set (Li, 2008). 

Figure 13 Multi-modal sensing with group-aware filtering (see online version for colours) 
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5.5 Benefit for multi-modal sensing: an application scenario 

The benefit of group-aware filtering may go beyond bandwidth savings. For example, 
Figure 13 depicts a scenario of a wireless surveillance system in which low-cost sensors, 
such as motion or seismic sensors, are bundled with a high-cost imager and deployed at 
the same site for remote monitoring. Such multi-modal sensing has shown an interesting 
balance between cost and functionality (Kulkarni et al., 2005; Ploetner and Trivedi, 
2006). 

The low-cost sensors can sample the targeting environment at a high rate to serve 
multiple surveillance applications. DC filtering and stratified sampling are both 
applicable for the surveillance application domain. Next, the output of the filters of the 
cheaper sensors is temporally correlated with the images taken by the high-resolution 
imagers to select the most informative images to send over the network to preserve 
network bandwidth. If we apply group-aware filtering to the filters, it will explore 
opportunities to reduce the output of the filters. The smaller the size of the output of the 
filters of the sensors, the smaller the number of the images selected to transport to remote 
applications. In this sense, we call the output from the filters of the low-cost sensors the 
‘index’ for selecting data from the imagers. Imagine that we deploy such a sensor-imager 
bundle on a mobile robot for territory exploration; the indexing data may trigger cameras 
to take pictures. Thus it can potentially save the battery power needed for the robot to 
take the pictures and transmit them. It also saves space to store those images at the site in 
case of temporary network disconnection for delay-tolerant monitoring applications. 

6 Related work 

Our work exploits the semantics of a stream processing application to improve resource 
management in a distributed dissemination system. IBM’s Gryphon (Strom et al., 1998) 
also leverages the semantics of subscribing applications to compress a sequence of data 
updates that have the same effect on applications’ ultimate states. Zhao and Strom (2001) 
propose a special rule-based language to specify an application’s sophisticated processing 
needs, specifically, the semantic equivalence of outputs to a remote application in face of 
retransmitted and disordered data. Rather than using a complicated language to describe 
the needs, our implementation provides a simple framework with customisable filters and 
functions to facilitate applications to describe the approximate nature of their filtering 
requirements. 

Bandwidth-reduction mechanisms, such as sampling, summarising, and filtering, have 
been actively studied in recent years in the systems community (Babcock et al. 2002b; 
Chaudhuri et al., 1999; Mitchell, 1996). Most of the mechanisms are discussed in the 
context of a single streaming application. Only a few research efforts have looked into 
group optimisation for streaming applications, but these mechanisms are either based on 
traditional compiler rewriting techniques, or the simple grouping of stateless filters 
(Aryangat, 2004; Chen et al., 2000; Cheng et al., 2005; Madden et al., 2002; Olston et al., 
2003). When data reduction is based on simple filters, grouping the filters for evaluation 
of common sub-expressions in the filters has been shown to save CPU time (Madden et 
al., 2002; Olston et al., 2003). We have different objectives for our filtering; the goal of 
our work is to trade computation time for savings in communication. 
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Johnson et al. (2005) summarised a general structure for sampling operators. The 
structure also contains candidate set admitting and output deciding stages, as we propose 
for the general group-aware filtering process. If we see the group-aware filtering from a 
sampling point of view, our algorithm is a special kind of sampler in that it picks an 
output from a candidate set of outputs 20 for each filter. But our process involves 
coordination across a group of applications, which never occurs in Johnson’s  
single-application sampling. 

7 Summary 

This paper provides a general framework that gives a complete treatment to the  
group-aware filtering problem. We formally define the optimisation problem in  
group-aware filtering for continuous data streams, and prove its NP-hardness. We treat 
data quality management as the ultimate guidance to group-aware filtering: all our 
proposed heuristics-based algorithms for preserving bandwidth are subject to meeting the 
data granularity and timeliness requirements of the filters. We show that the group-aware 
filtering process is general enough to go beyond simple DC filters, and supports many 
sophisticated data filters such as stratified sampling. We demonstrate the effectiveness of 
our algorithms with an implemented system for disseminating real-world data sets. The 
encouraging results show that group-aware filtering is a quality-managed tool useful in 
exploring further opportunities to preserve bandwidth for data dissemination in  
low-bandwidth networks. More in-depth evaluations for group-aware stream filtering can 
be found in Li’s (2008) thesis. 
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Notes 
1 Here we represent each tuple as a single integer; in reality, each tuple may have several fields, 

but for simplicity we represent each by the value of its ‘temperature’ field since it is that field 
that is used for filtering. 

2 http://www.emulab.net is a cluster for distributed-systems research 
3 http://cens.ucla.edu 

Appendix A 

NP-hardness proof for group-aware stream filtering problem 

Here we prove that the group-aware stream filtering problem defined in Section 3.1 is 
NP-hard. 

Theorem 1: Group-aware stream filtering is NP-hard. 

Proof: We prove this property by reducing the problem to the minimum hitting-set 
problem, which is a classic NP-hard problem (Cormen et al., 2001). 

Consider a special instance of the group-aware filtering problem in which each filter Fi  
has exactly one reference point and thus exactly one candidate set icands  for input 
stream S. Suppose we have n  filters, so there are n  candidate sets to choose output 
from. Since each candidate set is a subset of the tuples in S, this problem has a solution if 
and only if the minimum hitting-set problem with these n  sets has a solution, that is, the 
output O of the minimum hitting-set problem makes sure that every of the n  sets 
intersects with (or ‘hits’) O and O’s size is smallest among all solutions. 

Appendix B 

Definition and properties of region-based stream segmentation 

The following definitions and properties lead to the definition of region. Later, we prove 
two important properties of region-based stream segmentation. 

Definition 1: A time cover, ,TCi  of a candidate set i  is [min{ |∀ j jt t  is time stamp of 
tuple j  in candidate set },  max{ |∀ j ji t t  is time stamp of tuple j  in candidate set }].i  

Axiom 1: Time covers of a filter’s candidate sets do not intersect. 

Axiom 2: Different regions’ time covers do not intersect. 

Proof: We prove it by contradiction. Suppose the time covers of two regions, A and B, 
intersect. It is easy to see that at least one candidate set, say 0cands  in B, is connected 
with a candidate set in A. Then adding a new candidate set 0cands  to A will still make A 
a region, which directly contradicts the assumption that A is a maximum collection of the 
connected candidate sets. 
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Definition 2: If A and B are candidate sets from two filters, and the time covers of A and 
B intersect, we say A and B are connected. 

Definition 3: If A and B are connected candidate sets and B and C are connected 
candidate sets, we deem A and C to be connected. 

Definition 4: A region is a maximum family of candidate sets such that each set is 
connected with every other in the family. 

Definition 5: A time cover for a region is the union of all time covers of the candidate sets 
contained in the region. 

Theorem 2: Given an input time sequence S, applying a divide-and-conquer approach for 
the group-aware filtering with region-based segmentation of S will not affect the 
optimality of the solution. 

Proof: We need to prove that a set-union of the optimal solutions from each region on the 
input stream S is an optimal solution for S. We prove it by contradiction: that is, we 
suppose the opposite is true: given a total of n  regions on S, and each region has an 
optimal solution ,Oi  the cardinality of the optimal solution O’ of S is smaller than the 
size of the set-union U of all ,Oi  thus U is not an optimal solution for S. Now we divide 
O’ into n  distinctive subsets such that each subset is a group-aware filtering solution on 
each region, that is, each subset is a hitting set of a region. 

To find such n  subsets, we can first initialise n  empty auxiliary sets, one for each 
region; then, for each tuple in O’ that is contained by one of the candidate sets in a 
region, we put it in the auxiliary set of that region. We can see each tuple fall into exactly 
one auxiliary set; otherwise if a tuple belongs to two auxiliary sets, then there must be 
two candidate sets from two different regions containing the tuple, which means that the 
two candidate sets are connected and thus belong to the same region, which contradicts 
the assumption that they are from two different regions. In the end, we get n  distinct 
subsets of O’ in the auxiliary sets. We can prove that each auxiliary set is a hitting-set 
solution to its corresponding region. We prove it by contradiction. Suppose the opposite 
is true: that is, at least one candidate set in a region does not intersect with (‘hit’) the 
auxiliary set corresponding to the region. We know none of the other auxiliary sets hit 
this candidate set, otherwise there must be a candidate set in another region that intersects 
with this candidate set, which means that they are connected and are in the same region, 
which reaches a contradiction to our assumption. 

As the size of O’ is smaller than that of U, there must be at least one of the n subsets 
of O’ whose size is smaller than that of the optimal solution Oj  of that region, which 
contradicts the optimality of Oj  for the region. 

For heuristics-based algorithms, we prove that region-based segmentation preserves 
the approximation ratio of the sub-optimal solution. 

Theorem 3: Region-based segmentation preserves the maximum approximation ratio of a 
heuristics-based algorithm. That is, given an input source segment S, which is segmented 
into n  regions, if a heuristics-based algorithm has approximate ratio 1 2, ,..., nr r r  on each 
region respectively, the approximation ratio r  of the algorithm on the overall segment S 
satisfies the property that 1 2max( , ..., ).≤ nr r r r  
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Proof: Suppose 1 2max( , ,..., ),  1 ,≤ ≤i nr = r r r i n  that is, the approximate ratio of the 
algorithm in the thi  region is the biggest among approximate ratios of all regions. 

According to the definition of approximation ratio, 
'

,  1 ,
O
O

= ≤ ≤j
j

j

r j n  where Oj  is the 

size of the optimal solution on the thj  region, and 'Oj  is the size of the sub-optimal 
solution produced by the heuristics-based algorithm on the thj  region. According to the 
assumption that ir  is the bigger than the approximate ratio of any other region, we get 
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