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Computational Grids

Networks of geographically distributed heterogeneous
systems and devices.

Properties of computational grids

• Dynamic resources

• Heterogeneous components

• Multiple administrative domains

• High-latency networks

An important challenge facing grid computing is efficient I/O
for data-intensive applications.
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Grid Applications

• Computationally intensive: may require supercomputers

• Many are also data intensive:
− Access large remote datasets (terabytes)
− Datasets often need pre, and/or post-processing

• Examples
− Seismic processing
− Climate modeling
− Astronomy
− Computational Biology
− High-energy physics
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The Armada Framework

• Application deploys a graph of distributed objects (ships)

• Data request causes pipelined data flow through graph

• Graph has two distinct portions:
− from the data provider (describes layout of data set)
− from the application programmer (pre/post-processing)
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Armada

Armada is not a data storage system.
Armada is not a parallel file system.

The data segments that make up a data set are stored in
conventional data servers as files, databases, or the like.

The Armada graph encodes most functionality provided by
the I/O system:

• programmers interface,

• data layout,

• caching and prefetching policies,

• interfaces to heterogeneous data servers.
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Armada can...

With Armada, one can

• build a graph for parallel access to a group of legacy files,

• present many similar data sets through a standard
interface, and

• provide transparent access to derived “virtual” data—
either cached or calculated as needed.
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Restructuring

Problems with the example application:

• potential bottlenecks in the composed graph

• original graph restricts placement alternatives for filter

Original graph Restructured graph
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Placement

After restructuring:

1. Armada deploys ships to appropriate administrative
domains to optimize data flow, then

2. domain-level resource managers decide placement of
individual ships.
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Ships

Armada includes a rich set of extensible ship classes.

Distribute (partition, select, copy)

Merge

Data
Processing

Optimization 

Interface 

Structural

Structural
Non−

Ships
Armada

Filter (>, <, =)
Transform (FFT, unit conversion)
Reduce (min, max, sum)
Permute (sort, transpose)

Cache
Prefetch

Client (Matrix, Line, String, stdio)
Storage (File, Query)
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convert method calls to a set of requests for data.
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Properties of Ships

Properties of ships are

• used by restructuring and placement algorithms

• assigned by the programmer

• encoded in the ship’s description

Properties identify whether a ship

• is data- or request-equivalent

• increases or decreases data flow

• is parallelizable
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Request- and Data-Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

Examples:
{1, 2, 3, 4, 5} ≡ {2, 3, 5, 1, 4}
{1, 2, 3, 4, 5} ≡ {{2, 3}, {1, 4, 5}}
{1, 2, 3, 4, 5} ≡ {{2, 3}, {1, 5, 4}}

In other words, order does not matter.

• R1, R2, and R3 are
disjoint subsets of S.

• {R1, R2, R3} ≡ S
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Request- and Data-Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

A request-equivalent ship
produces request sequence equivalent to its input.

A data-equivalent ship
produces data sequence equivalent to its input.

Most structural ships are both request and data-equivalent.

• R1, R2, and R3 are
disjoint subsets of S.

• {R1, R2, R3} ≡ S
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Request- and Data-Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

Distribution ships partition requests or data

• S1, S2, and S3 are disjoint
subsets of R.

• R ≡ {S1, S2, S3}

• R1, R2, and R3 are
disjoint subsets of S.

• {R1, R2, R3} ≡ S
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Request- and Data-Equivalent Ships

A sequence A is equivalent to sequence B (denoted A ≡ B)
if B is a permutation of A, or
if B is a set of subsequences that partition A.

Merge ships interleave requests or data

• R1, R2, and R3 are
disjoint subsets of S.
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Ships that Change Data Flow

Data-reducer: a ship that decreases the data flow

• filter

• compress

• reduce (min, max, sum)

Data-increaser: a ship that increases the data flow

• cache

• decompress
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Parallelizable Ships

Parallelizable: a ship that can transform into multiple ships

• process requests and data in parallel

• parallelized by “swapping” with structural ships

• parallel version produces equivalent output

Types of parallelizable ships: replicatable, recursive
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Graph Representation

We use a series-parallel tree (SP-tree) to describe the composition of an
Armada graph.

• Syntactically easy to describe (we use XML)

• Easy to manipulate internally

• Constrains the graph to be an SP-DAG (important for restructuring)
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Graph Restructuring

Goals:

• remove bottlenecks (increase parallelism)

• allow better placement to reduce network traffic

We restructure by swapping adjacent nodes in the SP-tree

• increase parallelism by swapping parallelizable ships with
structural ships

• reduce network traffic on slow links by
− moving data-reducing ships toward data source,
− moving data-increasing ships toward data destination
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The Restruct Algorithm

All series and parallel nodes are initially marked dirty.

The Restruct algorithm traverses the SP-tree (depth-first),
revisiting when necessary

1. if node is a leaf or clean (base case)

(a) do nothing

2. if node is a dirty parallel node

(a) recursively call Restruct on each child
(b) mark node clean

3. if node is a dirty series node

(a) call the RestructSeries algorithm
(b) mark node clean
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The RestructSeries Algorithm

1. Partition node into two disjoint series nodes Head and Tail

2. Recursively call Restruct on both partitions

3. If it is legal and beneficial to swap last child of Head (A) with first
child of Tail (B)

(a) Swap A and B

(b) Mark Head and Tail dirty (force restructuring)

4. else

(a) Append B to Head

5. If Tail has children, goto 2
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...BA
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Legal Swap

It is legal to swap adjacent ships A and B if

1. the swap must produce an equivalent sequence
• that is, ship A and B are commutative
• A or B is request-equivalent and A or B is data-equivalent

2. the swap must produce an SP-tree (we allow four configs)
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Beneficial Swap

A swap is deemed beneficial if it increases parallelism, moves a
data-reducing ship closer to the data source, or moves a data-increasing
ship closer to data destination.

Algorithm to decide a beneficial swap of adjacent ships A and B

1. Assign a preferred direction to each ship (1 for right, −1 for left)

• Merge ships prefer to go right (increase parallelism)

• Distribution ships prefer to go left (increase parallelism)

• Data-reducing ships prefer to swap toward the data destination

• Data-increasing ships prefer to swap toward the data source

2. return true if preferred direction of A is greater than preferred
direction of B

3. else return false
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Restructuring the Example Graph
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Restructuring the Example Graph
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Restructuring the Example Graph
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Restructuring the Example Graph
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Restructuring the Example Graph
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Experiments

Examined four configurations of the example application with a filter that
removed exactly 50% of the data.
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Experiment Setup

The area between the blobs represents the WAN

• each LAN connected to the
WAN by single router

• each WAN link has limited
capacity

LAN 1

LAN 3

LAN 2
WAN

Ran experiments on the Emulab Network Testbed (Univ. Utah)

• Three LANs, each with
− five 850 MHz Pentium III processors
− 100 Mbps switched network (0.15 msec latency)

• WAN consisted of
− three network links with 2.0 msec latency
− bandwidth ranged from 1 to 50 Mbps (available between

client/servers 2-100 Mbps)
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Results: Timings
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Results: Timings
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Results: Effective Throughput
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Discussion

• Below 25 Mbps, all configurations limited by WAN

• Above 25 Mbps, computation associated with Java
serialization and the filter code became the bottleneck

• When network bound, placement of filter is critical

− restruct1 and restruct2 achieve nearly twice the
effective throughput

• When compute bound, parallelization of filter is beneficial

− restruct1 and restruct2 achieve 2-3 times the effective
throughput as orig1 and orig2
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Related Work

Parallel processing of I/O streams

• PS2 [Messerli 1999]
− data-flow model with automatic parallelization

• TPIE [Vengroff et al. 1996 and 2002]
− data-flow model for I/O-optimal algorithms

Armada does not force whole application into data-flow model
Armada widens data flow for parallel clients and parallel servers

Operation ordering to improve data flow, e.g., in databases

• dQUOB [Plale et al. 2000]
− optimize query tree to move high-filtering portions close to data
− exploit well-defined properties associated with query processing

Armada provides a more general approach

Armada – p.26



Future Work

• Real applications
− How to push some application function into Armada

framework?
− Can components (ships) be re-used between

applications?
− How much can performance benefit?

• Analytic model of “beneficial”

• Placement algorithm
− Static: deploy graph at start
− Dynamic: re-deploy when network conditions change
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Conclusion

The Armada framework

• allows data provider to describe complex distributed data sets

• allows the application to describe processing required before
computation

• provides a latency-tolerant data-flow approach useful for wide-area
computing

Restructuring algorithm

• arranges graph to provide end-to-end parallel I/O

• enables effective placement of data-processing components to
reducing network traffic over slow network links

Experiments show that restructuring is beneficial in both low and
high-bandwidth environments.
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