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Abstract— To make ad hoc wireless networks adaptive to differ- DSR and AODVs routing overhead dropped as the mobility
ent mobility and traffic patterns, this paper proposes an appoach  rate dropped. Lee et al. [17] compared ODMRP, AMRoute [4],
to swap from one protocol to another protocol dynamically, while CAMP [8], AMRIS [29], and flooding. They found that “in

routing continues. By the insertion of a thin new layer, we wee . .
able to make each node in the ad hoc wireless network notify @ Mobile scenario, mesh-based protocols (ODMRP) outper-

each other about the protocol swap. To ensure that routing wks ~ formed tree-based protocols (AODV)", but they also pointed
efficiently after the protocol swap, we initialized the deshation out that ODMRP showed “a trend of rapidly increasing
routing protocol’s data structures and reused the previousouting  overhead as the number of senders increased”. Nanda [20]
information to bU|_Id the new routing tabl_e. We also _tested ou compared LAR, MLAR, AODV and AOMDV in extensive
approach under different network topologies and traffic paterns . . - . "
in static networks to learn whether the swap was fast and whéter simulations in 2D and 3D mobility patterns gnd.found Q|St|nc
the swap incurred too much overhead. We found that the swap advantages for one protocol over the other in differentireda
latency was related to the nature of the destination protocband traffic and mobility conditions.
the topology of the network. We also found that the control  Ad hoc wireless network routing protocols are usually
packet ratio after swap was close to that of the protocol runing  givided into two groups: Proactive (Table Driven) and Re-
without swap, which indicates that our method does not incur . . . )
too much overhead for the swap. active (On-Demand)_ routing [26]. I_:’roactlv_e routmg pratisc
compute the routes in advance while reactive routing pasoc
|. INTRODUCTION compute the routes only when necessary. Both have advantage
A mobile ad hoc network (MANET) is a collection ofand disadvantages. Thus several hybrid routing protocls h
moving computers connected by wireless links. By routinigeen proposed to combine both proactive and reactive igutin
packets cooperatively among the nodes, these nodes can comedes [13], [21], [23]. The zone routing protocol (ZRP) [13]
municate with each other without any infrastructure. Thudjvides the network into overlapping, variable-size zones
ad hoc networks are often proposed for use in emergeriRguting within a zone uses proactive algorithms and routing
situations, such as disaster environments and military cdretween zones uses reactive algorithms. There are some othe
flicts. It is important that ad hoc networks should react thybrid routing algorithms that combine proactive and rizact
network topological changes and traffic demands quickly amauting algorithms, such as HARP [21] and SHARP [23]. To
efficiently, and respect the inherent bandwidth and energgduce overhead, these hybrid methods group nearby nodes
constraints [24]. Several projects compare the performarand use proactive routing algorithms within groups and use
of different ad hoc routing algorithms [20], [10], [5], [17] reactive routing algorithms between groups. Chen et al. [6]
They all found that each routing algorithm can outperformpproposed adaptive routing using clusters, which improves
the others in certain conditions, depending on the workloatiroughput by up to 80%. Belding-Royer et al. [3] proposed
terrain, network characteristics, or node mobility patter hierarchical protocols to reduce the overhead and gain more
Gray et al. [10] compared four different routing algorithmsscalability. However, since the technique uses highestlev
AODV [25], ODMRP [16], APRL [15] and STARA [11], [12]. topological information, the route to a destination migbt he
The authors used both simulations and real testbed expepptimal, and the extra topological information itself reggs
ments and found that under different wireless network condhore memory. Hoebeke et al. [14] proposed an adaptive multi-
tions the relative performance was not the same. For examptede routing algorithm. The implementation added a statist
ODMRP’s message delivery ratio is better than AODV's ratioal component at the network layer: they collected nontloca
outdoors, while AODV has a higher message delivery ratiiatistics through periodic broadcasting of a hello mesgag
indoors [10]. Broch et al. [5] compared DSDV, TORA, DSRheighbors. Their method improved efficiency by switching to
and AODV. They found that DSDVs routing overhead wadifferent protocols. To achieve this efficiency, howevéey
almost constant with respect to mobility rate while TORAintroduced many more components for the routing algorithm,
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which increased the complexity of the algorithm. Fig. 1. Modified SWAN System Architecture

A common aspect of previous efforts is to allow the routin Data Traffic AoDV | loDMRP! | APRL
algorithm to adapt by combining multiple protocols becaitise
is hard to come up with a routing protocol that is best for a I | |

situations. Our approach is to dynamically select one afehr Db _| Protocol Swap [ayé}" |
existing routing protocols rather than to create a new adapt Layer

routing algorithm. We aim to achieve better performance t IF° Fotwearditg
dynamically switching to the best protocol according torent | ik

wireless network conditions. In this paper we focus on th ARP | | \p, o Fhueicnt P hatacs 0
mechanism for switching protocols, rather than the polmy f | Layer A

choosing when to switch. Specifically, we develop and evaluz m]

a mechanism 1_‘or a network of n_odes to switch to a new routir 802.11 MAC Layer | i)
protocol. To simplify our combined method, we assume thi

we already know these existing protocols’ characteristosl
that some mechanism exists to choose the best routing jptota
based on the current network traffic pattern. We could use, f B02.11 Physical Layer |
example, Hoebeke’s method to gather statistics about murre
network traffic, identify the traffic pattern, and then sélac

proactive or reactive protocol accordingly. In ad hoc neksp virtual IP address associated with the tunnel network fatey,

each node acts both as a host and a router. We thus use the Igfj 5 physical IP address associated with the real network

“node” instead of *host” or “router”. We also use the two t&M;yarface in the node's IP forwarding table (Figure 1). Astir
“routing algorithm” and “routing protocol” interchangdgb

. i : X - the application sends packets using the virtual IP addréss o
In Section 2, we introduce three different routing algarit)

) : the desired destination node. Then the packets are fordarde
AODV, ODMRP, and APRL. We describe the d|fferenceﬁ) the UNIX device file through the IP tunnel. After that, the

amonlg th_ese (;hree protocols a_nd lcompare tE?'L performa%{:mng engine converts the virtual IP address to a physical
We also introduce SWAN, a simulator on w "; (;)ur EXPeIp destination address, and finds the physical IP address of
iments run. In Section 3, we propose a method t0 SWilGe eyt hop according to its routing table and pushes the
among the_ three roupng algorithms and. discuss the 'mplﬁéckets down to the IP layer. These packets with a physical
mentation issues Of_ t,h's app_roach. In Section 4, we explain qp 5 q4ress are forwarded to the real network interface dnste
experimental setup; in Section 5 we study the performance §fie virtual network interface. The original virtual-aedsed
this gpproach and in S_ect|on 6 we discuss t_he advantagespér&ket is thus wrapped in an IP packet addressed to the
Section 7, we summarize and draw conclusions. physical IP address of the next hop in the IP layer, in effect,
Il. BACKGROUND tunneling the virtual network into the physical network. &vh

. | h h Simul a packet arrives, the simulator notifies the routing engmeit,
We ran our routing protocols on the Dartmouth Simulalqp;g- eyent and then the routing engine unwraps the packet

for inreless "Aclj z_oc Networks (i"_"AN) [_28]‘| SWAN is built nd checks the virtual address to see whether the packet has
on the parallel discrete event driven simulator DaSSF [7r ached the destination or needs to be forwarded agairllyfina

which is ‘1 C++ implementationlof the. S::allable _Simulgti{o%hen a packet arrives at the destination, the simulatofiesti
F_ramewor (SSF) [27]. D"flSSF 1S particularly optlmlzg %he routing engine and the routing engine writes the packet
high performance when simulating large telecommumcatlc%

the UNIX device file for delivery to the application. The
stem can be used for both simulation as well as actual field
periments [10].

systems [18] since DaSSF is able to simulate a netwog
model that contains thousands of nodes. SWAN implemeré
two layers of the 802.11 protocol: a pseudo-protocol-sessi
for the physical layer and a protocol session for the MA@. Ad hoc On-demand Distance Vector Routing (AODV)

layer. SWAN also includes IP and ARP layers ported from the The Actcomm AODV implementation is an extension from
SSFNet [27] simulator code. A convenient feature of SWA'N']e Origina”y proposed AODV [25]’ addn’]g the broadcast
is that we can dynamically configure the protocol stack usingeLLO message. This implementation is capable of both
the DML language. The protocol stack of the whole systemnijcast and broadcast routing. There are four types of abntr

illustrated in Figure 1, is composed of five layers. Our mogti packets: RREQ, RERR, HELLO, and RREP. The first three
prOtOCOlS AODV, ODMRP, APRL are above the UDP |ayer. are sent by broadcast, while RREP is by unicast.

We used existing implementations of AODV, ODMRP and . )
APRL from the Dartmouth ActComm project [1]. All threeB- On-Demand Multicast Routing Protocol (ODMRP)
routing protocols are implemented in user space on Linux,ODMRP is a multicast on-demand routing protocol. There
and they use an IP tunnel and UDP sockets to perform thane two types of control packets: Join Query and Join Reply
routing. An “IP tunnel is a virtual network device that conte [2]. Join Query is sent by broadcast and Join Reply is sent by
a UNIX device file and a network interface. Each node hasumicast. Both Join Query and Join Reply contain the originat



and multicast group ID addresses. ODMRP uses multicastthe routing protocol layer. The advantage of this layehat
groups to keep member information. For each known nddewe only have to change the interface with the new protocol-
in the whole network, ODMRP maintains a multicast groupwap layer and can reuse the routing part of the existing
for that M, where the multicast group ID iSIs IP address. routing protocol codes. We also encapsulate all the code
Each ODMRP node has two data structures in addition to ther swapping protocols in the protocol-swap layer. Another
routing table: a multicast group table and a message catiee. &dvantage is that the combined method brings little ovethea
multicast group table contains all the multicast groupsdorbecause 1) The two fields are only 4 bytes each, which is
node. The message cache is used to detect routing loops. $mall yet enough to prevent wraparound ambiguity. Since a
multicast group table contains expiration time and infaiiora control packet is composed of a MAC header, an IP header, a
about whether it knows a route kb or if it should receive data UDP header, and a control packet body, the extra two fields
originated fromM. Although ODMRP is a multicast protocol,do not use much extra bandwidth. 2) Only control packets
we use it only as a unicast protocol [Gerla2000]. are wrapped with the protocol type and epoch number while
. . data packets remain the same as before. 3) During run time,
C. Any Path Routing without Loops (APRL) only the routing table of the current protocol is maintained
APRL is a unicast, proactive routing protocol [15]. Therend the other combined protocols’ routing tables are empty.
are two types of control packets: Beacon and PDVN. A nod®b the combined method does not use extra memory for
periodically broadcasts beacons to its neighbors. Eacbdoeaadditional routing tables. 4) So far, our implementation of
contains the route information known by the sender. Pinge protocol-swap layer does not set up a virtual connection
Destination Via Neighbor (PDVN) packets are used to confirgs other protocol-swap layers, which means this method does
the routes that the node receives in beacons. Upon startugt invent any new control packets. 5) We could add a traffic-
each node broadcasts a beacon message to its neighborgméaitor componentin this layer. For example, if a node detec
that each nodes routing table only contains the destinatién that the ratio of route requests is higher than normal, ithiig
its neighbors. After initializing the routing table with lgnits  decide whether to swap to another routing protocol. Thigctop
neighbor’s information, each node broadcasts its own mgutiis beyond the scope of this paper, but we will discuss thigtop
table to its neighbors periodically. If there is no route to @ the section on future work.
packet’s required destination, the data packet is disdarde
unlike AODV there is no route-request mechanism. B. The problems we need to solve

I1l. | MPLEMENTATION To implement the combined method, which can swap from
In this section, we discuss our method to combine tif¥1€ protocol to another, there are three problems to solve:
three different protocols. Simply speaking, we insert a nel) Who determines when to swap, and how? 2) How is the
layer between the routing protocols and the UDP layer (§WVap decision communicated to all nodes? 3) How does each
equivalent layer on some other infrastructure). We cadl tiw "n0de adjust its internal tables to make the swap? _
layer the Protocol-Swap Layer. Thus, the change in protocoIA full solution to this problem is outside the scope of this

is transparent to the lower layer (in our case, the UDP layePpPer- We simply assume that one master node can initiate
a protocol swap and notify all the nodes about the swap. It

A. The combined method is beyond the scope of this paper to determine when a swap
Because we insert a new layer (the protocol-swap layéfyould occur or to which protocol.

between the routing layer and UDP layer, any control packet

generated by the routing protocols is intercepted by tke How is swap communicated?

protocol-swap layer where the packet is wrapped with addi-the master node communicates its decision to its neighbors

tional information; namely, the protocol type and the epo sending a control packet with the new protocol type and

number (Figure 2). These two extra fields specify the curregiloch number. The master node increments the epoch number

protocol type and the freshness of the protocol respegtively changes the protocol type every time it decides to swap.

For any .received control packet, we first check the additiongsier the neighbors change to the new protocol, all theirfet

information at the protocol-swap layer, and then forwarl thy,niro) packets will use this protocol type field and epoch

control packet to the appropriate routing protocol (subfec nmper, thus diffusing the news. We do not add the protocol-

some details discussed below). swap layer header to data packets, however, because data

packets do not need to know which routing protocol is used

Fig. 2. Packet Format (top = old; bottom = new) to find a path to the destination. Even if two nodes are using
| MAC [ IP | UDP | Control Packe] different routing protocols, they can still send data paske
each other, and the network can continue forwarding packets
[ MAC | IP | UDP | Epoch Num.| Control Packef] even while a swap is in progress. The mechanism for protocol

swap requires each node to record its own notion of the curren
Because of the insertion of the protocol-swap layer shownlimcal protocol type and epoch number. It then compares the
Figure 1, the protocol type and epoch number are transparpratocol-swap layer header of incoming packets to detezmin



whether a new epoch has occurred and thus it is time to switchAODV Precursor List:This data structure contains all the
to a new protocol. There are two cases to consider: upstream nodes that use the node itself towards the same
Case 1:The received protocol number is the same as thikestinations. If the node determines that any one of itsslisk
local protocol numberCase la:The received epoch numberbroken, as a hint it sends a RERR packet to those neighbors
is lower than its local epoch number; the node will discardtho are in its precursor list. When we swap to AODV, it is safe
the packetCase 1b:The epoch number is equal; process th® leave the precursor list empty, because this data steictu
packet.Case 1c:The received epoch number is larger thawill be rebuilt when nodes later send out RREQ.
the local epoch number; the node will update its local epochAODV Packet QueueThe source node queues any data
number to be the received epoch number, and process plaekets that are yet to be sent in per-destination packetegue
packet. When we swap from AODV to another protocol, we discard
Case 2:The received protocol number is different from thehe packets in these queues and they are lost. We assume that
local protocol numberCase 2a:The received epoch numbersome other mechanism (such as TCP) will realize that these
is lower than or equal to its local epoch number; the nogackets did not reach their destinations and will resendeho
will discard the packetCase 2b:The received epoch numberdata again. The packet queue is AODV'’s unique data structure
is larger than the local epoch number; the node will update ither protocols do not have a queue for data packets. If we
local epoch number to be the received epoch number, swagstgap to AODV, we can simply create empty packet queues.
the received protocol, then process the packet. AODV RREQ Packet Caché&his data structure is used to
store recently received RREQ packets to avoid loops. It may

D. How to swap?
o L lbe created as empty when we swap to AODV, and may be
To swap, we need to initialize the new destination protecoljic.arded when we swap from AODV.

routing table and other_ data structures by usi_ng those_ of t €ODMRP Message Cach@&his data structure is used to store
curre_nt protocol_. The primary goal when changing pr9t9t_x)lsrecently received Join Query packets to avoid loops. It may
o build the routing table for the new protocols and to ifife. o reated as empty when we swap to ODMRP, and may be
it as much as possible using information in the routing tab scarded when we swap from ODMRP.

for the old protocol. We consider all six different casestfor ODMRP Multicast Group TableThis data structure is used
swap: a) AOBV t?ASRDyRF:AgD@PRLbbD)MOR%MRP t0 AODV {4 maintain a list of multicast groups in which this node is
or APRL, and c) o or : a member and is checked when receiving a Join Query. If
E. Reuse prior routing table entries this node is in the multicast group, then it should accept the

To take advantage of the prior protocols routing informatio J0in Query packet and send back a Join Reply. ODMRP has
we reuse the entries in the prior routing table. HowevdP rebuild the multlcqst group table via Join Queries when we
the entries in the routing tables of AODV, ODMRP, andWap to ODMRP. This data structure may b_e created as empty
APRL are different, which complicates our effort to copy’hen we swap to ODMRP, and may be discarded when we
the entries between routing protocols. We copy any simil§¥@p from ODMRP. _ _
fields of two entries and choose a reasonable value for the*PRL has no additional data structures, so there is nothing
fields that are different. It is important to note that AODVEXtra to do when swapping to or from APRL.

ODMRP and APRL all have two key fields for routing: the
destination IP address and the next-hop IP address. These tw ) _ _
fields determine the next hop for forwarding packets to the Our goal is to measure the overhead (in terms of time and
destination. Since all these routing protocols use these tiaffic) due to a protocol swap. We chose a static network,
fields to determine any route, it is correct to copy these twihich means all the nodes were preset to a certain position
IP addresses from the prior routing table entry to the nedtd would not move during the experiments. The effective
routing table entry. The other fields are used to determiae tfansmission distance of the simulated node’s radio was. 73m
current status of the routes. AODV, ODMRP, and APRL keeWe ran the protocol for 200 seconds and the swap occurred
different status of the routes for routing, so it might not bgt 100 seconds. We selected two types of network topology
correct to reuse them in the new protocol. But we can casefuffFigure 3): line and square lattice.

select a valid default value. We omit the details here fok lac We selected two network sizes: 9 nodes and 49 nodes.
of space but present them in a thesis [30] and also comm¥/¢ Selected two traffic speeds: 1 data packet originated
on the correctness and the drawbacks of these default valiR§d node per second or 1 data packet originated per node
One key advantage of our reuse of prior routing table entri@¥ery 5 seconds. Each data packet's destination is chosen

is that we are able to immediately use the old route after tHBiformly among the rest of the nodes. We ran each parameter
swap, eliminating most of the potential cost of a swap. combination 5 times, each time with a different random seed

for SWAN; we report the average result.

IV. EXPERIMENTS

F. Key Data Structures

To perform the swap, we must not only change the routify Metrics
table, but each protocol’s special associated data stegas ~ We compare the performance of our combined method with
well. We discuss each such data structure in turn. plain AODV, APRL, and ODMRP. We used two metrics: the



. . . TABLE |
Fig. 3. Topology: Line (top) and Lattice (bottom)

TESTCONFIGURATIONS
»> @ @@ @ & ® ©®© ® @
Master Config. | Layout | Nodes | Dist. Mast_erh tr)]ode’s
: neighbors
Blistarie T Tine g 20m 3
2 Line 49 20m 3
1 2 3 3 Square 9 25m 8
4 Square 49 30m 8
Master | Distance | g
TABLE Il
ASSOCIATION WITHNETWORK CONNECTIVITY
4 5 6
Config. [ Layout | Nodes | Dist. | Max Swap Latency
" 1 Line 9 20m 10.004 sec
Distance 2 Cine 29T 20m 35.048 s6¢
3 Square 9 25m 1.813 sec
4 Square 49 30m 6.014 sec
7 8 9

) . Simulation 2 is a simulation of just the destination profoco
time to complete a protocol swap and the ratio of contrgl, >0 seconds. So we compare the control packet ratio
packet§ per Qata packet sent from the UDP layer. . for the following three intervals of time: 1) The destinatio
Metric 1: Time to complete a protocol swap. The swap tim§oiocol after the swap from simulation 1 (time when the
starts when the master node decides to swap, and ends WhgHes finish the swap until end of simulation at t = 200s).
all the nodes in the network have updated their local prdtocs) he gestination protocol for first 100 seconds from sim 2,

number and local epoch number. The metric is thus the swapy 3) the destination protocol for second 100 seconds from
end time — swap start time. This metric measuressvap ¢y, 2.

latency
B. Environment

Fig. 4. Control Packet Ratio Measurement Interval We chose four configurations as shown in Table I. Referring
: - back to Figure 3 and recalling the effective communication
Sim 1. ODMRP w1 AODV distance (73m), several nodes are in range of each node,
£ including the master node. Although all nodes were conmlecte
_ : directly or indirectly, we can see in Configuration 3 that all
sim2_ AODV AODV nodes were connected within the transmission range of each
other, but in other configurations multi-hop communication
0s 16105 2;005 Time was required.

V. SIMULATION RESULTS

Metric 2: Ratio of unicast and multicast control packets per We used the metrics we defined above to measure the
data packet sent from UDP layer itbe control packet ratio efficiency of the swap for a given destination protocol. We
This metric helps us evaluate the efficiency of the destimatiidentify the maximum or average swap latency to the same
protocol after swap. destination protocol from two sources. For example, in &abl

AODV has four control packets: HELLO, RREQ, RREPJII, we use the average swap latency from ODMRP to AODV
RERR. RREP is unicast and the rest are multicast. APRL hasd APRL to AODV as thet swap latency for AODV.
two control packets: BEACON, PDVN. PDVN is unicast and
BEACON is multicast. ODMRP has two control packets: Joift- SWap Latency
Query, Join Reply. Join Reply is unicast and Join Query is1) Association with the connectivity of the networks:
multicast. In all cases, the control packet ratio is the neindd Table Il and Table 11l both show that swap latency is assediat
(unicast and multicast) control packets divided by the nembwith the network connectivity for each type of swap. The
of data packets sent from UDP layer. highest connectivity (Configuration 3) has the best swap

We measure the control-packets ratio in three intervalsgusilatency and lowest connectivity (Configuration 2) has thesivo
two simulations: 1) the interval after swap of the destomti swap latency.
protocol; 2) the first half interval of different simulatiowf 2) Association with the network trafficTable IV shows
just the destination protocol; 3) the second half internfghe that for AODV and APRL, the swap latency were similar
same simulation destination protocol. For example, in EEguwith heavy and low traffic workloads. For ODMRP, the heavy
4, simulation 1 represents a swap from ODMRP to AODYaffic swap latency is nearly twice as fast as the low traffic
starting at t=100s. Thus AODV is our destination protocolatency. Since ODMRP is a purely reactive routing protocol,



AVERAGE SWAP LATENCY (S) WITH DIFFERENTNETWORK TOPOLOGIES

TABLE Il

Configuration | To AODV | To ODMRP | To APRL
9 node Line 0.988 2.620 7.518
49 node Line 3.945 4.6146 31.045
9 node Square 0.050 1.233 0.012
49 node Squard  2.493 2.006 11.021
TABLE IV

AVERAGE SWAP LATENCY (S) WITH DIFFERENTTRAFFIC PATTERNS

To AODV | To ODMRP | To APRL
Avg. Latency (Low Traffic) 1.788 1.435 12.029
Avg. Latency (High Traffic) 1.950 3.801 12.769

it only sends Join Query when it needs to. So a busier traffic
pattern generates more control traffic and thus spreads the
news about the swap. But AODV and APRL both periodically
broadcast message to its neighbors, so the swap interval is
more dependant on the broadcast interval and not the traffic

load.

3) Association with the destination protocolTable V
shows that AODV and ODMRP completed the swap quickly,

message to neighbors. We can also see in Table VI that AODV
and ODMRP completed their swaps quickly even in the low
connectivity line networks. But APRL's swap time was highly
related to the network topology. For example, AODV’s swap
latency range was from 0.001 to 6.665 seconds and ODMRP’s
ranged from 0.652 to 6.635 seconds. APRL's swap latency
range was from 0.009 to 35.048 seconds, however, because
APRL only broadcasts beacons to its neighbors periodically
So the swap latency depends on the period of these broadcasts
rather than on the traffic patterns as in AODV or ODMRP.

Fig. 5. AODV Control Packet Ratio

25

Dest. 2nd Half
JAODV 1st Half

20 1+

HWAODV 2nd Half

AODV control packet ratio

while APRL was relatively slow. After a swap, ODMRP needs

to broadcast Join Query packets to maintain its multicasigr
membership information. Similarly, AODV needs to broadcas
RREQ if there is no route to the destination in the routing
table after swap. But APRL drops the packets if it can not
find route information in its routing table. Those route quer
broadcasting packets make swaps to AODV and ODMRP fast.
In Table Il, we can see that in high connectivity square
configurations (rows 3 and 4), AODV and APRL swapped
quickly. This is because they both periodically broadcast a

AVERAGE SWAP LATENCY (S) OVER ALL TESTEDCONFIGURATIONS

MEASUREDSWAP LATENCY (S) WITH THE DESTINATION PROTOCOL

TABLE V

To AODV | To ODMRP | To APRL
Average Latency| 1.8692 2.6186 12.3995
TABLE VI

OVERALL TESTEDCONFIGURATIONS

Config. Format= Number of nodes/Layout/Traffic-pattern

Sqg = Square; Ln = Line; Lo= Low Traffic; Hi= High Traffic

No. Config. | To AODV | To ODMRP | To APRL
a 9/Ln/Hi 0.928 1.645 5.032
b 9/Ln/Lo 1.048 3.595 10.004
c 9/Sq/Hi 0.098 0.652 0.009
d 9/Sg/Lo 0.001 1.813 0.014
e 49/Ln/Hi 1.235 2.593 27.043
f 49/Ln/Lo 6.655 6.635 35.048
g 49/Sqg/Hi 4.890 0.849 16.032
h 49/Sg/Lo 0.095 3.162 6.010

Fig. 6. ODMRP Control Packet Ratio
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Fig. 7. APRL Control Packet Ratio
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B. The control packet ratio performance results. Their adaptive method is similar to ou

In Figures 5, 6 and 7 we show the control packets rat®mbined method: both want to dynamically swap to another
of eight types of network configurations corresponding ® tfprotocol pasgd on current network conditions, but there are
same ones listed in columns 1 and 2 of Table VI. For eatffe€ main differences.
configuration and each type of swap, we can see that the Their adaptive method introduced a new type of control
control packets ratio after swap (the first bar in each grol§icket to the existing protocols, which is periodically dmle
of three) was not the largest one of each group in most casgdsted. Our method did not introduce any new message to the
Even if the control packets ratio after swap was the largest o€Xisting protocols. Thus, it is relatively easy to combineren
of each group, the variance between the three bars was IBf@tocols if necessary. On the other hand, we need to design
After the swap, in most cases, the destination routing padto V(N — 1) routing-table converters if we want to combine
performed almost transparently, much as it would without R{otocols. _ _
swap and data packets were routed successfully and with véryn their method, different protocols share the same nouti
little control overhead. For APRL the third bars are alway&Ple, requiring all protocols to be reimplemented to skt t
small because APRL does not send many control packets iRgV, common routing table format. Each node also has a

static network once routes have stabilized and all degtingt N€ighbor table to keep track of connectivity and neighbors
are reachable. modes (reactive or proactive). In our method, different@ro

cols each maintain their own routing table, and we translate

VI. DiscCussION tables when we swap protocols. Thus, we do not need to

A. Swap Latency is related to network connectivity, netwogkange the routing table format and introduce a new neighbor
traffic and the characteristics of the destination protocol  table.

First, we found that the swap latency depends on tife We have actually implemented this idea on SWAN and can

network connectivity: highly connected networks had adrett!Se this code for both simulations and real-world field tests
swap latency, because news of the swap had fewer h&ﬁ@ullatmns, we have analyzed the performance of the rgutin
to traverse. We also found that traffic workload influenced90rithm for swaps between three protocols.

the swap latency of reactive routing protocols like ODMRP.

VII. SUMMARY
Lastly, swap latency also depends on the characteristics of . )
the destination protocol. Protocols that are reactive depm Ve describe a method to combine AODV, ODMRP, and

the data traffic to generate control packets and thus progagal RL in such a way that we can swap from one protocol to
news of the swap; proactive protocols depend on periocﬂE‘Other' For each pair of protocols, we identify r_low to atiti
broadcasts to spread the news. If a protocol performs r@uti'ﬁe each protocol's data structure from the previous esuie
without flooding, the swap latency was long (particularly iﬁhe other protocol. We proposed_ two metrics to measure the
less connected networks). In this case, a node might needfjformance and simulated various network topologies and
send back an empty control message to inform a sender apERfiditions using SWAN. The results show that the time to

a new epoch and routing protocol if it receives any out-daté@Mplete a protocol swap depended on the characteristics of
control packets from the sender. the protocol we swap to, the topology of the network, and the

traffic on the network. Our combined method swapped slowly

B. Swap does not incur too many control packets for the less-connected networks and for the protocols witho

As the results show, the control-packet ratio after swap wfgoding (like APRL) but was efficient in all other cases. In
lower than or close to the control-packet ratio of running @r combined method, from a software engineering point of
protocol without a swap. First, the swap does not requireaexView, we can reuse the source code of the existing routing
control packets to diffuse the swap information or rebuil@rotocol by inserting a new layer to facilitate swaps withou
tables. Second, because we initialize the new routing tal§leanging existing protocol implementations.
using the old routes, we send few route-query packets. This
situation is true only in static networks or low mobility
networks. In high-mobility networks, there would be more We note that our results are based on simulations. Al-
control traffic to rebuild a route to the destination, and enothough we took care with the simulation the results should
lost data packets. However, the same would be true if the swRg considered tentative pending real-world experimeotati
had not occurred. Thus we believe that our method efficienfi@r simplicity, we chose to use static networks to run our
transfers the network from one routing protoco| to anoth@i,mulations. However, these static networks could not test
using no new packet types, reusing routing table infornmatigvhether our method would be efficient for high-mobility
where possible, and not excessively increasing contréficra networks. In future work we will test other mobility models.

VIIl. FUTURE WORK

after a swap. Another tradeoff is whether we should let the protocol-swap
) layer broadcast an empty packet just to notify its neighbors
C. A unique approach about the swap. This broadcast should decrease the swap

Hoebeke et al. proposed an adaptive multi-mode routimgmpletion time by increasing the speed of disseminatingsne
protocol for ad hoc networks [14] but do not provide angbout the swap. This might be helpful for those protocols



that do not broadcast periodically. Also, we could add sons)
fields in that empty packet's header to carry statisticsdmssi
protocol type and epoch number. However, these fields
some complexity to the new protocol-swap layer and may add
overhead.
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