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Group-aware stream filtering for bandwidth-efficient data
dissemination

Ming Li* and David Kotz

Department of Computer Science, Institute for Security Technology Studies,
Dartmouth College, Hanover, NH 03755, USA

(Received 14 May 2007; final version received 31 October 2007)

In this paper, we are concerned with disseminating high-volume data streams to many
simultaneous applications over a low-bandwidth wireless mesh network. For
bandwidth efficiency, we propose a group-aware stream filtering approach, used in
conjunction with multicasting, that exploits two overlooked, yet important, properties
of these applications: (1) many applications can tolerate some degree of ‘slack’ in their
data quality requirements, and (2) there may exist multiple subsets of the source data
satisfying the quality needs of an application. We can thus choose the ‘best alternative’
subset for each application to maximise the data overlap within the group to best benefit
from multicasting. An evaluation of our prototype implementation shows that group-
aware data filtering can save bandwidth with low CPU overhead. We also analyze the
key factors that affect its performance, based on testing with heterogeneous filtering
requirements.

Keywords: data filtering; data dissemination; overlay multicasting; bandwidth
reduction

1. Introduction

Recent years have seen a new class of applications that need to monitor and adapt

to continuously changing ‘context’. Context is any information that can be used to

characterise the situation of entities and is commonly expressed as location, time,

environmental status, and other resources nearby. Monitoring applications for scientific

study or emergency response purposes are context-aware applications and need to

continuously stream fine-grained data from sensor-empowered context sources. For

example, marine biologists may need to get high-resolution chlorophyll readings of a

contaminated river for scientific analysis; alternately, predicting a fire’s spread in an

emergency requires fast-rate temperature, wind direction and wind intensity data feeds

from the sensor networks deployed on the scene.

To disseminate high-volume data for monitoring applications may not be a big

challenge for bandwidth-abundant wired networks. Since the monitoring for many

scientific studies or for emergency response happens in an outdoor environment,

deploying a wireless network is often more cost-effective than deploying a wired one for

data dissemination. On the other hand, it is well recognised that the effective bandwidth of

a congested wireless network is usually much lower than its link capacity. Hence, the
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challenge is to satisfy the high-volume data acquisition needs of the applications in

bandwidth-constrained wireless networks.

Two main approaches have been proposed to tackle the problem. One is to eliminate

redundant communications with multicast protocols, when disseminating common data to

multiple subscribers. The other is to reduce the data at a context source, by applying

application-specific filters at the source node to select only those tuples ‘important’ for

meeting the applications’ data-quality requirements. Since, source-sharing applications

may use context source in different ways, filters deployed at the same source may select

different portions of the source data. If there is sufficient overlap of the data selected by the

filters, we can still multicast the data to further reduce bandwidth demands. Thus, at the

source node, we multiplex the filtered streams to form a multicast stream. Figure 1 shows

this process: two applications, A and B, share the same context source kD1, D2, D3, . . . l,
but each application’s filter selects a different subset. The multicast protocol allows us to

label each tuple with the list of the applications that should receive that tuple; thus each

tuple is transmitted at most once on any link.

We here propose a solution that combines multicasting and filtering for context

streams. In contrast to self-interested filtering, which only considers each individual

application’s needs, we propose group-aware stream filtering that considers the needs of

individual applications, as well as those of other subscribers. The result of this ‘group-

aware stream filtering’ satisfies all subscribers’ data requirements and simultaneously

ensures maximum data sharing among the subscribers to make the best use of a multicast

protocol in saving bandwidth. Our work makes use of two overlooked, yet important,

properties of context-aware applications: (1) many applications can tolerate some degree

of ‘slack’ in their data quality requirements, and (2) there may exist multiple subsets of the

source data satisfying the quality needs of an application. We can thus choose the ‘best

alternative’ subset for each application, maximising the data overlap within the group to

best benefit from multicasting.

Figure 1. Multiplexing filtered streams for multicasting.
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In the paper, we describe the following contributions of this work.

. Our approach uses multicast protocols in concert with data filtering to reduce

unnecessary data traffic, which is crucial for a wireless dissemination system to

support large-scale context sharing. The core of our approach is to exploit semantics

of applications to reduce data communication. We treat saving bandwidth a goal as

important as providing data to satisfy applications’ quality needs.

. We developed a framework that encapsulates the general idea of group-aware

filtering.

. We built a prototype system for evaluation. Our experiments with filters having

diverse quality requirements show that this approach can effectively save

bandwidth with low CPU overhead. We also analyzed the key factors that affect the

performance of our approach.

In the rest of the paper, we first describe, in Section 2, the basis for group filtering, and

introduce our framework for the group-aware stream filtering in Section 3. In Section 4, we

discuss our evaluation of this concept based on a prototype implementation. We discuss

related work in Section 5 and conclude in Section 6, with a description of future work.

2. Two key observations

In this section, we make two key observations about stream filtering for context-aware

applications. The observations motivate our ‘group-aware stream filtering’ approach

detailed in the next section.

2.1 Quality requirements of stream filtering

The goal of stream filtering is to select an ‘important’ portion from a streaming data source

according to the specific needs of an application. The result of this filtering reflects an

applications’ desirable data quality, which is normally measured as the accuracy,

granularity, timeliness, or completeness of the data. For example, an application would

like to get a temperature reading of a place whenever the reading has changed by n

degrees. This n-degree data granularity requirement can be enforced by a ‘delta-

compression (DC)’ filter that compresses the streaming data at ‘delta’, in this case n unit,

intervals.

2.2 First observation

The first key observation we made about the context-aware applications is that they may

tolerate some degree of ‘slack’ in their data quality.

Consider a temperature source and DC filtering for example. Given a time-ordered

9-tuple sequence from the source, k0,35,29,45,50,59,80,97,100l1, the output that satisfies

compression at 50-unit granularity will be k0,50,100l. We recognise that applications may

find it harmless to tolerate a small deviation from the ideal compression granularity in the

output. For instance, the application may be able to tolerate a maximum of 10-degree

‘slack’ with regard to its ideal 50-degree granularity requirement.

2.3 Second observation

Our second observation is that more than one sequence from a data source can potentially

satisfy an application’s approximate quality requirements.
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In the previous example, if the application tolerates a maximum of 10-degree slack in

the 50-degree compression granularity, it is easy to validate that the following sequences

satisfy the approximate granularity requirements as well: k0,45,100l, k0,59,100l, k0,50,97l,
k0,45,97l, k0,59,97l.

2.4 Group-awareness

Let us call the above DC application A. Suppose application B shares the same source

as A and tolerates a maximum of 5-degree slack in a 40-degree compression granularity.

By the above definitions, it is easy to validate that the following sequences satisfy B’s

requirements: k0,45,97l, k0,50,97l, k0,50,100l, k0,45,100l.
Individually, A may choose k0,59,100l as its output; B may choose k0,45,97l as its

output. This makes a total of five tuples to output when multiplexing the output streams for

multicasting. If A and B are aware of each other’s filtering needs, and both decide on, say

k0,50,97l, as their individual output, then only three tuples need to be multicast to A and

B to satisfy both filtering requirements. In effect, the ‘group-awareness’ reduces the

bandwidth demand by two tuples.

3. Framework for group-aware stream filtering

In this section, we formally define the problem the group-aware stream filtering tries to

solve and show a general group-aware filtering algorithm whose basic idea we have briefly

shown in the previous example.

3.1 Definition of the problem

We formally define the group-aware stream filtering problem as the following optimisa-

tion problem.

Consider a source stream S and n filters Op1, Op2, . . . , Opn deployed at the source node

for n subscribing applications Application 1, Application 2, . . . , Application n,

respectively. Filters process source data in time-progressive batches or data windows.

An output of a filter is a time-ordered sequence. For simplicity, we assume the timestamp of

each tuple in the sequence is unique and thus the output can be represented as a set of tuples.

We define the set that contains all satisfying outputs of Application i based on a data window

Sw , S as PotentialOuti ¼ {S0jS0 # Sw, S0 satisfies application i’s quality requirements}.

The goal of group-aware filtering is for each Opi to pick an element outi from

PotentialOuti(i ¼ 1, . . . , n) such that jout1
S

out2 . . .
S

outnj is minimised (see Figure 2).

3.2 Framework for group-aware stream filtering

Saving bandwidth is important to satisfy long-running applications’ quality needs and for

the system to scale well to a large number of co-existing applications that may cooperate

for a common mission. Thus, applications deployed in a wireless bandwidth-conscious

network are motivated to expose their approximate data needs for the system to reduce the

overall bandwidth demand. Each application may reveal ‘quality-equivalent’ candidates

for each of its outputs. One way to specify quality equivalence is via a ‘reference point-

based’ approach. We define reference points as the output that a self-interested filter would

normally produce. Then, applications can define a ‘slack’ of a reference point to include all

adjacent data points that are within ‘slack’ units away from the reference point as its

candidate set. For instance, in the 50-degree DC example mentioned in Section 2, the
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reference points of the 9-tuple sequence are 0, 50, and 100. If the application has a

10-degree ‘slack’, we can identify the candidate replacement for each reference points by

computing the contiguous range of tuples before or after the desired reference points, as

long as each value is no more than 108 below or above that of the reference point. For

instance, 50 now has a candidate set consisting of 45, and 50.

In our framework, applications can declare quality ‘slack’ with distance or

membership functions. In the DC example, a numeric temperature difference defines

the slack. In a location trace, for example, the distance function may be the Euclidean

function involving two or three attributes that describe a location. In general, a distance

function can be applied to any state information computed based on multiple attributes

of tuples. If a data stream represents observations made by many sensing devices, an

application may declare a membership function that defines equivalence of the

observations made by different devices if they are close in sensing location, time, or

capacity.

We abstract the group-aware filtering process into the following continuous two-stage

process at each filter.

1. First stage. Compute a candidate set: select a set of candidates, i.e. tuples that can

potentially satisfy the data quality requirements of the application. Communicate

the candidate set to other source-sharing applications via global state.

2. Second stage. Decide the output: with reference to the global state, pick a subset of

tuples from the candidate set for output. Communicate the choices via global state.

A group-aware filtering manager maintains and coordinates the filtering of all the

filters in a group. First, it instantiates each filter according to its specification from each

application. A filter specification specifies the type and parameters of the filter, and how its

internal state should be initiated. Then the manager uses a global object globalState to

coordinate the filtering of data stream S with the procedure GROUPAWARE-STREAM-

FILTERING shown in Figure 3. The global state mainly consists of (1) the group utility of

each tuple, which counts how many applications have the tuple in their candidate set, and

(2) data-for-multicast which records each application’s chosen outputs that have not yet

been multicast. Each filter uses its isAdmissible (line 4) method to decide whether a tuple is

admissable to its candidate set. If so, the tuple is added to the candidate set (line 6), and the

tuple’s group utility is updated in the globalState (line 8). Next, the manager checks if the

Figure 2. Group-aware stream filtering problem.
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filter’s candidate set is closed (line 9). If so, referring to the group utility, the filter decides

its output (line 11), which is later reported to the globalState (line 13).

3.3 Diverse filters

This two-stage group-aware filtering process supports a variety of filtering needs of

monitoring applications.

DC filtering captures a variety of data-granularity needs. In the motivating example,

the state used for filtering is the value of the attribute ‘temperature’. If the application is

interested in the changing rate or ‘trend’ of the temperature values, the filter computes the

ratio of the change of temperature to the change of the timestamp. If a data stream consists

of readings from multiple sensors of similar sensing capacities deployed in close vicinity,

an application may be interested in the change of the ‘averaged’ readings from those

sensors.

Our framework supports filters beyond the DC filtering theme. Many exploratory data-

analysis applications may deploy sampling methods to choose a small set of data to derive

properties about the whole population. The notion of candidate sets is inherent in many

commonly-used sampling methods, such as reservoir sampling, subset-sum sampling and

stratified sampling (SS) [9]. For example, reservoir sampling chooses a fixed number of

samples from a given population. Each tuple in the result can be replaced randomly by

another tuple in the population. In this case, the candidate set of each output tuple is the

complete batch. Different from DC filters, it chooses multiple (a fixed number) tuples,

rather than just a single tuple, from a candidate set. Reservoir sampling can be useful to

bound the output bandwidth demands for some applications. For detection-oriented

analysis, predicates that recognise interesting patterns can first be applied to the time series

to distinguish important data sequences from less important ones, and then a higher sample

rate can be applied to the more important data segments. This sampling theme belongs to

SS in statistics, as it first decides strata of data with different characteristics and then

samples each stratum with a different sample rate. Our group-aware filtering framework

supports sampling filters too: sampling filters can increment the group utility of each tuple

while building the candidate sets (here, candidate sets are data strata). When sampling the

Figure 3. Group-aware stream filtering algorithm.

M. Li and D. Kotz434



candidate sets in the second stage, sampling methods account for the data already chosen

by other applications in the group by seeking tuples with top-n (n is the desired sample

size) group utilities.

3.4 Software architecture

The software architecture of the framework shown in Figure 4 consists of the following

modules: (1) the quality specification manager, which facilitates applications to specify

their data quality needs with a library of common predicates, distance functions and

member functions, (2) the group-aware filtering manager, which coordinates a pool of

filters for group-aware filtering, (3) a global state manager that maintains the state

information shared by the filters, and (4) an output scheduler that merges the output chosen

by each filter into the multicasting format before invoking the overlay multicasting

protocol. The scheduler decides when to merge and multicast the filter outputs. It monitors

the data filtering progress via the global state manager, and may periodically schedule

outputs for multicasting. For instance, the output scheduler may wait for a fixed number of

tuples before multicasting. For filters with latency constraints, the scheduler also needs to

trigger merging of the output before violating any of the constraints. At the time of the

scheduling, it may be the case that not every filter’s candidate set is completed. In those

cases, the scheduler signals via the global state manager the filters to decide outputs based

on their current candidate sets. For simplicity, in our current implementation, the output

schedule schedules a group output for every batch of input tuples.

4. Evaluation

The main goal for our evaluation is to see how well group-aware filtering works in

comparison to self-interested filtering, with stream data collected from real sensor

Figure 4. Framework for group-aware stream filtering.
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deployments. We also analyze the key factors that affect the performance of the group-

aware filtering.

4.1 Prototype system

We implement and integrate the group-aware filtering prototype with Solar [5], a general-

purpose data dissemination system developed at Dartmouth College. The core of Solar is a

p2p overlay infrastructure where each overlay node supports a suite of data-dissemination

services, such as naming, data fusion, and multicasting. We package the group-aware

filtering as a new service, working together with Solar’s basic services on each overlay node.

Solar uses a content-based publish/subscribe model for flexible and scalable data

dissemination. Publishers of context sources in Solar are called ‘sources’ and applications

can ‘subscribe’ to sources in Solar to get the desired context information. Solar also allows

an application to specify data operators, such as filters, to pre-process the source data.

For our testing, we replay real data traces as Solar sources and let a group of

applications subscribe to the sources. Each subscribing application specifies a filter for its

processing needs. The group-aware filtering service then deploys, according to a filter’s

type and quality requirements, a group-aware filter object on the source node. The union of

the output of all source-sharing filters is published via Solar’s overlay multicasting service

to the remote applications.

4.2 Data sources

We chose data from real deployments of sensing devices for which the data stream has a

sub-second data rate, so filtering is necessary and saving bandwidth for dissemination of

the data is important.

The Networked Aquatic Microbial System (NAMOS) of the CENS project at UCLA2

deployed embedded and networked sensors in Lake Fulmor for a marine scientific study

during August 2006. The water was monitored by an array of thermistors and fluorometers,

among others, installed on buoys of the lake. The data traces have data rates of about 10 ms

per measurement and contain more than ten thousand measurements. These measurement

traces make ideal data sources for our testing. Each NAMOS buoy trace tuple contains six

temperature readings (we call them ‘thermo’ readings), one reading from a fluorometer

(we call it the ‘fluoro’ reading), a timestamp, and some other weather-related readings.

We create a source in Solar that replays the NAMOS buoy trace at about 10 ms per tuple,

observing the original time intervals of the trace data.

4.3 Filters for testing

The goal of the NAMOS buoy deployment is to help marine biologists to collect multi-scale

high-resolution information, such as the spatial and temporal distribution of the chlorophyll

level in the lake, for scientific analysis. Using DC filters or sampling filters is a valid way

to enforce multi-scale granularities of the collected buoy data for these applications.

Table 1 lists the types of filters used for our testing. We notate a filter type with a type

name followed by a set of parameters enclosed in a pair of parentheses. The first three

types, DC1, DC2 and DC3, and use the DC theme and they vary from one another by how

a candidate set is computed. DC1 filters monitor the change of a single attribute. It has

three parameters: attribute name, delta and slack. DC2 filters monitor the change of the

‘trend’ of an attribute. The trend reflects the change of an attribute over a unit of time. It has

three parameters similar to those of DC1. DC3 filters monitor changes in the average of
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three attribute values. It has five parameters: three attributes used for averaging, and the

delta and slack for delta compression. The last type stratified sampling (SS) filters differs

from the previous three types mainly in the second processing stage: the number of outputs

(or sample rate) are determined by the candidate set’s sample range. Sample range is the

interval between the max and min value within a set of values. If the filter uses a fixed time

interval to segment the time series, the sample range reflects the dynamics of the attribute

within the interval. For applications sensitive to the dynamics of state change, it is

reasonable to sample a time segment with high dynamics using a high sample rate. Thus,

the parameters of SS filters are the attribute of interest, a threshold value that determines

whether an interval is highly dynamic, a sample rate (percent of tuples) for more dynamic

time segments, and a sample rate for less high dynamic intervals.

4.4 Metrics

The metric we use to measure the benefit of our group-aware filtering approach is the

output ratio, defined as the total number of tuples output by the group-aware filtering over

the total number of tuples output by self-interested filtering. It measures the extent to

which the group-aware filtering can reduce the bandwidth demand compared with the

self-interested filtering. The lower the output ratio, the more efficient group-aware filtering

is in saving bandwidth. When the ratio is one, that means group-aware filtering did not

reduce bandwidth beyond self-interested filtering.

We measure the cost of filtering in terms of the average CPU cost for processing each

batch of tuples. We compute the overhead ratio, which is defined as the cost of running

a group of group-aware filters over the cost of running a group of corresponding

self-interested filters. The computer used for this testing is an Apple PowerBook with

1.67 GHz PowerPC G4 and 1 GB memory. Our code is written in Java and ran with Java

1.4.2 on Mac OS 10.4.9.

To get some basic ideas on the performance of group-aware filtering with the NAMOS

data traces, we made ten groups of filter specifications, as shown in Table 2.

Each of the first seven groups contains three filters of the same kind; each of the

remaining three groups contains three heterogeneous filters. Recall that each filter selects

data based on some feature or internal states computed upon the time series. The DC type

filters select candidates based on state change between two tuples. The Average State

Table 1. Types of group-aware filters for evaluation.

Filter type Select candidates based on Decide output

DC1(attrib, delta, slack) Change of attrib between
delta-slack and deltaþslack

Choose any one tuple

DC2(attrib, delta, slack) Change of trend (attrib)
between delta-slack and
deltaþslack

Choose any one tuple

DC3(attrib1, attrib2,
attrib3, delta, slack)

Change of average (attrib1,
attrib2, attrib3) between
delta-slack and deltaþslack

Choose any one tuple

SS (attrib, timeInterval,
threshold, highSmpIRt,
lowSmpIRt)

Change of timeStamp within
timeInterval

Choose any n% of the tuples, where
n ¼ highSmpIRt, if sampleRange
(attrib) is no less than threshold; or
n ¼ lowSmpIRt, if sampleRange
(attrib) is less than threshold
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Change (ASC) of a time series is the averaged state changes over the time series.

We compute the ASC for the relevant attributes of each DC filter. We set the delta values

no smaller than the ASC to prevent the filter from removing nearly no tuples, in which case

filters may not be useful for compression. Specifically, we assigned ASC, 2 ASC and a

value randomly generated between ASC and 2 ASC to be the delta values of the filters in

the DC groups. For example, we measured the ASC of thermo4 in the trace, which is

0.031. Then we set the delta values of the filters in group four to be 0.031, 0.062 and 0.048

for each filter respectively. The slack value of each DC filter was set to be 50% of the

corresponding delta value. Setting the slack more than 50% might cause a tuple to be part

of more than one candidate set for a filter.

Figure 5 shows the results. We compute the output ratio for each batch of 100 tuples

and then compute the average and median of the output ratios across all batches. For eight

out of the ten groups, the average output ratios were less than 80%, i.e. the group-aware

filtering can reduce the bandwidth demand to 80% of the bandwidth demand of self-

interested filters.

Table 3 shows the average CPU costs of the test, and Figure 6 shows the ratio of CPU

time for group-aware filtering to CPU time for self-interested filtering. In general, the

group-aware filtering is more complex than self-interested filtering, as it involves group

coordination. It is not surprising, therefore, that some of costs were more than double. For

groups with simple filters, such as DC1 and SS filters, the absolute costs were all below

35 ms per batch. For groups with more complex filters, such as DC2 and DC3, the cost

increased both for group-aware filters and self-interested filters, due to the more complex

computations. It may also be due to our unoptimised Java implementation. In all those

cases, the CPU cost for processing a batch of 100 tuples were below 700 ms, that is, the

cost for processing each tuple was below 7 ms, which is less than the data arrival rate

(10 ms) and hence group-aware filtering will not cause congestion in these cases.

We also compare the incurred latency due to filtering with the multicast latency. We set

up five nodes on Emulab3 in a distributed hash table ring for Solar’s overlay multicast

network. The links connecting the nodes were set to be 5 Mbps, a typical throughput for

Table 2. Specifications for ten groups of filters.

Group Filter 1 Filter 2 Filter 3

1 DC1 (fluoro, 3.012, 1.506) DC1 (fluoro, 7.024, 3.012) DC1 (fluoro, 5.000, 2.500)
2 DC1 (thermo2, 0.0230,

0.0115)
DC1 (thermo2, 0.0464,
0.0230)

DC1 (thermo2, 0.0315, 0.0107)

3 DC1 (thermo4, 0.0310,
0.0155)

DC1 (thermo4, 0.0620,
0.0310)

DC1 (thermo4, 0.0480, 0.0240)

4 DC1 (thermo6, 0.0250,
0.0125)

DC1 (thermo6, 0.0500,
0.0250)

DC1 (thermo6, 0.0345, 0.0172)

5 DC3 (thermo2, thermo4,
thermo6, 0.0300, 0.0150)

DC3 (thermo2, thermo4,
thermo6, 0.0600, 0.0300)

DC3 (thermo2, thermo4,
thermo6, 0.0452, 0.0226)

6 DC2 (fluoro, 11.59, 5.79) DC2 (fluoro, 5.79, 2.89) DC2 (fluoro, 7.50, 3.75)
7 SS (thermo4, 1000,

0.1500, 50, 20)
SS (thermo4, 1000,
0.3000, 50, 20)

SS (thermo4, 1000, 0.2300,
50, 20)

8 DC1 (thermo4, 0.0300,
0.0150)

DC3 (thermo2, thermo4,
thermo6, 0.0300, 0.0150)

DC1 (thermo5, 0.0300, 0.0150)

9 DC1 (thermo4, 0.0300,
0.0150)

DC3 (thermo2, thermo4,
thermo6, 0.0300, 0.0150)

DC2 (fluoro, 3.00, 1.50)

10 DC1 (thermo4, 0.0300,
0.0150)

DC3 (thermo2, thermo4,
thermo6, 0.0300, 0.0150)

SS (thermo4, 1000, 0.1000,
90, 50)
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Table 3. Average CPU cost per batch of 100 tuples.

Group Group-aware (ms) Self-interested (ms)

1 28.03 10.46
2 28.86 10.4
3 22.20 13.36
4 26.45 14.95
5 386.00 260.44
6 684.75 334.50
7 31.00 14.90
8 21.92 11.82
9 32.29 14.35
10 41.76 16.30

Figure 5. Benefit of group-aware filtering. The smaller an output ratio is, the better the performance is.

Figure 6. CPU overhead ratios.
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802.11 b networks. We measured the average latency of multicasting the batch of tuples

between two nodes to be about 253.41 ms. Note that for wireless networks with effective

bandwidth lower than 5 Mbps and with more nodes, the multicast latency for multicasting

should be much longer. For simple filters, the incurred filtering latency per batch (,35 ms

for 100 tuples) was negligible compared with the multicasting latency ($253 ms). For

complex filters, such as D2 and D3 type filters, whose incurred latency was longer than the

multicasting latency, we can reduce the significance of filtering latency by letting the

output scheduler adjust the batch size for earlier outputs. We evaluate how the batch size

affected the cost below.

4.5 Factors affecting performance

Next, we look into the factors that affect the performance of group-aware filtering. Surely,

source data characteristics directly affect the result of each filter and thus, the performance

of the group-aware filters. Here, given fixed source data, we focus on the other factors that

affect the filtering performance. Those factors include (1) types of the filters in a

homogeneous group, (2) filter parameters, such as delta and slack values for DC filters,

(3) batch size, (4) number of filters in a group (group size), and (5) the composition of

filters in a heterogeneous group.

4.5.1 Filter type of a homogeneous group

In Figure 5, the first seven groups are homogeneous groups of seven different types, with

different output ratios. Although, the first four groups are all of type DC1, Group 1’s

output ratio was higher than the other three groups. The main reason is that Group 1 works

with the fluoro feature of the trace and the next three groups work with temperature. Group

1 and 6, both worked with the fluoro feature of the source trace, yet they computed

different internal states and thus the output ratios were different: about 10% difference in

the output ratio. Thus, the attributes that the filters work with fundamentally affect how

candidate sets are selected, and thus the output ratio of group-aware filtering.

4.5.2 Slack of a DC filter

Intuitively, when a DC filter has a larger slack, there are potentially more tuples in a

candidate set and thus it is more likely to find candidate sets that overlap with other filters,

and reduce the combined output set. We retested filters in Group 3 by varying their slacks

from 3 to 50% of the corresponding delta values. The results in Figure 7 confirm our

intuition. When the slacks were 20% of the corresponding delta values, the output ratio

was more than 90%; when the slacks increased from 20% of delta to 50% of delta, the

output ratio decreased from 90% to below 75%.

4.5.3 Delta of a DC filter

The delta value of a DC filter affects its filtering stride and thus the number of candidate

sets (NCS) it has for a fixed data sequence. In general, the bigger the delta value, the fewer

candidate sets can be found. Yet, a change in the delta value means changing the potential

overlap between candidate sets. It is equally likely for a decreased NCS of a filter to

increase or to decrease the total number of outputs of the group, depending on how the new

candidate sets relate to those of the other filters in the group.
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We explored this situation with a group of three DC1 filters working with the thermo4

attribute. We fixed the slack values at 0.0155 (or 50% ASC) for all filters. We fixed the

delta values for two filters at 0.0930 (2 ASC) and 0.01340 (3 ASC) and randomly

generated a number between 0.0310 (1 ASC) to 0.0930 (2 ASC) as the delta value for the

third filter.

Figure 8 shows the result of the test. We have a few observations. First, the curve is

mostly level with a few outliers. For example, the difference of output ratios was less than

5% for the delta values between 0.050 and 0.075. This difference was probably caused by

the big slack value of 0.0155; a large portion of the output tuples of the filter whose delta

value was changing were covered by the candidate sets of the other two filters. The sudden

increase of 20% in the output ratio when the delta changed from 0.045 to 0.049 can be

Figure 7. Slack’s effect on the performance of DC type filters.

Figure 8. Delta’s effect on the performance of DC type filters.
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explained by the fact that many of the output points of the changed filter moved out of

coverage of the candidate sets of the other two filters. This caused the total number

of output by the group (and the output ratio) to increase dramatically. Another effect of

increasing delta value is that the total number of output tuples by the corresponding

self-interested filter may decrease and if there is no change in the total output by the group-

aware filters, the output ratio may go up.

4.5.4 Group size

The number of filters in a group may also affect the performance of group-aware filtering.

We tested groups of DC1 filters working with the thermo4 attribute. For each group size

we generated 10 groups of DC1 type filters on thermo4 and we fixed the slack value to be

0.015. We randomly chose delta values from the range of 0.031 (1 ASC) to 0.186 (6 ASC).

We averaged the output ratios across the ten groups for each group size. We varied the

group size from 3 to 20. Figure 9 shows the results in box-plot, which plots the statistic

summary of the median, maximum, 25%, 75% quartile and minimum output ratio of the

ten tests of each group size. The circles represent outliers.

Overall, there is a downward trend in the median of the output ratios for the results:

that is, adding more applications to the group seems to decrease the output ratio, because

the increase of the total output tuples due to adding new filters was smaller than the

increase in overlap among candidate sets. The large slack value of 0.015 made the

candidate sets of newly added filters easy to overlap with those of other filters in the group.

Group size also affected the CPU cost of the filtering. Figure 10 shows a roughly linear

increase of CPU cost per batch of 100 tuples when we increased the number of applications

in the group from 3 to 20, both for group-aware filtering and for self-interested filtering. The

group-aware filtering required about double the CPU cost as self-interested filtering, due to

the complexity of group coordination. The CPU cost for any of the groups was less than

61 ms, however, which was low compared with the latency of multicasting.

Figure 9. Group size’s effect on the performance of DC filters.
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4.5.5 Batch size

Batch size is the number of tuples to process before multiplexing the outputs for

multicasting. For simplicity, in our current implementation we fixed the batch size for each

test. Here, we examine how the batch size affect the performance.

We studied a group of three DC1 filters using Group 4’s specification one, varying the

batch size from 25 to 300. Figure 11 compares the CPU time per tuple of the group-aware

filtering with the CPU time for self-interested filtering. The group-aware filtering took

almost twice as much time as did self-interested filtering. The two curves are roughly

linear and roughly parallel. The CPU cost of group-aware filtering increased from 0.04 ms

to 0.25 ms when the batch size increased from 25 to 300.

Figure 10. Group size’s effect on the cost of DC filters.

Figure 11. Batch size’s effect on the CPU cost for Group 4.
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4.5.6 Group composition

The group composition also affected the performance. The last three groups in Figure 5 are

heterogeneous groups of filters. All three groups consisted of the same two filters,

DC1(thermo4, 0.0300, 0.0150) and DC3(thermo2, thermo4, thermo6, 0.0300, 0.0150), and

with a third filter different enough to make the output ratios quite different.

When we created a new group with three filters, DC1(thermo4, 0.0300, 0.0150),

DC3(thermo2, thermo4, thermo6, 0.0300, 0.0150) and SS(thermo4, 1000, 90, 50), similar

in composition as Group 10, we found that the output ratio jumped up to 0.9479

(not shown). The reason is that the different third filter accepted about 90% of all the

tuples. One ‘bad’ filter that needs almost all the tuples can immediately diminish the

overall benefit of using group-aware filtering.

4.6 Discussion

We get a glimpse of the performance of group-aware filtering from the above experiments

with a fairly diverse filters. In most cases, we found that the group-aware filtering could

reduce the bandwidth demand below 85% (or lower percent) of the original bandwidth

demand of the self-interested filtering. For simple filters, the CPU overhead was low and

negligible compared with the latency of overlay multicasting in a wireless network. We

conclude that group-aware filtering is likely to be a valuable approach for saving bandwidth.

Our experiments also reveal that it is, in general, hard to predict the performance

of group-aware filtering. The benefit of group-aware filtering ultimately comes from how

the candidate sets of the filters intersect with one another, which is subtly determined by

the compounded effect of filter types, group composition, and the delta values for the DC

filters, as well as the source data. Our experiments confirmed that increasing the slack in a

DC-type filter seems always to have a positive effect on the benefit of group-aware

filtering.

Our evaluation and analysis point to some interesting directions for improving the

system. Among all the factors we described, only the group size, group composition and

batch size may be adjustable by the system to enhance the performance. First, we need to

monitor the state changes in source data. This might help us to predict which filters have

high I/O ratios (defined as the ratio of the filter’s input and output). A group that includes

filter with high I/O rate means that most of the tuples in the source are needed for the output

and the group-aware filtering might not bring much benefit, yet its complexity might bring

unnecessary latency to the data. In those cases, it is desirable to separate those ‘bad’ filters

from the rest to reduce CPU overhead. Second, we also need to monitor the performance of

group-aware filtering to adjust the parameters of the filtering, such as group size. Third, we

need to develop strategies to (re)group the filters. Grouping affects the group size, which

negatively affects CPU overhead and in some case may violate the latency constraints of

some of the filters. Also, grouping applications according to their network topology may

help to save multicasting overhead due to simplified groups. Also, the batch size affects the

overhead of group-aware filtering. It is desirable for the output scheduler to dynamically

adjust the batch size, such that the incurred latency due to group-aware filtering will not

violate the time constraints of the filters. All of these optimisations represent future work.

5. Related work

Bandwidth-reduction mechanisms, such as sampling, summarising and filtering, have

been actively studied in recent years in the systems community [2–4,9,11]. Most of the

mechanisms are discussed in the context of a single streaming application. Only a few
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research efforts have looked into group optimisation for streaming applications, but these

mechanisms are either based on traditional compiler rewriting techniques, or the simple

grouping of stateless filters [1,6,7,10,12]. When data reduction is based on simple filters,

grouping the filters for evaluation of common sub-expressions in the filters has been shown

to save computation time [10,12]. We have different objectives; the goal of our work is

to trade CPU time for bandwidth savings. Dynamic code generation is used in Echo [8],

a high-performance publish-subscribe system, to generate filters that run 100 times faster

than those relying on virtual machines. It would be interesting to see how we can adopt this

technique for group-aware filters to meet applications’ time constraints.

Our work exploits the semantics of a stream processing application to improve

resource management in a dissemination system. IBM’s Gryphon [13] also uses the

semantics of aggregation functions of the application to compress a sequence of data into a

reduced sequence that will have the same effect on applications’ states. Zhao et al. [14]

propose a case-based language to specify an application’s sophisticated processing needs,

which identifies what sequences are semantically equivalent so that the system can re-

order sequences and compensate for data lost in the network. We have a different goal than

either project: rather than using a complicated language to describe the needs, we opt for a

simple framework with libraries of distance functions and member functions to let

applications describe the approximate nature of their data requirements.

Johnson et al. [9] summarised a general structure for sampling operators. The structure

also contains stages, as we propose. If we see our group-aware filtering from a sampling

point of view, our algorithm is a special kind of sampler in that it picks an output from a

candidate set of outputs. But our process involves coordination across a group of

applications, which never occurs in Johnson’s single-application oriented sampling.

6. Conclusion and future work

There is a well-recognised challenge faced by wireless data dissemination systems: how to

satisfy the high-volume data acquisition needs of outdoor monitoring applications with

bandwidth-limiting wireless transport. Resolving this challenge requires an aggressive

approach beyond traditional bandwidth-saving methodologies, such as multicasting and

self-interested filtering. At the application level, we exploit the approximate nature of data

acquisition requirements, and optimise the output for a group of context source-sharing

applications to reap further bandwidth saving with multicasting. We derive a general two-

stage process for this ‘group-aware filtering’ approach and our framework supports a wide

variety of data-filtering needs.

Our evaluation of a set of heterogeneous filters based on real sensor traces shows

encouraging results and reveals some key factors that affect the performances of the

group-aware filtering. The performance is affected by several factors, such as group

composition, group size and batch size, which may be adjustable by the system to enhance

filtering performance. Our future work mainly includes (1) developing an online

performance monitoring service for group-aware filtering, (2) developing strategies to

dynamically group and regroup filters based on topology or CPU cost and (3) developing

dynamic policies in the output scheduler to adjust the CPU overhead of group-aware

filtering to meet the time constraints of the filters.
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Notes

1. Here, we represent each tuple as a single integer; in reality, each tuple may have several fields,
but for simplicity we represent each by the value of its ‘temperature’ field since it is that field
that is used for filtering.

2. http://cens.ucla.edu
3. http://www.emulab.net is a cluster for distributed-systems research.
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