
The Armada Parallel I/O framework
for Computational Grids

Ron Oldfield and David Kotz

{raoldfi,dfk}@cs.dartmouth.edu.

Department of Computer Science, Dartmouth College

http://www.cs.dartmouth.edu/∼dfk/armada/

September 20, 2002

Armada – p.1

http://www.cs.dartmouth.edu/~dfk/armada/

Computational Grids

Networks of geographically distributed heterogeneous
systems and devices.

Properties of computational grids

• Dynamic resources

• Heterogeneous components

• Multiple administrative domains

• High-latency networks

An important challenge facing grid computing is efficient I/O
for data-intensive applications.

Armada – p.2

Grid Applications

• Computationally intensive: may require supercomputers

• Many are also data intensive:
− Access large remote datasets (terabytes)
− Datasets often need pre, and/or post-processing

• Examples
− Seismic processing
− Climate modeling
− Astronomy
− Computational Biology
− High-energy physics

Armada – p.3

The Armada Framework

• Application deploys a graph of distributed objects (ships)

• Data request causes pipelined data flow through graph

• Graph has two distinct portions:
− from the data provider (describes layout of data set)
− from the application programmer (pre/post-processing)

API

repAPI

API

seg

seg

seg

seg

from application from data provider

client processors
storage servers

dist

dist

PSfrag replacements
Requests→

filt

Armada – p.4

The Armada Framework

• Application deploys a graph of distributed objects (ships)

• Data request causes pipelined data flow through graph

• Graph has two distinct portions:
− from the data provider (describes layout of data set)
− from the application programmer (pre/post-processing)

API

repAPI

API

seg

seg

seg

seg

from application from data provider

client processors
storage servers

dist

dist

PSfrag replacements
← Data (reads)

filt

Armada – p.4

The Armada Framework

• Application deploys a graph of distributed objects (ships)

• Data request causes pipelined data flow through graph

• Graph has two distinct portions:
− from the data provider (describes layout of data set)
− from the application programmer (pre/post-processing)

API

repAPI

API

seg

seg

seg

seg

from application from data provider

client processors
storage servers

dist

dist

PSfrag replacements
Data (writes)→

filt

Armada – p.4

Armada

Armada is not a data storage system.
Armada is not a parallel file system.

The data segments that make up a data set are stored in
conventional data servers as files, databases, or the like.

The Armada graph encodes most functionality provided by
the I/O system:

• programmers interface,

• data layout,

• caching and prefetching policies,

• interfaces to heterogeneous data servers.

Armada – p.5

Armada can...

With Armada, one can

• build a graph for parallel access to a group of legacy files,

• present many similar data sets through a standard
interface, and

• provide transparent access to derived “virtual” data—
either cached or calculated as needed.

Armada – p.6

Restructuring

Problems with the example application:

• potential bottlenecks in the composed graph

• original graph restricts placement alternatives for filter

Original graph Restructured graph

filt

API

repAPI

API

seg

seg

seg

seg

from application from data provider

client processors
storage servers

dist

distbottleneck filt
API

API

API

seg

seg

seg

seg

client processors
storage servers

dist

dist

filt

filt

filt

rep

rep

rep

Armada restructures original graph to improve data flow.

Armada – p.7

Placement

After restructuring:

1. Armada deploys ships to appropriate administrative
domains to optimize data flow, then

2. domain-level resource managers decide placement of
individual ships.

filt
API

API

API

seg

seg

seg

seg

client LAN
Server LAN 1

dist

dist

filt

filt

filt

rep

rep

rep

Server LAN 2

Work in progress...

Armada – p.8

Ships

Armada includes a rich set of extensible ship classes.

Distribute (partition, select, copy)

Merge

Data
Processing

Optimization

Interface

Structural

Structural
Non−

Ships
Armada

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

Armada – p.9

Ships

Armada includes a rich set of extensible ship classes.

Merge

Data
Processing

Optimization

Interface

Structural

Structural
Non−

Ships
Armada

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

PSfrag replacements

Distribute (partition, select, copy)

Distribute ships partition requests or data to
multiple output streams.

PSfrag replacements

Distribute (partition, select, copy)

R

S1

S2

S3

Armada – p.9

Ships

Armada includes a rich set of extensible ship classes.

Distribute (partition, select, copy)

Data
Processing

Optimization

Interface

Structural

Structural
Non−

Ships
Armada

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

PSfrag replacements

Merge

Merge ships interleave requests or data from
multiple input streams.

PSfrag replacements

Merge

S

R

R1

R2

R3

S1

S2

S3

Armada – p.9

Ships

Armada includes a rich set of extensible ship classes.

Distribute (partition, select, copy)

Merge

Optimization

Interface

Structural

Structural
Non−

Ships
Armada

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

PSfrag replacements

Data
Processing

Data-processing ships manipulate data, either in-
dividually, or in groups as it passes through the
ship.

PSfrag replacements

Data
Processing

SR

R1

R2

R3

S1

S2

S3

Armada – p.9

Ships

Armada includes a rich set of extensible ship classes.

Distribute (partition, select, copy)

Merge

Data
Processing

Interface

Structural

Structural
Non−

Ships
Armada

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

PSfrag replacements
Optimization

Optimization ships improve I/O performance
through latency-reduction techniques like caching
and prefetching.

PSfrag replacements

Optimization

SR

R1

R2

R3

S1

S2

S3

Armada – p.9

Ships

Armada includes a rich set of extensible ship classes.

Distribute (partition, select, copy)

Merge

Data
Processing

Optimization

Structural

Structural
Non−

Ships
Armada

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)

PSfrag replacements
Interface

Client-interface ships
convert method calls to a set of requests for data.

Storage-interface ships
access storage devices to process requests.

PSfrag replacements

Interface

S

R

R1

R2

R3

S1

S2

S3

PSfrag replacements

Interface

S

R

R1

R2

R3

S1

S2

S3

S

R

R1

R2

R3

S1

S2

S3

Armada – p.9

Properties of Ships

Properties of ships are

• used by restructuring and placement algorithms

• assigned by the programmer

• encoded in the ship’s description

Properties identify whether a ship

• is data- or request-equivalent

• increases or decreases data flow

• is parallelizable

Armada – p.10

Request- and Data-Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

Examples:
{1, 2, 3, 4, 5} ≡ {2, 3, 5, 1, 4}
{1, 2, 3, 4, 5} ≡ {{2, 3}, {1, 4, 5}}
{1, 2, 3, 4, 5} ≡ {{2, 3}, {1, 5, 4}}

In other words, order does not matter.

• R1, R2, and R3 are
disjoint subsets of S.

• {R1, R2, R3} ≡ S

Armada – p.11

Request- and Data-Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

A request-equivalent ship
produces request sequence equivalent to its input.

A data-equivalent ship
produces data sequence equivalent to its input.

Most structural ships are both request and data-equivalent.

• R1, R2, and R3 are
disjoint subsets of S.

• {R1, R2, R3} ≡ S

Armada – p.11

Request- and Data-Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

Distribution ships partition requests or data

• S1, S2, and S3 are disjoint
subsets of R.

• R ≡ {S1, S2, S3}

• R1, R2, and R3 are
disjoint subsets of S.

• {R1, R2, R3} ≡ S

PSfrag replacements

R
S1

S2

S3

Armada – p.11

Request- and Data-Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

Merge ships interleave requests or data

• R1, R2, and R3 are
disjoint subsets of S.

• {R1, R2, R3} ≡ S

PSfrag replacements

R1

R2

R3

S

Armada – p.11

Ships that Change Data Flow

Data-reducer: a ship that decreases the data flow

• filter

• compress

• reduce (min, max, sum)

Data-increaser: a ship that increases the data flow

• cache

• decompress

Armada – p.12

Parallelizable Ships

Parallelizable: a ship that can transform into multiple ships

• process requests and data in parallel

• parallelized by “swapping” with structural ships

• parallel version produces equivalent output

Types of parallelizable ships: replicatable, recursive

Armada – p.13

Parallelizable Ships

Parallelizable: a ship that can transform into multiple ships

• process requests and data in parallel

• parallelized by “swapping” with structural ships

• parallel version produces equivalent output

Types of parallelizable ships: replicatable, recursive

Right-parallelizable

A B

PSfrag replacements

R

S1

S2

S3

Original

A

A

A

B

PSfrag replacements

R

S1

S2

S3

Replicated

A

A

A

BM

PSfrag replacements

R

S1

S2

S3

Recursed

Armada – p.13

Parallelizable Ships

Parallelizable: a ship that can transform into multiple ships

• process requests and data in parallel

• parallelized by “swapping” with structural ships

• parallel version produces equivalent output

Types of parallelizable ships: replicatable, recursive

Left-parallelizable

AB

PSfrag replacements

R

R1

R2

R3

Original

A

A

A

B

PSfrag replacements

R

R1

R2

R3

Replicated

A

A

A

MB

PSfrag replacements

R

R1

R2

R3

Recursed

Armada – p.13

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

• Constrains the graph to be an SP-DAG (important for restructuring)

filt

API

repAPI

API

seg

seg

seg

seg
dist

dist

Armada – p.14

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

• Constrains the graph to be an SP-DAG (important for restructuring)

filt

API

repAPI

API

seg

seg

 P

 P

seg

seg
dist

dist

P

seg seg

P

seg seg

Armada – p.14

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

• Constrains the graph to be an SP-DAG (important for restructuring)

filt

API

repAPI

API

seg

seg

 P

 P

 S

 S

seg

seg
dist

dist

P

seg seg

P

seg seg

S S

dist dist

Armada – p.14

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

• Constrains the graph to be an SP-DAG (important for restructuring)

filt

API

repAPI

API

seg

seg

 P

 P

 S

 S

seg

seg
dist

dist

 P

P

seg seg

P

seg seg

P

S S

dist dist

Armada – p.14

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

• Constrains the graph to be an SP-DAG (important for restructuring)

filt

API

repAPI

API

seg

seg

 P

 P

 S

 S

seg

seg
dist

dist

 P

 S

P

seg seg

P

seg

rep

seg

P

S S

dist dist

S

Armada – p.14

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

• Constrains the graph to be an SP-DAG (important for restructuring)

filt

API

repAPI

API

seg

seg

 P

 P

 S

 S

 P

 S

seg

seg
dist

dist

 P

 S

P

seg seg

P

seg

rep

seg

Pfilt

APIAPI API

P

S S

dist dist

S S

Armada – p.14

Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

• Constrains the graph to be an SP-DAG (important for restructuring)

filt

API

repAPI

API

seg

seg

 P

 P

 S

 S

 P

 S

seg

seg
dist

dist

 P
S

P

seg seg

P

seg

rep

seg

Pfilt

APIAPI API

P

S S

dist dist

Armada – p.14

Graph Restructuring

Goals:

• remove bottlenecks (increase parallelism)

• allow better placement to reduce network traffic

We restructure by swapping adjacent nodes in the SP-tree

• increase parallelism by swapping parallelizable ships with
structural ships

• reduce network traffic on slow links by
− moving data-reducing ships toward data source,
− moving data-increasing ships toward data destination

Armada – p.15

The Restruct Algorithm

All series and parallel nodes are initially marked dirty.

The Restruct algorithm traverses the SP-tree (depth-first),
revisiting when necessary

1. if node is a leaf or clean (base case)

(a) do nothing

2. if node is a dirty parallel node

(a) recursively call Restruct on each child
(b) mark node clean

3. if node is a dirty series node

(a) call the RestructSeries algorithm
(b) mark node clean

Armada – p.16

The RestructSeries Algorithm

1. Partition node into two disjoint series nodes Head and Tail

2. Recursively call Restruct on both partitions

3. If it is legal and beneficial to swap last child of Head (A) with first
child of Tail (B)

(a) Swap A and B

(b) Mark Head and Tail dirty (force restructuring)

4. else

(a) Append B to Head

5. If Tail has children, goto 2

Original

...BA

PSfrag replacements

S

Head

Tail

(1) Partitioned

A ...B

swap?

PSfrag replacements

S

Head Tail

(3) If swap

B ...A

PSfrag replacements

S
Head Tail

(4) If no swap

...A B

PSfrag replacements

S
Head Tail

Armada – p.17

The RestructSeries Algorithm

1. Partition node into two disjoint series nodes Head and Tail

2. Recursively call Restruct on both partitions

3. If it is legal and beneficial to swap last child of Head (A) with first
child of Tail (B)

(a) Swap A and B

(b) Mark Head and Tail dirty (force restructuring)

4. else

(a) Append B to Head

5. If Tail has children, goto 2

Original

...BA

PSfrag replacements

S

Head

Tail

(1) Partitioned

A ...B

PSfrag replacements

S
Head Tail

(1) Partitioned

A ...B

swap?

PSfrag replacements

S

Head Tail

(3) If swap

B ...A

PSfrag replacements

S
Head Tail

(4) If no swap

...A B

PSfrag replacements

S
Head Tail

Armada – p.17

The RestructSeries Algorithm

1. Partition node into two disjoint series nodes Head and Tail

2. Recursively call Restruct on both partitions

3. If it is legal and beneficial to swap last child of Head (A) with first
child of Tail (B)

(a) Swap A and B

(b) Mark Head and Tail dirty (force restructuring)

4. else

(a) Append B to Head

5. If Tail has children, goto 2

Original

...BA

PSfrag replacements

S

Head

Tail

(1) Partitioned

A ...B

swap?

PSfrag replacements

S

Head Tail

(3) If swap

B ...A

PSfrag replacements

S
Head Tail

(4) If no swap

...A B

PSfrag replacements

S
Head Tail

Armada – p.17

The RestructSeries Algorithm

1. Partition node into two disjoint series nodes Head and Tail

2. Recursively call Restruct on both partitions

3. If it is legal and beneficial to swap last child of Head (A) with first
child of Tail (B)

(a) Swap A and B

(b) Mark Head and Tail dirty (force restructuring)

4. else

(a) Append B to Head

5. If Tail has children, goto 2

Original

...BA

PSfrag replacements

S

Head

Tail

(1) Partitioned

A ...B

swap?

PSfrag replacements

S

Head Tail

(3) If swap

B ...A

PSfrag replacements

S
Head Tail

(4) If no swap

...A B

PSfrag replacements

S
Head Tail

Armada – p.17

The RestructSeries Algorithm

1. Partition node into two disjoint series nodes Head and Tail

2. Recursively call Restruct on both partitions

3. If it is legal and beneficial to swap last child of Head (A) with first
child of Tail (B)

(a) Swap A and B

(b) Mark Head and Tail dirty (force restructuring)

4. else

(a) Append B to Head

5. If Tail has children, goto 2

Original

...BA

PSfrag replacements

S

Head

Tail

(1) Partitioned

A ...B

swap?

PSfrag replacements

S

Head Tail

(3) If swap

B ...A

PSfrag replacements

S
Head Tail

(4) If no swap

...A B

PSfrag replacements

S
Head Tail

Armada – p.17

Legal Swap

It is legal to swap adjacent ships A and B if

1. the swap must produce an equivalent sequence
• that is, ship A and B are commutative
• A or B is request-equivalent and A or B is data-equivalent

2. the swap must produce an SP-tree (we allow four configs)

Armada – p.18

Legal Swap

It is legal to swap adjacent ships A and B if

1. the swap must produce an equivalent sequence
• that is, ship A and B are commutative
• A or B is request-equivalent and A or B is data-equivalent

2. the swap must produce an SP-tree (we allow four configs)

A (non-structural) — B (non-structural)

B sA
S

A B

A sB
S

B A

Original Swapped

Armada – p.18

Legal Swap

It is legal to swap adjacent ships A and B if

1. the swap must produce an equivalent sequence
• that is, ship A and B are commutative
• A or B is request-equivalent and A or B is data-equivalent

2. the swap must produce an SP-tree (we allow four configs)

A (non-structural) — B (distribution) — parallel node

p
A

s

B

S

PBA

A

A

A

p

s

B

S

P

S

A

S

A

S

A

B

Original Swapped

Armada – p.18

Legal Swap

It is legal to swap adjacent ships A and B if

1. the swap must produce an equivalent sequence
• that is, ship A and B are commutative
• A or B is request-equivalent and A or B is data-equivalent

2. the swap must produce an SP-tree (we allow four configs)

Parallel node — A (merge) — B (non-structural)

p
BA

s

S

P BA

S

P

S

B

S

B

S

B

A

p

B

B

B
s

s

s

A

s

Original Swapped

Armada – p.18

Legal Swap

It is legal to swap adjacent ships A and B if

1. the swap must produce an equivalent sequence
• that is, ship A and B are commutative
• A or B is request-equivalent and A or B is data-equivalent

2. the swap must produce an SP-tree (we allow four configs)

Parallel node — A (merge) — B (distribution) — parallel node

B

pp

s

A

S

P B PA

S

P P

S S

B A

S

A

S

A

S

B

S

B

p

s

B
ss

A

B
ss

A

B
ss

A

p

Original Swapped

Armada – p.18

Beneficial Swap

A swap is deemed beneficial if it increases parallelism, moves a
data-reducing ship closer to the data source, or moves a data-increasing
ship closer to data destination.

Algorithm to decide a beneficial swap of adjacent ships A and B

1. Assign a preferred direction to each ship (1 for right, −1 for left)

• Merge ships prefer to go right (increase parallelism)

• Distribution ships prefer to go left (increase parallelism)

• Data-reducing ships prefer to swap toward the data destination

• Data-increasing ships prefer to swap toward the data source

2. return true if preferred direction of A is greater than preferred
direction of B

3. else return false

Armada – p.19

Restructuring the Example Graph

filt

API

repAPI

API

seg

seg

seg

seg

from application from data provider

client processors
storage servers

dist

dist

S

P

seg seg

P

seg

rep

seg

Pfilt

APIAPI API

P

S S

dist dist

Armada – p.20

Restructuring the Example Graph

filt

API

repAPI

API

seg

seg

seg

seg

from application from data provider

client processors
storage servers

dist

distswap

S

P

seg seg

P

seg

rep

seg

Pfilt

APIAPI API

P

S S

dist dist

swap

Armada – p.20

Restructuring the Example Graph

filtAPI

repAPI

API

seg

seg

seg

seg

client processors
storage servers

dist

dist

filt

S

P

seg seg

P

seg

rep

seg

P

APIAPI API

P

S S

dist distfilt filt

Armada – p.20

Restructuring the Example Graph

filtAPI

repAPI

API

seg

seg

seg

seg

client processors
storage servers

dist

dist

filt

swap

swap

S

P

seg seg

P

seg

rep

seg

P

APIAPI API

P

S S

dist distfilt filt

swap swap

Armada – p.20

Restructuring the Example Graph

filt
API

repAPI

API

seg

seg

seg

seg

client processors
storage servers

dist

dist

filt

filt

filt

S

P

seg

rep

seg

P

S

dist

APIAPI API

P

filt

SS

filt

P

seg seg

S

dist

filt

SS

filt

Armada – p.20

Restructuring the Example Graph

filt
API

repAPI

API

seg

seg

seg

seg

client processors
storage servers

dist

dist

filt

filt

filt
swap

S

P

seg

rep

seg

P

S

dist

APIAPI API

P

filt

SS

filt

P

seg seg

S

dist

filt

SS

filt

swap

Armada – p.20

Restructuring the Example Graph

filt
API

API

API

seg

seg

seg

seg

client processors
storage servers

dist

dist

filt

filt

filt

rep

rep

rep

S

P

seg seg

P

S

dist

P

filt

SS

filt

P

seg seg

S

dist

filt

SS

filt

repAPI

S

repAPI

S

repAPI

S

Armada – p.20

Experiments

Examined four configurations of the example application with a filter that
removed exactly 50% of the data.

filt

API

repAPI

API

dist
seg

seg

seg

seg
dist

Client LAN

Server LAN 1

Server LAN 2

(a) orig1

filt

API

repAPI

API

dist
seg

seg

seg

seg
dist

Client LAN

Server LAN 1

Server LAN 2

(b) orig2

API rep

API

API

dist
seg

seg
rep

rep

filt

filt

dist
seg

seg

filt

filt

Server LAN 1Client LAN

Server LAN 2

same host

(c) restruct1

API rep

API

API

dist
seg

seg
rep

rep

filt

filt

dist
seg

seg

filt

filt

Server LAN 1Client LAN

Server LAN 2

separate hosts

(d) restruct2
Armada – p.21

Experiment Setup

The area between the blobs represents the WAN

• each LAN connected to the
WAN by single router

• each WAN link has limited
capacity

LAN 1

LAN 3

LAN 2
WAN

Ran experiments on the Emulab Network Testbed (Univ. Utah)

• Three LANs, each with
− five 850 MHz Pentium III processors
− 100 Mbps switched network (0.15 msec latency)

• WAN consisted of
− three network links with 2.0 msec latency
− bandwidth ranged from 1 to 50 Mbps (available between

client/servers 2-100 Mbps)

Armada – p.22

Results: Timings

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

Total client/server WAN bandwidth (Mbit/sec)

E
xe

cu
tio

n
T

im
e

(s
ec

)

orig1
orig2
restruct1
restruct2

Armada – p.23

Results: Timings

0 5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

350

400

450

500

Total client/server WAN bandwidth (Mbit/sec)

E
xe

cu
tio

n
T

im
e

(s
ec

)

orig1
orig2
restruct1
restruct2

Armada – p.23

Results: Effective Throughput

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

Total client/server WAN bandwidth (Mbit/sec)

E
ffe

ct
iv

e
T

hr
ou

gh
pu

t (
M

bi
t/s

ec
)

WAN bandwidth
2*WAN bandwidth
orig1
orig2
restruct1
restruct2

Armada – p.24

Discussion

• Below 25 Mbps, all configurations limited by WAN

• Above 25 Mbps, computation associated with Java
serialization and the filter code became the bottleneck

• When network bound, placement of filter is critical

− restruct1 and restruct2 achieve nearly twice the
effective throughput

• When compute bound, parallelization of filter is beneficial

− restruct1 and restruct2 achieve 2-3 times the effective
throughput as orig1 and orig2

Armada – p.25

Related Work

Parallel processing of I/O streams

• PS2 [Messerli 1999]
− data-flow model with automatic parallelization

• TPIE [Vengroff et al. 1996 and 2002]
− data-flow model for I/O-optimal algorithms

Armada does not force whole application into data-flow model
Armada widens data flow for parallel clients and parallel servers

Operation ordering to improve data flow, e.g., in databases

• dQUOB [Plale et al. 2000]
− optimize query tree to move high-filtering portions close to data
− exploit well-defined properties associated with query processing

Armada provides a more general approach

Armada – p.26

Future Work

• Real applications
− How to push some application function into Armada

framework?
− Can components (ships) be re-used between

applications?
− How much can performance benefit?

• Analytic model of “beneficial”

• Placement algorithm
− Static: deploy graph at start
− Dynamic: re-deploy when network conditions change

Armada – p.27

Conclusion

The Armada framework

• allows data provider to describe complex distributed data sets

• allows the application to describe processing required before
computation

• provides a latency-tolerant data-flow approach useful for wide-area
computing

Restructuring algorithm

• arranges graph to provide end-to-end parallel I/O

• enables effective placement of data-processing components to
reducing network traffic over slow network links

Experiments show that restructuring is beneficial in both low and
high-bandwidth environments.

Armada – p.28

The Armada Parallel I/O Framework
for Computational Grids

Ron Oldfield and David Kotz

Department of Computer Science, Dartmouth College

http://www.cs.dartmouth.edu/∼dfk/armada/

Supported by Sandia National Laboratories under contract DOE-AV6184.

Armada – p.29

http://www.cs.dartmouth.edu/~dfk/armada/

	Computational Grids
	Grid Applications
	The Armada Framework
	Armada
	Armada can...
	Restructuring
	Placement
	Ships
	Properties of Ships
	Request- and Data-Equivalent Ships
	Ships that Change Data Flow
	Parallelizable Ships
	Graph Representation
	Graph Restructuring
	The Restruct Algorithm
	The RestructSeries Algorithm
	Legal Swap
	Beneficial Swap
	Restructuring the Example Graph
	Experiments
	Experiment Setup
	Results: Timings
	Results: Effective Throughput
	Discussion
	Related Work
	Future Work
	Conclusion
	~

