
Copyright 1995 by the authors

A Performance Comparison of TCP�IP and MPI
on FDDI� Fast Ethernet� and Ethernet

Saurab Nog and David Kotz

Department of Computer Science

Dartmouth College

Hanover� NH ����������

saurab�cs�dartmouth�edu� dfk�cs�dartmouth�edu

Dartmouth Technical Report PCS�TR	��
��

November

� �		�
Revised January �� �		�

Abstract

Communication is a very important factor a�ecting distributed applications� Getting a
close handle on network performance �both bandwidth and latency� is thus crucial to un�
derstanding overall application performance� We benchmarked some of the metrics of net�
work performance using two sets of experiments� namely roundtrip and datahose� The tests
were designed to measure a combination of network latency� bandwidth� and contention�
We repeated the tests for two protocols �TCP�IP and MPI� and three networks ���� Mbit
FDDI �Fiber Distributed Data Interface�� ��� Mbit Fast Ethernet� and �� Mbit Ethernet��
The performance results provided interesting insights into the behaviour of these networks
under di�erent load conditions and the software overheads associated with an MPI imple�
mentation �MPICH�� This document presents details about the experiments� their results�
and our analysis of the performance�

Keywords � Network Performance� FDDI� FastEthernet� Ethernet� MPI�

Revised � January 	� �

� to emphasize our use of a particular MPI implementation�
MPICH�

� INTRODUCTION �

� Introduction

This document presents benchmarking tests that measured and compared performance of
TCP�IP and MPI �Message Passing Interface� �� implementations on di�erent networks
and their results�

We chose these protocols �TCP�IP and MPI� because

� TCP�IP�

� Greater �exibility and user control

� Higher performance

� Wide usage and support

� MPI�

� Programming ease

� A widely accepted standard for distributed computing applications�

Since our MPI implementation� MPICH� runs on top of P� ��� which in turn uses TCP�IP�
a performance comparison of TCP�IP and MPI gives a good estimate of the overheads and
advantages associated with using the higher level abstraction of MPI as opposed to TCP�IP
sockets�

We also compared three di�erent networks to understand the inherent hardware and soft�
ware limitations of our setup� We repeated the same set of experiments on

� ��� Mbps FDDI �Fiber Distributed Data Interface� token ring

� ��� Mbps Fast Ethernet

� �� Mbps Ethernet

In most cases� we cross�checked our results with results from the publicly available �ttcp�
package� The results seem to be in very close agreement� including the presence of spikes
and other anomalies�

� Setup Details

We ran two di�erent tests ��roundtrip� and �datahose�� on all six combinations of protocol
�TCP�IP and MPI� and network �FDDI� Fast Ethernet� Ethernet�� Although our experi�
ments were not speci�c to any implementation of the hardware or software standards� the
results were necessarily dependent on the speci�c implementations� Other implementations
may have di�erent performance�

� SETUP DETAILS �

��� Hardware � Software

The FDDI and Ethernet experiments used 	 RS��������s running AIX ���� at ��MHz� The
FDDI was an isolated network and the Ethernet experiments were run when the Ethernet
was lightly loaded �usually overnight��

The Fast Ethernet tests used � Pentium���� based PCs with � MB RAM� running FreeBSD
��� on an isolated network�

Both the RS����s and PCs had MPICH version ������ �released July �� �

�� running on
top of P��

��� Environment

All the tests� except those involving Ethernet� were conducted in an isolated mode� For the
Ethernet experiments we did not disconnect ourselves from the rest of the world� so we were
careful to choose quiet times of the day for testing� This minimized the risk of interference
from external tra�c�

We repeated the tests several times �at least ��� running a few thousand iterations of each
test every time� We chose the best values �max for bandwidths and min for time� as our
�nal result� Thus our numbers approximate best�case performance results�

All TCP�IP tests used the TCP NODELAY option �except the Fast Ethernet datahose���

Normally� the TCP�IP protocol delays small packet transmission in the hope of gaining
advantage by coalescing a large number of small packets� This delay results in arti�cially
high latency times for small packets� We used TCP NODELAY to overcome this behaviour
and eliminate the wait period� We also set both the sending and receiving side kernel
bu�ers at ��K bytes �maximum allowed on the RS����s� FreeBSD Pentiums allow up to
��	K�� The increased bu�ers were prompted by the observation ��� that kernel bu�ers are
the bottlenecks for most network operations�

For MPI� we used the default con�guration in all cases�

��� Performance Measures

In these tests we were interested in the following measures of network performance�

� Total Bandwidth� the sum of the individual bandwidths of concurrent processes� It
signi�es the e�ective bandwidth usage for the set of all participating hosts�

� Bandwidth�Pair of processes� the average bandwidth each individual pair of processes
was able to use�

� Time�iteration� the average time it takes to complete one iteration of roundtrip or
datahose�

�FreeBSD often crashed when �ooded with small messages�

� ROUNDTRIP

� Roundtrip

The roundtrip test is designed to measure the following parameters

� network latency

� network contention overhead

� synchronization overheads

All machines were connected to the same network but were paired for communication pur�
poses� Each host talks to its designated partner only� There is a master�slave relationship
between the two process in each pair� The master initiates the communication and then
measures the time interval it takes for the slave to receive and send the message back� This
completes one roundtrip iteration� Our test does many roundtrip iterations in a burst to
determine the average time�iteration and the network bandwidth achieved� Many iterations
are necessary to overcome clock granularity� cold cache e�ects� and accuracy problems�

All processes synchronize before switching to the next message size� This serves two major
purposes�

�� Each message size is timed separately� restricting timing and other errors to the phase
in which they occured�

�� Synchronization prevents processes from running ahead or lagging behind the group�

Roundtrip is a store and forward test� Each slave process receives the complete message
from its master and then sends it back� Since at any given time only � process in a pair is
writing data to the network� there is no contention between the master and slave processes
of a pair�

We ran roundtrip on �� �� and � pairs �up to pairs on FreeBSD� of processors simulta�
neously to determine how contention in�uences network performance� Results for various
combinations of network and protocol are presented in the following graphs�

� ROUNDTRIP �

The pseudo�code for roundtrip is as follows�

for �all interesting message sizes � �

set message�size

synchronize �all master and slave processes�

if �master��

�� I am the master ��

start�timing� �� Initialize timer ��

�� do a large number of iterations ��

for�iteration�count���iteration�count	MAX�ITERATIONS�iteration�count

�

�

�� Initiate communication with slave ��

write�slave�message�message�size�

�� Wait for reply from slave ��

read �slave�buffer�message�size�

�

stop�timing� �� Stop timer ��

� else �

�� I am the slave ��

�� do a large number of iterations ��

for�iteration�count���iteration�count	MAX�ITERATIONS�iteration�count

�

�

�� Wait for the master to initiate communication ��

read �master�buffer�message�size�

�� Reply back to the master with the same message ��

write�master�buffer�message�size�

�

� �� End ifelse ��

� �� End for ��

� ROUNDTRIP �

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’roundtrip-tcp-fddi-4-totalbw’
’roundtrip-tcp-fddi-3-totalbw’
’roundtrip-tcp-fddi-2-totalbw’
’roundtrip-tcp-fddi-1-totalbw’

Figure �� Roundtrip � TCP�IP � FDDI � Total Bandwidth

0

10

20

30

40

50

60

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’roundtrip-tcp-fddi-4-bw’
’roundtrip-tcp-fddi-3-bw’
’roundtrip-tcp-fddi-2-bw’
’roundtrip-tcp-fddi-1-bw’

Figure �� Roundtrip � TCP�IP � FDDI � Bandwidth per Pair of Processes �Master�Slave�

1000

10000

100000

1e+06

1 10 100 1000 10000 100000 1e+06 1e+07

Av
er

ag
eg

 T
im

e
(m

icr
o-

se
c)

Message Size (bytes)

’roundtrip-tcp-fddi-4-time’
’roundtrip-tcp-fddi-3-time’
’roundtrip-tcp-fddi-2-time’
’roundtrip-tcp-fddi-1-time’

Figure �� Roundtrip � TCP�IP � FDDI � Time per Iteration

� ROUNDTRIP �

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’roundtrip-mpi-fddi-4-totalbw’
’roundtrip-mpi-fddi-3-totalbw’
’roundtrip-mpi-fddi-2-totalbw’
’roundtrip-mpi-fddi-1-totalbw’

Figure �� Roundtrip � MPI � FDDI � Total Bandwidth

0

10

20

30

40

50

60

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’roundtrip-mpi-fddi-4-bw’
’roundtrip-mpi-fddi-3-bw’
’roundtrip-mpi-fddi-2-bw’
’roundtrip-mpi-fddi-1-bw’

Figure �� Roundtrip � MPI � FDDI � Bandwidth per Pair of Processes �Master�Slave�

1000

10000

100000

1e+06

1 10 100 1000 10000 100000 1e+06 1e+07

Av
er

ag
eg

 T
im

e
(m

icr
o-

se
c)

Message Size (bytes)

’roundtrip-mpi-fddi-4-time’
’roundtrip-mpi-fddi-3-time’
’roundtrip-mpi-fddi-2-time’
’roundtrip-mpi-fddi-1-time’

Figure �� Roundtrip � MPI � FDDI � Time per Iteration

� ROUNDTRIP �

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’roundtrip-tcp-fast-3-totalbw’
’roundtrip-tcp-fast-2-totalbw’
’roundtrip-tcp-fast-1-totalbw’

Figure �� Roundtrip � TCP�IP � Fast Ethernet � Total Bandwidth

0

10

20

30

40

50

60

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’roundtrip-tcp-fast-3-bw’
’roundtrip-tcp-fast-2-bw’
’roundtrip-tcp-fast-1-bw’

Figure �� Roundtrip � TCP�IP � Fast Ethernet � Bandwidth per Pair of Processes �Master�Slave�

100

1000

10000

100000

1e+06

1 10 100 1000 10000 100000 1e+06 1e+07

Av
er

ag
eg

 T
im

e
(m

icr
o-

se
c)

Message Size (bytes)

’roundtrip-tcp-fast-3-time’
’roundtrip-tcp-fast-2-time’
’roundtrip-tcp-fast-1-time’

Figure �� Roundtrip � TCP�IP � Fast Ethernet � Time per Iteration

� ROUNDTRIP 	

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’roundtrip-mpi-fast-3-totalbw’
’roundtrip-mpi-fast-2-totalbw’
’roundtrip-mpi-fast-1-totalbw’

Figure �	� Roundtrip � MPI � Fast Ethernet � Total Bandwidth

0

10

20

30

40

50

60

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’roundtrip-mpi-fast-3-bw’
’roundtrip-mpi-fast-2-bw’
’roundtrip-mpi-fast-1-bw’

Figure ��� Roundtrip � MPI � Fast Ethernet � Bandwidth per Pair of Processes �Master�Slave�

100

1000

10000

100000

1e+06

1 10 100 1000 10000 100000 1e+06 1e+07

Av
er

ag
eg

 T
im

e
(m

icr
o-

se
c)

Message Size (bytes)

’roundtrip-mpi-fast-3-time’
’roundtrip-mpi-fast-2-time’
’roundtrip-mpi-fast-1-time’

Figure ��� Roundtrip � MPI � Fast Ethernet � Time per Iteration

� ROUNDTRIP

0

2

4

6

8

10

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’roundtrip-tcp-ethernet-4-totalbw’
’roundtrip-tcp-ethernet-3-totalbw’
’roundtrip-tcp-ethernet-2-totalbw’
’roundtrip-tcp-ethernet-1-totalbw’

Figure ��� Roundtrip � TCP�IP � Ethernet � Total Bandwidth

0

2

4

6

8

10

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’roundtrip-tcp-ethernet-4-bw’
’roundtrip-tcp-ethernet-3-bw’
’roundtrip-tcp-ethernet-2-bw’
’roundtrip-tcp-ethernet-1-bw’

Figure ��� Roundtrip � TCP�IP � Ethernet � Bandwidth per Pair of Processes �Master�Slave�

1000

10000

100000

1e+06

1e+07

1 10 100 1000 10000 100000 1e+06 1e+07

Av
er

ag
eg

 T
im

e
(m

icr
o-

se
c)

Message Size (bytes)

’roundtrip-tcp-ethernet-4-time’
’roundtrip-tcp-ethernet-3-time’
’roundtrip-tcp-ethernet-2-time’
’roundtrip-tcp-ethernet-1-time’

Figure ��� Roundtrip � TCP�IP � Ethernet � Time per Iteration

� ROUNDTRIP ��

0

2

4

6

8

10

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’roundtrip-mpi-ethernet-4-totalbw’
’roundtrip-mpi-ethernet-3-totalbw’
’roundtrip-mpi-ethernet-2-totalbw’
’roundtrip-mpi-ethernet-1-totalbw’

Figure ��� Roundtrip � MPI � Ethernet � Total Bandwidth

0

2

4

6

8

10

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’roundtrip-mpi-ethernet-4-bw’
’roundtrip-mpi-ethernet-3-bw’
’roundtrip-mpi-ethernet-2-bw’
’roundtrip-mpi-ethernet-1-bw’

Figure ��� Roundtrip � MPI � Ethernet � Bandwidth per Pair of Processes �Master�Slave�

1000

10000

100000

1e+06

1e+07

1 10 100 1000 10000 100000 1e+06 1e+07

Av
er

ag
eg

 T
im

e
(m

icr
o-

se
c)

Message Size (bytes)

’roundtrip-mpi-ethernet-4-time’
’roundtrip-mpi-ethernet-3-time’
’roundtrip-mpi-ethernet-2-time’
’roundtrip-mpi-ethernet-1-time’

Figure ��� Roundtrip � MPI � Ethernet � Time per Iteration

� DATAHOSE ��

� DataHose

Datahose is designed to measure the raw bandwidth of the network� The results are a
combination of the following factors�

� ability of a process to pump data onto the network and the network�s capability to
deliver it�

� network contention overhead�

Unlike roundtrip� datahose enforces no synchronization between the master and slave pro�
cesses of a pair� The master process keeps writing data to the network and the slave reading
from it without caring about each other�s state� Packet �ow control for datahose is thus
handled by TCP� The time it takes for the slave to receive all data is the time for one
datahose iteration� Many datahose iterations are done to get an accurate count�

All datahose process pairs synchronize before changing message sizes� Synchronization is
done to prevent older messages from �spilling over� to the next stage� This step is the only
time that a master and slave explicitly synchronize�

Datahose �oods the network with messages� Since there is no �ow control inherent in the test
�except for that provided by TCP�IP�� datahose with the TCP NODELAY option crashed
the FreeBSD Pentium machines repeatedly� This e�ect forced us to un�set TCP NODELAY
for the Fast Ethernet tests� TCP�IP is thus able to coalesce many small sized packets before
sending them over� reducing the average time per packet� However� for large messages ��
� K� TCP NODELAY has a minimal impact on performance�

Datahose was run on �� �� and � pairs �up to pairs on FreeBSD� of processors si�
multaneously to determine how the presence of other processes on the network in�uences
bandwidth�process� Results for various combinations of network and protocol are presented
in the following graphs�

� DATAHOSE ��

The pseudo�code for datahose is as follows �

for �all interesting message sizes � �

set message�size

synchronize �all master and slave processes�

if �master��

�� I am the master ��

�� do a large number of iterations ��

for�iteration�count���iteration�count	MAX�ITERATIONS�iteration�count

�

�

�� Just keep writing to the network ��

write�slave�message�message�size�

�

� else �

�� I am the slave ��

start�timing� �� Initialize timer ��

�� do a large number of iterations ��

for�iteration�count���iteration�count	MAX�ITERATIONS�iteration�count

�

�

�� Keep reading from the network whatever the master process has written ��

read �master�buffer�message�size�

�

stop�timing� �� Stop timer ��

� �� End ifelse ��

� �� End for ��

� DATAHOSE �

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’datahose-tcp-fddi-4-totalbw’
’datahose-tcp-fddi-3-totalbw’
’datahose-tcp-fddi-2-totalbw’
’datahose-tcp-fddi-1-totalbw’

Figure ��� Datahose � TCP�IP � FDDI � Total Bandwidth

0

10

20

30

40

50

60

70

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’datahose-tcp-fddi-4-bw’
’datahose-tcp-fddi-3-bw’
’datahose-tcp-fddi-2-bw’
’datahose-tcp-fddi-1-bw’

Figure �	� Datahose � TCP�IP � FDDI � Bandwidth per Pair of Processes �Master�Slave�

100

1000

10000

100000

1e+06

1 10 100 1000 10000 100000 1e+06 1e+07

Av
er

ag
eg

 T
im

e
(m

icr
o-

se
c)

Message Size (bytes)

’datahose-tcp-fddi-4-time’
’datahose-tcp-fddi-3-time’
’datahose-tcp-fddi-2-time’
’datahose-tcp-fddi-1-time’

Figure ��� Datahose � TCP�IP � FDDI � Time per Iteration

� DATAHOSE ��

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’datahose-mpi-fddi-4-totalbw’
’datahose-mpi-fddi-3-totalbw’
’datahose-mpi-fddi-2-totalbw’
’datahose-mpi-fddi-1-totalbw’

Figure ��� Datahose � MPI � FDDI � Total Bandwidth

0

10

20

30

40

50

60

70

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’datahose-mpi-fddi-4-bw’
’datahose-mpi-fddi-3-bw’
’datahose-mpi-fddi-2-bw’
’datahose-mpi-fddi-1-bw’

Figure ��� Datahose � MPI � FDDI � Bandwidth per Pair of Processes �Master�Slave�

1000

10000

100000

1e+06

1 10 100 1000 10000 100000 1e+06 1e+07

Av
er

ag
eg

 T
im

e
(m

icr
o-

se
c)

Message Size (bytes)

’datahose-mpi-fddi-4-time’
’datahose-mpi-fddi-3-time’
’datahose-mpi-fddi-2-time’
’datahose-mpi-fddi-1-time’

Figure ��� Datahose � MPI � FDDI � Time per Iteration

� DATAHOSE ��

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’datahose-tcp-fast-3-totalbw’
’datahose-tcp-fast-2-totalbw’
’datahose-tcp-fast-1-totalbw’

Figure ��� Datahose � TCP�IP � Fast Ethernet � Total Bandwidth

0

10

20

30

40

50

60

70

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’datahose-tcp-fast-3-bw’
’datahose-tcp-fast-2-bw’
’datahose-tcp-fast-1-bw’

Figure ��� Datahose � TCP�IP � Fast Ethernet � Bandwidth per Pair of Processes �Master�Slave�

10

100

1000

10000

100000

1e+06

1 10 100 1000 10000 100000 1e+06 1e+07

Av
er

ag
eg

 T
im

e
(m

icr
o-

se
c)

Message Size (bytes)

’datahose-tcp-fast-3-time’
’datahose-tcp-fast-2-time’
’datahose-tcp-fast-1-time’

Figure ��� Datahose � TCP�IP � Fast Ethernet � Time per Iteration

� DATAHOSE ��

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’datahose-mpi-fast-3-totalbw’
’datahose-mpi-fast-2-totalbw’
’datahose-mpi-fast-1-totalbw’

Figure ��� Datahose � MPI � Fast Ethernet � Total Bandwidth

0

10

20

30

40

50

60

70

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’datahose-mpi-fast-3-bw’
’datahose-mpi-fast-2-bw’
’datahose-mpi-fast-1-bw’

Figure ��� Datahose � MPI � Fast Ethernet � Bandwidth per Pair of Processes �Master�Slave�

100

1000

10000

100000

1e+06

1 10 100 1000 10000 100000 1e+06 1e+07

Av
er

ag
eg

 T
im

e
(m

icr
o-

se
c)

Message Size (bytes)

’datahose-mpi-fast-3-time’
’datahose-mpi-fast-2-time’
’datahose-mpi-fast-1-time’

Figure �	� Datahose � MPI � Fast Ethernet � Time per Iteration

� DATAHOSE ��

0

2

4

6

8

10

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’datahose-tcp-ethernet-4-totalbw’
’datahose-tcp-ethernet-3-totalbw’
’datahose-tcp-ethernet-2-totalbw’
’datahose-tcp-ethernet-1-totalbw’

Figure ��� Datahose � TCP�IP � Ethernet � Total Bandwidth

0

2

4

6

8

10

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’datahose-tcp-ethernet-4-bw’
’datahose-tcp-ethernet-3-bw’
’datahose-tcp-ethernet-2-bw’
’datahose-tcp-ethernet-1-bw’

Figure ��� Datahose � TCP�IP � Ethernet � Bandwidth per Pair of Processes �Master�Slave�

100

1000

10000

100000

1e+06

1e+07

1 10 100 1000 10000 100000 1e+06 1e+07

Av
er

ag
eg

 T
im

e
(m

icr
o-

se
c)

Message Size (bytes)

’datahose-tcp-ethernet-4-time’
’datahose-tcp-ethernet-3-time’
’datahose-tcp-ethernet-2-time’
’datahose-tcp-ethernet-1-time’

Figure ��� Datahose � TCP�IP � Ethernet � Time per Iteration

� DATAHOSE �	

0

2

4

6

8

10

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’datahose-mpi-ethernet-4-totalbw’
’datahose-mpi-ethernet-3-totalbw’
’datahose-mpi-ethernet-2-totalbw’
’datahose-mpi-ethernet-1-totalbw’

Figure ��� Datahose � MPI � Ethernet � Total Bandwidth

0

2

4

6

8

10

1 10 100 1000 10000 100000 1e+06 1e+07

Ba
nd

wi
dt

h
(M

bit
s/s

ec
)

Message Size (bytes)

’datahose-mpi-ethernet-4-bw’
’datahose-mpi-ethernet-3-bw’
’datahose-mpi-ethernet-2-bw’
’datahose-mpi-ethernet-1-bw’

Figure ��� Datahose � MPI � Ethernet � Bandwidth per Pair of Processes �Master�Slave�

1000

10000

100000

1e+06

1e+07

1 10 100 1000 10000 100000 1e+06 1e+07

Av
er

ag
eg

 T
im

e
(m

icr
o-

se
c)

Message Size (bytes)

’datahose-mpi-ethernet-4-time’
’datahose-mpi-ethernet-3-time’
’datahose-mpi-ethernet-2-time’
’datahose-mpi-ethernet-1-time’

Figure ��� Datahose � MPI � Ethernet � Time per Iteration

� ANALYSIS OF RESULTS �

� Analysis of Results

Characterization and analysis of end�to�end network performance is an involved task� There
are many factors that contribute to the �nal results� machine architecture� network protocol
software� network card in the computer and its device driver� the external hub �concentrator
for rings like FDDI� and so forth�

Many features that we observed in our results were predictable and intuitively appealing�
They were�

� The time it took to process messages below a certain threshold ���� bytes for all the
six combinations� was constant� probably because TCP NODELAY prevents message
coalescing� So all small messages are sent in a packet of their own and the small size
makes the network latency a big factor �as opposed to bandwidth��

� FDDI and Fast Ethernet are an interesting comparison� Because of the di�erent
transmission mechanisms they performed di�erently on the same benchmarks� We
analyse their TCP�IP performance here�

� Low network load

Fast Ethernet performed better �roundtrip� �� Mbits�sec �Figure ��� datahose�
�� Mbits�sec �Figure ���� than FDDI �roundtrip and datahose� � Mbits�sec
�Figure �� �Figure �
�� when the network was lightly loaded �� pair of processes��
One possible reason is that Ethernet �Fast or otherwise�� based on CSMA�CD
���� does not wait for permission for each message� Thus a transmitting process�
after sensing for absence of a carrier� wrote to the network hoping that a collision
would not occur� For light�load conditions� collisions do not occur or were rare�
Thus the high throughput� FDDI is based on token ring� each machine in FDDI
has to wait until it can grab the token that is �oating around on the ring� Only
when a station has the token does it start transmission� This control mechanism
slows down the transmission process even in a no�load situation�

� High network load

FDDI performed much better �roundtrip and datahose�
	 Mbits�sec �Figure ��
�Figure �
�� in a high load situation � pairs� than Fast Ethernet �roundtrip� ��
Mbits�sec �Figure ��� datahose� 	� Mbits�sec �Figure ����� The reason again is
the network hardware mechanism� As network load increased� so did the number
of packet collisions in Ethernet� Thus even though the individual processes could
put out packets faster onto the network� retries from collided packets degraded
performance drastically� So the bandwidth per pair of processes dropped sharply
for Fast Ethernet as load went up� FDDI is a collision�free network and hence
this phenomenon did not a�ect its performance� We see almost ���� aggregate
bandwidth utilization for FDDI�

� Although MPI was slower then TCP�IP� it was more consistent� TCP�IP had very
abrupt spikes and dips in performance at various places� The corresponding MPI tests
were generally much smoother�

REFERENCES ��

� MPI was always �except for a few data points in Fast Ethernet� both roundtrip and
datahose� slower than TCP�IP� The di�erence gives us the software overhead involved
with using MPI� MPI reduced performance in the two faster networks �FDDI and
Fast Ethernet� by about �� Mbits�sec at the maximum load levels� However� MPI
and TCP�IP were pretty close on Ethernet� giving the impression that the software
penalty was masked by the much slower network�

� Of the three networks we looked at� FDDI seemed to be the most predictable in terms
of performance� Abrupt discontinuities� which were present in the two Ethernets �Fast
and Normal�� did not plague FDDI�

While the results were generally consistent with expectations� the presence of repeatable
performance spikes and dips in TCP�IP made the analysis interesting� We veri�ed most
of the TCP�IP discontinuities using the �ttcp� package� They seem to be consistent even
across various machine types �for Ethernet�� At present we do not have an insightful
explanation for these anomalies� If you have some clue to the solution� we would appreciate
hearing from you�

Finally� we would like to emphasize that our results are for speci�c implementations of the
hardware and software standards� Other implementations may have di�erent performance�

References

��� Christos Papadopoulos and Gurudatta M� Parulkar� �Experimental Evaluation of
SUNOS IPC and TCP�IP Protocol Implementation�� IEEE�ACM Transactions on
Networking� Vol� �� No� �� April �

� Pages �

�����

��� Ralph Butler and Ewing Lusk� �User�s Guide to the p� Parallel Programming System��
Version ��� Argonne National Laboratory� ANL�
����� August �

�

�� D� W� Walker� �The design of a standard message passing interface for distributed
memory concurrent computers�� ParComp Vol� ��� No� �� �

�� Pages �������

��� Andrew S� Tanenbaum� �Computer Networks�� �nd Edition� Prentice Hall� �
		�

