
Detecting Protected Layer-3 Rogue APs
Hongda Yin, Guanling Chen, and Jie Wang

Department of Computer Science, University of Massachusetts Lowell
{hyin, glchen, wang}@cs.uml.edu

Abstract— Unauthorized rogue access points (APs), such
as those brought into a corporate campus by employees,
pose a security threat as they may be poorly managed
or insufficiently secured. Any attacker in the vicinity can
easily get onto the internal network through a rogue
AP, bypassing all perimeter security measures. Existing
detection solutions work well for detecting layer-2 rogue
APs. It is a challenge, however, to accurately detect a layer-
3 rogue AP that is protected by WEP or other security
measures. In this paper, we describe a new rogue AP
detection method to address this problem. Our solution
uses a verifier on the internal wired network to send test
traffic towards wireless edge, and uses wireless sniffers to
identify rouge APs that relay the test packets. To quickly
sweep all possible rogue APs, the verifier uses a greedy
algorithm to schedule the channels for the sniffers to listen
to. To work with the encrypted AP traffic, the sniffers
use a probabilistic algorithm that only relies on observed
packet size. Using extensive experiments, we show that the
proposed approach can robustly detect rogue APs with
moderate network overhead.

I. INTRODUCTION

A rogue AP is an unauthorized access point plugged
into a corporate network, posing a serious security threat
to enterprise IT systems. Rogue APs are typically in-
stalled by employees in work places for convenience and
flexibility. Although users could leverage common secu-
rity measures such as Wired Equivalent Privacy (WEP)
to protect their network communications, such measures
may not be consistent with the corporate security policies
and they are often inefficient. For example, researchers
have identified design flaws in WEP, which can be easily
exploited to recover secret keys [1]. Rogue AP exposes
internal networks to the outside world, making it easy
for people to bypass security measures.

Several vendors (e.g., Aruba Networks, AirMagnet,
and AirDefense) sell WLAN Intrusion Detection System
(WIDS) products that can detect rogue APs and other
security threats. These WIDS solutions typically consist
of a set of wireless sniffers that scan airwaves for
packet analysis. These sniffers can be overlaid with APs,
meaning that they are strategically deployed as a separate
infrastructure. These sniffers can also be integrated with
APs, meaning that the APs themselves, in addition to
serving wireless clients, also perform IDS functionali-
ties periodically. Researchers have recently proposed to
turn existing desktop computers into wireless sniffers to

further reduce deployment cost while still providing a
reasonable coverage [2].

Detecting rogue APs using wireless sniffers requires
that the sniffers listen to all WLAN channels to detect the
presence of APs either sequentially or non-sequentially
using various channel-surfing strategies [3]. If a detected
AP is not on the authorized list, it is flagged as a
suspect. The detected suspect, however, may well be a
legitimate AP belong to a neighboring coffee shop or a
nearby household. The question then becomes how to
automatically verify whether the suspect AP is actually
on the enterprise wired network or not.

One effective approach to verify layer-2 rogue APs is
to poll network switches over SNMP to determine MAC
addresses associated with each port on the switch. If a
wireless sniffer observes any of these MAC addresses in
the air, the associated AP must be on the wired network,
given that the AP works as a layer-2 bridge. For layer-
3 rogue APs, one common verification approach is to
have a nearby sniffer actively associate with the suspect
AP and ping a known host on the internal network
not accessible from outside. If successful, the suspect
AP is confirmed to be on the internal network and is
indeed a rogue. This approach, however, fails to detect
protected APs that require valid MAC addresses or other
authentication methods (such as WEP, WPA, and WPA2)
for successful association. A recent study confirms that
existing solutions are indeed not adequate for detecting
protected APs that act as routers [4]. Unfortunately,
most off-the-shelf APs are layer-3 devices and it is not
unreasonable to assume that the employee will use some
kind of protection on those APs, given the increased
publicity on wireless insecurity, making them hard to
be detected with existing approaches.

In this paper, we propose a new solution to detect
protected layer-3 rogue APs. In particular, instead of
sending test packets from wireless side, our solution
has a verifier on the wired network that sends test
packets towards the wireless side. Should any wireless
sniffer pick up these special packets, we have effectively
verified that the suspect AP that relays these packets is
indeed on the internal network and thus is a rogue AP.

Our approach needs to address two issues for robust
detection. First, we note that a layer-3 rogue AP nor-
mally comes with a NAT(network address translation)

module so that multiple devices can share the same
connection. It is impossible to send test packets directly
to the associated wireless clients, from the wired side,
because they have private IP addresses. We note that
NAT rewrites outbound packets from associated clients
with its own address. Thus, we can use the verifier to
monitor the wired traffic and send test packets to the
active sources. If an active source is an AP, the test
packets will be forwarded by NAT and observed by
wireless sniffers. Second, the sniffers may not be able to
recognize test packets by examining the payload if the
AP has enabled encryption. To solve this problem we
devise a probabilistic verification algorithm based on a
sequence of packets of specific sizes.

The contribution of this paper is a novel approach
to detect protected rogue APs acting as layer-3 routers,
which are common cases. We develop an algorithm for
the verifier and wireless sniffers to cooperatively verify
rogue APs. Using simulations and experiments, we show
that the proposed approach can effectively detect rogue
APs in a relatively short time period with moderate
network overhead. Once a rogue AP is confirmed, the
verifier returns its IP address from which the switch port
to that address can be found and automatically blocked
until the rogue is removed.

In this paper we assume the owner of rogue APs is
not malicious: he simply sets up an unauthorized AP
for convenience. The verifier and the wireless sniffers
themselves are guarded by typical security measures,
such as access control and intrusion detection, against
external attackers. The details of these methods are not
the focus of this paper.

The rest of the paper is organized as follows. We
present a network model in Section II. In Sections III
and IV we describe our monitoring and verification
algorithms, respectively. We present evaluation results
in Section V. We discuss potential limitations and scal-
ability improvements of our method in Section VI.
Section VII summarizes related work and we conclude
in Section VIII.

II. NETWORK MODEL

We assume that wireless sniffers are deployed to mon-
itor the enterprise airspace. The sniffers employ some
channel-hopping strategies to detect the presence of APs.
These APs may be using different communication chan-
nels. The sniffers are connected to the wired network and
can communicate with an internal verifier. The sniffers
update the verifier about the detected APs and their
channels. The verifier may instruct certain sniffers to
switch to a particular channel during the verification
process. Figure 1 shows a simplified network where
sniffer S1 covers multiple APs, and sniffers S1 and

AP1 AP2

Verifier

C1 C2
S1

S2

Fig. 1. A simplified network model with APs and sniffers.

S2 have overlapping coverage. C1 and C2 are wireless
workstations.

A rogue AP could be a layer-2 device or a layer-3
device. While our approach works for both cases, we will
focus on layer-3 devices, which are most common for
consumer APs. A layer-3 AP typically comes with NAT
and each associated wireless clients is assigned with a
private IP address. When a client communicates with
a wired host with address Aout and port number Pout,
NAT opens a special port on itself (Pnat) and rewrites the
headers of outbound packets so they look like as if they
are coming from its own address Anat and port Pnat.
At this time, any packet from Aout and Pout that are
sent to Anat and Pnat will be forwarded by NAT to the
wireless client, thus appearing on the wireless medium
and observable by sniffers in range.

NAT ports are opened dynamically when clients initi-
ate communications with outside destinations. Thus, the
verifier needs to monitor outbound traffic and send test
packets to the sources Asrc and Psrc. The test packets,
however, need to have forged headers to look like as if
they are coming from Aout and Pout. It is fairly easy
to use existing tools to send packets with customized
headers. If some of the sniffers report reception of these
packets, Asrc must be the IP address of a rogue AP.
Based on the network topology, switches’ ARP tables,
and possibly DHCP logs, it is feasible to track down
exactly which switch port the rogue AP is plugged into.

Note that the verifier essentially injects spoofed pack-
ets into a normal communication path. We need to be
careful what types of packets to inject without disrupting
normal communication. TCP packets have a sequence
number (SN) header field to ensure reliable data transfer.
The receiver maintains a window rcv wnd and only
accepts packets whose SN falling into that window.
Thus, the verifier should inject test packets with forged
SN set to be outside that window, such as an SN the
receiver has recently acknowledged. The receiver will
then silently drop these test packets. On the other hand,
UDP packets do not have transport-layer SN and all

packets will be forwarded to the application layer. To
avoid confusing applications using UDP, we refrain from
injecting UDP test packets and the verifier only monitors
TCP traffic.

III. WIRED TRAFFIC MONITORING

The verifier monitors wired traffic. Every observed
host on the internal network is potentially a wireless
AP, unless explicitly marked by administrators as wired,
such as the well-known addresses of network servers.
All addresses allocated to user workstations, however,
should be considered susceptible, since an user could
configure an AP to use the static IP address assigned to
her workstation when DHCP is not available.

Verifying a host takes a certain amount of time for
sniffers to switch channels and analyze observed packets
(Section IV). If there is a burst of new sources observed
in a short period, these sources are queued by the verifier
and tested sequentially. The verifier always picks the host
with the oldest timestamp for verification. All hosts in
the queue will be updated with new timestamp if more
traffic from them is observed. The NAT port, however,
could expire for being idle for too long when the verifier
tests a source that has been waiting in the queue for
a while. The verifier will skip testing any source that
has not been updated for certain amount of time, say
5 minutes, to avoid sending traffic to an invalid port
number. These sources will be tested next time when
their traffic is observed.

Further reducing network load is possible if the ver-
ifier can tell, based on traffic patterns, whether the
observed hosts are likely connected to a wireless link.
Consider IEEE 802.11b, for example, where the time in-
terval between two back-to-back packets from a wireless
client has an average value of 810µs under ideal situation
without contention [5]. Note that a wireless client has to
wait for a random backoff after successfully sending out
a packet. On the other hand, intervals between consec-
utive packets going through Ethernet connections have
a much smaller value, typically less than 50µs due to a
rather different MAC protocol [6]. Thus, it is possible
to statistically distinguish wireless and wired sources by
analyzing the timing between packets. Wei et. al propose
an offline algorithm to use inter-ACK intervals over TCP
flows for iterative flow classification [6].

We want to find an online algorithm for the verifier
to quickly classify observed hosts, so that the verifier
can focus only on testing those classified as wireless
sources. If the classification is 100% accurate, then the
verifier do not need to take further actions. But we do not
know whether an algorithm can achieve this accuracy.
Inspired by Wei et al’s work [6], we choose to count
the short packet intervals, i.e., less than 250µs, between
TCP packets of both inbound and outbound directions.

The verifier classifies any source, whose ratio of inbound
and outbound short intervals exceeds a threshold, as a
potential wireless host. The reason of doing so is that
the number of outbound short intervals, observed after
packets having gone through a wireless link, is expected
to be much smaller than the inbound number of short
intervals, observed before the packets reaching the AP.

In summary, the verifier may test every observed
internal host or only test those hosts classified as wireless
sources. The first approach is simple to implement. The
classification can reduce test traffic, but it may also lead
to inaccurate results and longer detection delay. In both
cases, a verified non-rogue address will not be tested for
some time, after which it becomes susceptible again and
is subject for verification. We evaluate these two methods
in Section V.

IV. ROGUE AP VERIFICATION

The verifier sends test packets to observed sources and
see whether some wireless sniffer can hear these packets.
But a rogue AP may encrypt traffic and so sniffers cannot
rely on special signature embedded in the application-
layer data. One may borrow ideas from covert channels,
in which the verifier deliberately manipulate the timing
between packets without injecting any new packets. The
packet intervals thus carry unique information, some-
times called watermark, which can be identified by a
passive sniffer [7]. While not intrusive, this approach
seems less appealing in a wireless environment because
802.11 MAC contention may cause timing-based analy-
sis less robust. Also, it requires customizing routers on
the data path, which is a non-trivial task and will degrade
routing performance.

A. Packet size selection

We choose to send test packets with sizes not fre-
quently seen on the suspect APs. Namely, the sniffers
report empirical distribution of packet sizes observed
from APs to the verifier, who then selects an unusual
size for test packets. This simple approach has an im-
plicit assumption that sizes of the downstream packets
from APs are not uniformly distributed. We analyzed a
network trace collected from a WLAN made available to
attendees of a four-day academic conference (Sigcomm
2004) [8]. Figure 2 shows the PDF of one AP’s down-
stream data packet sizes (the injected test packets will
appear as 802.11 data packets on wireless). It is clear
that most packet sizes appear infrequently. Analysis of
other APs confirms this observation.

In general, we want to choose a relatively small packet
size so that the verifier demands less bandwidth. Also,
a small packet will unlikely be fragmented by APs and
thus will not be missed by sniffers. Once a size is chosen,
the verifier notifies the sniffers to only watch for packets

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 50 100 150 200 250 300

P
er

ce
nt

ag
e

Frame Size (11:7E:5D:6B:A8:AD)

Fig. 2. Size distribution of downstream data packets.

with this particular size. To get a frame size N , the
verifier should send out TCP packets with application
payload of N minus the size of all the protocol headers
captured by the sniffer. Note that the sniffer should also
consider the overhead of encrypted frames. For example,
there are additional 12 bytes overhead for WEP frames
(3 bytes IV, 1 byte key number, and two 4-bytes ICVs).

Suppose that the two geographically close APs in Fig-
ure 1 belong to two companies, where S1 may overhear
the test packets from the other AP if the verification
processes occur simultaneously in these two networks.
In this case, S1 may falsely conclude that another
company’s AP is a rogue. To mitigate this problem, the
verifier chooses randomly a packet size from the M least
observed packet sizes on the network, minimizing the
chance of colliding verification time and test packet size.

B. Binary hypothesis testing

To avoid false positives caused by normal packets that
happen to have the same size of the test packets, the
verifier sends more than one test packet to improve the
robustness of detection. The question is how many test
packets the verifier should send. Note that we may not
observe a back-to-back packet train of the same size,
because normal packets of different sizes may be inserted
as the test packets going through the shared wireless
medium. The APs may also send other frames, such as
beacons, in the middle of a test packet sequence.

We use Sequential Hypothesis Testing theory to de-
termine the number of test packets that can achieve
desired detection accuracy [9]. Assume that the prob-
ability to see data packets with the chosen test size s
from a monitored AP is p, and the sniffers determine
independently whether the AP is relaying test packets
based on observed downstream traffic. Intuitively, the
more packets with the test size are observed, the more
likely a verification is in process and the AP is a rogue.
For a given AP being monitored by some sniffer, let
Xi be a random variable that represents the size of ith

downstream data packet, where

Xi =
{

0, if the packet size 6= s

1, if the packet size = s

We consider two hypotheses, H0 and H1, where H0

states that the monitored AP is not relaying test packets
(thus not a rogue), and H1 states that the AP is relaying
test packets (thus a rogue). Assume that the random
variables Xi|Hj are independent and uniformly dis-
tributed, conditional on the hypothesis Hj . We express
the distribution of Xi as below:

Pr[Xi = 0|H0] = θ0, P r[Xi = 1|H0] = 1− θ0

Pr[Xi = 0|H1] = θ1, P r[Xi = 1|H1] = 1− θ1

We can specify the detection performance using the
detection probability, PD, and the false positive proba-
bility, PF . In particular, we can choose desired values
for α and β so that

PF ≤ α and PD ≥ β (1)

where typical values might be α = 0.01 and β = 0.99.
The goal of the verification algorithm is to determine

which hypothesis is true while satisfying the perfor-
mance condition (1). Following [9], as each packet is
observed we calculate the likelihood ratio as follows:

Λ(X) =
Pr[X|H1]
Pr[X|H0]

=
n∏

i=1

Pr[Xi|H1]
Pr[Xi|H0]

(2)

where X is the vector of events (packet size is s
or not) observed so far and Pr[X|Hi] represents the
conditional probability mass function of the event stream
X given that model Hj is true. The likelihood ratio is
then compared to an upper threshold, η1, and a lower
threshold, η0. If Λ(X) ≤ η0 then we accept hypothesis
H0. If Λ(X) ≥ η1 then we accept hypothesis H1. If
η0 < Λ(X) < η1 then we wait for the next observation
and update Λ(X). These two thresholds can be upper
and lower bounded by simple expressions of PF and PD

(η1 = β
α and η0 = 1−β

1−α), from which we can compute
the expected number of observations needed before the
verification algorithm accepts one hypothesis [10]:

E[N |H0] =
αlnβ

α + (1− α)ln 1−β
1−α

θ0ln
θ1
θ0

+ (1− θ0)ln 1−θ1
1−θ0

E[N |H1] =
βlnβ

α + (1− β)ln 1−β
1−α

θ1ln
θ1
θ0

+ (1− θ1)ln 1−θ1
1−θ0

(3)

Given a suspect AP, θ0 can be empirically calculated
by sniffers. The verifier injects a sequence of test packets
of the same size, producing a new probability θ1. Given
desired performance conditions α and β (1), we can

 0

 10

 20

 30

 40

 50

 60

 70

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

E
[N

|H
1]

theta_1

theta_0 = 0.9
theta_0 = 0.90
theta_0 = 0.95

Fig. 3. The expected number of observations to accept H1.

establish how θ1 relates to the number of observations
needed (3) for the verifier to accept H0 or H1 (deciding
whether the AP is a rogue or not). Figure 3 shows that
we want to choose packet size with small probability ap-
pearing on normal communications (1−θ0) to reduce the
number of observations. It also shows a tradeoff for θ1,
for the verifier needs to inject more packets for smaller
θ1 and thus yielding quicker algorithm termination.

The number of test packets relates to the current load
of the monitored AP. If the rate of downstream data
packets is measured as R, the verifier needs to inject
R/2 test packets to bring θ1 to about 0.7. Fortunately,
R is often small, particularly for rogue APs, so the
verifier does not have to send a huge amount of test
packets. We computed the number (and the total bytes)
of downstream data packets of an AP deployed in our
department over an 8.5-hour period in the afternoon. The
load on that AP was fairly light and most of the time the
R is less than 10 packets per second and the bandwidth
usage is less than 8 Kbps.

C. Sniffer channel scheduling

When the verifier starts to test a source, it does not
know which suspect AP will relay the test packets that
will be seen by the sniffers. The sniffers, however,
may have detected multiple suspected APs on different
channels. For example, if there is only one sniffer S1

in Figure 1 and the two APs run on different channels,
S1 has to cover both APs but can only tune to different
channels sequentially. So for every source verification,
the verifier needs to repeat the test packets when schedul-
ing sniffers over different channels to cover all suspect
APs, from any of which the test packets may be relayed.

Assume that there are N suspect APs and M sniffers.
We label a suspect AP by i and a sniffer by j, where 1 ≤
i ≤ N and 1 ≤ j ≤ M . We call a suspect AP a target.
Each target i transmits on a channel ci, which could
be any value between 1 and Cmax. Here Cmax is the
maximum number of channels available. For example,
Cmax = 13 for 802.11b. A sniffer can hear multiple

Input: ip address to be verified
1) compute J (the set of sniffers j) and I (the set of

targets i detected by any j)
2) ∀ target i in I , compute Si

3) select the sniffer j in Si, whose rj is smallest (rj

is the current round scheduled for j)
4) if there are multiple sniffers having the same mini-

mum rounds, select the sniffer j whose tj is smallest
5) once sniffer j is selected to cover i, we schedule j

to tune into channel ci at round rj

6) remove all targets on channel ci covered by j from
I and place them under sniffer i in row rj++

7) repeat from step 2) until I is empty

Fig. 4. Sniffer channel scheduling algorithm.

targets if they are in its range, even if they may not be
on the same channel. But a sniffer can only listen to one
channel at a time and must switch channels to monitor
other targets in range. A target may also be covered by
multiple sniffers if it falls in their ranges.

We use Si to denote the set of sniffers that can cover
target i and si the size of Si. We use Tj to denote the
set of channels of the targets that can be heard by sniffer
j and tj the size of Tj . For each source to be verified,
the verifier can obtain these two sets based on previous
sniffer reports. Each verification contains multiple test
rounds, rk. At each round the verifier schedules sniffers
to certain channels and sends test packets to the source
being tested. The goal of the verifier is to minimize
the number of sniffers and the number of test rounds
such that all targets are covered by at least one sniffer.
We refer this problem as Minimum Channel Cover
(MCC) problem. We show that MCC is NP-hard. In
particular, we reduce the NP-complete Minimum (Set)
Cover problem [11] to the decision problem of MCC
(see Appendix).

We use a greedy algorithm to approximate the optimal
solution of MCC. Consider a matrix where the columns
are sniffers from 1 to M , and the rows are test rounds
from r1 to rk. Our algorithm is to place all targets into
the matrix cells, subject to the constraints that all targets
in one cell must be on the same channel and they are all
in the range of the sniffer of that column.

For a given target i, we want to use a sniffer j in
Si to cover i, such that tj is small that may reduce
other sniffers’ work. This heuristic can be illustrated
in Figure 1, where we want to use sniffer S2 to cover
AP2 and S1 to cover AP1, so only one test round is
needed. If multiple sniffers can cover a target being
considered, we want to allocate the target for the sniffer
with smallest test rounds scheduled for the purpose of
reducing the overall number of test rounds. Combining
these heuristics, we get the algorithm shown in Figure 4.

V. EVALUATION RESULTS

In this section we present experimental results of our
detection method. We first evaluate wired traffic moni-
toring methods using extensive network traces. We then
evaluate the sniffer channel scheduling algorithm using
simulation. Finally, we present empirical implementation
of the proposed rogue AP detector.

A. Wired traffic monitoring

The verifier monitors wired traffic and test internal
addresses. The premise of this approach is that the ver-
ification load could be amortized over time. To evaluate
this approach, we need extensive long-term network
traces. Unfortunately, we do not have such kind of data
from real enterprise networks. Instead, we use traces
collected from Dartmouth campus WLAN as a baseline
evaluation. These traces only contain traffic from and to
wireless hosts. We took two 10-day data sets collected
in November 2003, one collected from APs in a library
building and the other collected from APs in a residential
hall. There are more than 1200 unique IP addresses in
each trace. We scan each trace chronically, where in 75%
of the cases the time needed to observe a previously
unseen address is greater than 100 seconds.

We simulated the verifier to test every IP address
in these two traces. We used 30 seconds as a fairly
conservative value for the time needed to verify a source
(in practice, verification only needs a couple of seconds
when the number of targets is small). Thus, a total of 120
hosts can be verified in an hour. When the verifier was
testing an address, all newly arrived hosts were queued.
Any newly arrived packet from a queued host would
pull that host to the end of the queue and the verifier
always picked the head of the queue when it started next
verification. If the host to be verified had not generated
any packets for 5 minutes, the verifier would simply
ignore it to avoid sending test packets to an expired NAT
port number.

Figure 5 shows how the length of verification queue
changed over 10 days. The length of both queues had
never exceeded 20. The queues, however, did have
some hosts remaining untested, roughly 6 for the library
trace and 10 for the residential trace. This means that
there were some hosts that appeared early in the trace,
expired in the queue before they could be verified, and
were never seen again (so no more traffic triggering
verification). Most likely this is an artifact caused by
device mobility.

Figure 6 shows the distribution of the verification
delay since the first time a request was observed from
a host. In more than 98% of the cases a host could be
verified within 5 minutes since its first appearance. A
few hosts were not verified after a couple of days, most
likely when these mobile hosts visited the monitored APs

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 50 100 150 200 250

Q
ue

ue
 le

ng
th

Time since trace start (hours)

Library
Residential

Fig. 5. Length of verification queue (campus WLAN).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.0001 0.001 0.01 0.1 1 10 100 1000
C

D
F

Time since first request (hours)

Library
Residential

Fig. 6. Verification delay since first request (campus WLAN).

again. We also found that in more than 95% and 99% of
the cases a host could be verified within 50 seconds since
its last update for the library and residential traces, re-
spectively. These results suggest that the verifier worked
effectively for a moderate-size network.

While the Dartmouth trace is a long-term trace, it only
consists of wireless hosts and does not represent a typical
enterprise where many hosts are wired. So we took a
one-day enterprise network trace presented in [12], and
merged the data sets collected from oddly and evenly
numbered router ports to produce two time-continuous
traces. We then considered each trace emulating a verifier
that monitors a port for one hour, moves on to the next
port for another hour, and so on. We found that in about
46% or 66% of the cases the time intervals needed to
observe a new host are less than 10 seconds. We expect
that the intervals would be larger if we had longer-time
traces from the same router ports.

Figure 7 shows the change of the verification queue
length. As expected, the queue length jumped and then
gradually decreased as the verifier moved to a new port.
This pattern is quite visible for the even-port trace. At
the 6th hour of the odd-port trace, the monitor started
on an active subnet and 539 hosts were observed during
that hour. Many of these hosts could not be verified in
time during this period and they stayed in the queue.

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12

Q
ue

ue
 le

ng
th

Time since trace start (hours)

Odd Ports
Even Ports

Fig. 7. Length of verification queue (enterprise LAN).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.0001 0.001 0.01 0.1 1 10

C
D

F

Time since first request (hours)

Odd Ports
Even Ports

Fig. 8. Verification delay since first request (enterprise LAN).

We observed a similar pattern at the 10th hour for
another busy subnet. We note that once the monitor
cycles through these ports, the queued hosts will be
verified once the monitor visits previous ports again.

Figure 8 shows the distribution of the verification
delay since the first time a request was observed from
a host. For those hosts that were verified, 77% of
them were verified within 20 minutes since their first
appearance for both traces. Also, 49% of them were
verified within 100 seconds since their last update. For
all these tests, the verifier could achieve even faster speed
if it could test a source quicker than 30 seconds.

Note that the verifier could reduce its workload by
only testing likely wireless sources (Section III). To eval-
uate this approach, we set up a Linksys AP (model WRT
54G), configured to use 802.11b, which was plugged into
our department network mimicking a rogue AP. One of
the author’s laptop used that AP as the main network
connection whenever the author was in his office. The
Web browser on that laptop was configured to use a
Web proxy running tcpdump to collect the HTTP traffic.
Thus, all the Web transactions from that laptop went
through the AP and the Web proxy, recorded in the
tcpdump trace. Then we ran the classification algorithm
through this trace to see whether we could classify the
IP address of the AP as wireless. While we only had

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

C
D

F

Classification time (seconds)

Fig. 9. Classification time (HTTP proxy).

one trace, we started classification at different time in
the trace. We got total 667 classification over a 14-day
trace with 30-minute separation. Our classifier achieved
100% accuracy and Figure 9 shows the distribution of
how long the classifier took to make a decision since
it saw the first request. In about 93% of the cases the
classifier could conclude in less than 100 seconds.

Another question is whether the classifier can correctly
identify the wired sources to avoid testing them further.
We ran the classification over the previous one-day
enterprise network traces, where 568 unique IP addresses
were classified as wireless and 227 were classified as
wired. The median time to classify a wireless and a wired
source is 86 and 476 seconds, respectively. While we do
not have the ground truth to tell the accuracy of the
classification over this trace, it is likely, assuming most
of the enterprise hosts are wired, that the algorithm had
correctly classified about 30% of wired hosts and thus
could reduce testing traffic significantly. We are currently
tuning the algorithm to further reduce false positives.

B. Sniffer channel scheduling

Here we evaluate the sniffer channel scheduling algo-
rithm. Ideally we want to use fewest sniffers to cover
all the suspect APs. A sniffer can only tune into dif-
ferent channels sequentially, so we also want to have
minimum number of channel tuning to speed up the
verification. We used simulation for evaluation so we
could systematically change parameters. On a 500x500
site, we randomly placed 50 APs, each using a random
channel from the maximum value to be MaxChan. We
set the sniffering range to be either 100 or 200, and
changed the number of randomly placed sniffers.

Figure 10 shows the maximum number of tuning time
of all sniffers, namely, the maximum number of channels
some sniffers need to switch. We divided the number of
sniffers that have detected APs by the total number of
APs detected by sniffers to get the sniffer/AP ratio. As
this ratio increases, the tuning time decreases. This is as
expected because the work of covering the APs can be

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.5 1 1.5 2 2.5 3

S
ch

ed
ul

ed
 r

ou
nd

s

Sniffer/AP ratio

MaxChan:13 Radius:100
MaxChan:13 Radius:200

Fig. 10. Number of scheduled rounds for sniffers.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

S
ch

ed
ul

ed
 s

ni
ffe

rs

Sniffer/AP ratio

MaxChan:3 Radius:200
MaxChan:13 Radius:200

Fig. 11. Number of sniffers to be instrumented.

shared by more sniffers. With a larger sniffering radius,
a sniffer can cover more APs with the same channels so
the tuning time also decreases.

Figure 11 shows the ratio of used sniffers, since not all
sniffers are needed due to overlapping coverage. We can
see that the number of required sniffers decreases as the
sniffer/AP density increases. On the other hand, if the
APs run over a larger channel range, more sniffers are
needed to cover them. In practice, however, people tend
to use the default channel or choose from orthogonal
channels (only 3 for 802.11b).

C. Empirical implementation

We have implemented the proposed rogue AP detector
in C++ using the Click framework [13], which is de-
signed for packet routing but is also suitable for network
measurement and analysis. A Click module on the veri-
fier monitors all the traffic passing through its Ethernet
NIC, and communicates through TCP connections with
other Click modules on the sniffers that monitor wireless
traffic. The sniffers run on IBM Thinkpad T42 installed
with Ubuntu Linux 5.1 and Madwifi driver. The sniffers
simply call iwconfig to switch channels. We installed
the verifier on a Web proxy and we instrumented both a
wireless and wired client browsing through that proxy.

For every newly observed IP address, the verifier no-
tifies the sniffers which channel to listen and packet size

to observe. Then it uses an open source tool, Nemesis,
to craft headers of the test packets so they look like from
TCP peers of the sources being verified. After sending
the test packets, the verifier sleeps for 2 seconds before
instructing sniffers to report back the number of observed
test packets, so it can decide whether the address being
tested belong to a rogue AP. Note that the verifier sleeps
for a fixed time interval to make sure all the test packets
have been delivered by the potential AP before making
a conclusion. In this lab environment, the verifier could
reliably detect the AP of the instrumented wireless client
with 100% accuracy (no false negatives) and had never
classified the address of the instrumented wired client as
an AP (no false positives).

VI. DISCUSSION

Our research is conducted within the context of project
MAP [14], in collaboration with Dartmouth College
and Aruba Networks. MAP aims to build a scalable
measurement infrastructure using wireless sniffers, based
on which various online analysis algorithms are designed
to detect WLAN security threats. Our detector will be
integrated with MAP as an independent detector. Within
MAP, we envision a building-wide system deployment
with 20–50 wireless sniffers and 1 rogue AP verifier.
Assume that there are 1,000 active hosts in the building
to be verified using 30 100-byte test packets for each
host, the imposed network load is about 3MB over a
relatively long period. We do not consider this load as
a bottleneck, given that many organizations already run
a scanner to periodically check various properties of the
internal hosts as part of their security operations.

The verifier, on the other hand, may have to handle
a large amount of traffic generated inside the building.
While the processing is fairly lightweight (only checking
transport-layer header), there are ways to further reduce
the overhead. For example, many routers can be config-
ured to export NetFlow (or sFlow) records marking the
endpoints of the active flows. The verifier can greatly
increase its scalability by using this information instead
of parsing the whole packet streams. This approach
will also reduce some privacy concerns since only IP
addresses and port numbers are exposed to the verifier.
The verifier, in this case, need to randomly select a TCP
sequence number since NetFlow does not provide this
information. The probability of SN collision, however,
is relatively low given the large SN range. We plan to
investigate this tradeoff as a future work.

Our approach has a potential limitation on detecting
the rogue APs configured as VPN endpoints, which will
drop the verifier’s forged test packets since they do not
have valid authentication headers, thus the wireless snif-
fers cannot see the test packets. Currently our solution
is to have the verifier to mark the IP addresses that only

have one communication peer (VPN tunneling effect)
and alert administrator for further checkup.

Our solution can be easily combined with other rogue
AP detection methods. For example, a wireless sniffer
may first try to associate with an open AP and ping the
internal verifier. Our method can only be activated when
the association fails or the AP requires authentication, to
further reduce the number of needed verification steps.

VII. RELATED WORK

Almost every WLAN security vendor provides some
form of rogue AP detection. Such detection could be
as simple as detecting unknown APs compared against
an authorized list. More advanced detection uses the
associate-and-ping approach described in Section I. The
first approach may lead to numerous false positives,
classifying neighboring APs as rogues on the internal
network. The later approach fails for protected APs that
requires authentication for association [4].

RogueScanner by Network Chemistry takes a collab-
orative approach, in which the detector collects various
information from network devices and send it back
to a centralized server for classification. This raises
both privacy and security concerns on sending internal
network information to a third party. This approach has
to build a huge database on device profiles and needs
user feedback on any device that is not in the database.
Thus it needs to trust user-input data not to poison their
database in a malicious or unintentional way.

DIAR proposes three more types of tests besides
active association, leading to perhaps a most compre-
hensive solution for rogue AP detection [2]. First, one
can use MAC address test that requires compiling a list
of known MAC addresses on the corporate networks, but
it only works for link-layer APs. Second, one can run
DHCP test to identify device OS types using signatures
from DHCP requests, which only works for APs con-
figured to use DHCP. Finally, the wireless sniffers can
replay some captured packets and see whether any wired
monitor can detect these packets. DIAR uses several
heuristics to reduce false alarms. This approach can
bypass encryption problem but require running a wired
monitor in each subnet. On the other hand, we target
to run only one verifier for monitoring, for example,
the NetFlow data from all routers in a building-wide
deployment.

Beyah et al. propose to detect rogue APs from the
wired side since wired and wireless hosts exhibit dif-
ferent inter-packet temporal distributions [15]. Similarly,
Wei et al. use inter-packet timing to classify whether a
source is wireless and wired [6], which can be used to
detect rogue APs. These statistical methods often lead
to inaccurate results due to natural variations of traffic
patterns. Our method takes a step further, to employ a

verification procedure to determine whether a source is
actually wireless or not by leveraging wireless sniffers.

If we know the precise location of a detected AP, we
can determine that it is a rogue if it is located inside
the enterprise. Existing WLAN localization algorithms
can achieve 3–5 meter accuracy [16], but they typically
require extensive manual training to build RF maps and
thus is not realistic to deploy for any large campus.

VIII. CONCLUSION

We propose a new method where a wired verifier coor-
dinates with wireless sniffers to reliably detect protected
layer-3 rogue APs. The verifier sends test traffic from
internal network to the wireless edge and reports the
address of confirmed rogue AP for automatic blocking.
With trace-based simulations, we show that the verifier’s
workload may be amortized over time when monitoring a
large number of active hosts. Using sequential hypothesis
testing theory, the verifier sends a sequence of test
packets with specific size so the sniffers can verify
the rogue AP that may have encrypted its traffic. In
practice, our greedy sniffer channel scheduling algorithm
can quickly allocate sniffers to cover all suspect APs. We
have implemented the rogue AP detector and will deploy
it to a large campus WLAN.

ACKNOWLEDGMENTS

This work is supported in part by NSF under Award
CCF-0429906 and by the Science and Technology Di-
rectorate of the U.S. Department of Homeland Security
under Award NBCH2050002. Points of view in this
document are those of the authors and do not necessarily
represent the official position of NSF or the U.S. De-
partment of Homeland Security. We thank MAP project
team at Dartmouth College and Aruba Networks for
the constructive discussions on the proposed detection
method. David Martin also provided valuable comments
on an early draft of this paper. We also thank the
Dartmouth CRAWDAD team and the ICSI/LBNL group
who made efforts to release the network traces used in
our evaluation.

REFERENCES

[1] A. Bittau, M. Handley, and J. Lackey, “The Final Nail in WEP’s
Coffin,” in Proceedings of the 2006 IEEE Symposium on Security
and Privacy, Oakland, CA, May 2006.

[2] P. Bahl, R. Chandra, J. Padhye, L. Ravindranath, M. Singh,
A. Wolman, and B. Zill, “Enhancing the Security of Corporate
Wi-Fi Networks Using DAIR,” in Proceedings of the Fourth
International Conference on Mobile Systems, Applications, and
Services, Uppsala, Sweden, June 2006.

[3] U. Deshpande, T. Henderson, and D. Kotz, “Channel Sampling
Strategies for Monitoring Wireless Networks,” in Proceedings
of the Second Workshop on Wireless Network Measurements,
Boston, MA, Apr. 2006.

[4] F. Bulk, “Safe inside a Bubble,” Networkcomputing.com, June
2006. [Online]. Available: http://www.networkcomputing.com/
channels/wireless/showArticle.jhtml?articleID=189400826

http://www.networkcomputing.com/channels/wireless/showArticle.jhtml?articleID=189400826
http://www.networkcomputing.com/channels/wireless/showArticle.jhtml?articleID=189400826

[5] S. Garg, M. Kappes, and A. S. Krishnakumar, “On the Effect of
Contention-Window Sizes in IEEE 802.11b Networks,” Avaya
Labs Research, Tech. Rep. ALR-2002-024, 2002.

[6] W. Wei, S. Jaiswal, J. Kurose, and D. Towsley, “Identify-
ing 802.11 Traffic from Passive Measurements Using Iterative
Bayesian Inference,” in Proceedings of the 25th Annual Joint
Conference of the IEEE Computer and Communications Soci-
eties, Barcelona, Spain, Apr. 2006.

[7] X. Wang and D. S. Reeves, “Robust correlation of encrypted
attack traffic through stepping stones by manipulation of inter-
packet delays,” in Proceedings of the 10th ACM Conference on
Computer and Communications Security, Washington, DC, Oct.
2003, pp. 20–29.

[8] M. Rodrig, C. Reis, R. Mahajan, D. Wetherall, and J. Zahorjan,
“Measurement-based characterization of 802.11 in a hotspot
setting,” in Proceeding of the ACM SIGCOMM Workshop on Ex-
perimental Approaches to Wireless Network Design and Analysis,
Philadelphia, PA, Aug. 2005, pp. 5–10.

[9] A. Wald, Sequential Analysis. John Wiley & Sons, 1947.
[10] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast

Portscan Detection Using Sequential Hypothesis Testing,” in
Proceedings of the 2004 IEEE Symposium on Security and
Privacy, Berkeley, CA, May 2004, pp. 211–225.

[11] M. R. Garey and D. S. Johnson, Computers and Intractability:
A Guide to the Theory of NP-Completeness. Freeman, 1979.

[12] R. Pang and B. Tierney, “A First Look at Modern Enterprise
Traffic,” in Proceedings of the Fifth ACM Internet Measurement
Conference, Berkeley, CA, Oct. 2005, pp. 15–28.

[13] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The Click modular router,” ACM Transactions on Computer
Systems, vol. 18, no. 3, pp. 263–297, Aug. 2000.

[14] “MAP: Security through Measurement for Wireless LANs,” Dart-
mouth College, July 2006, http://www.cs.dartmouth.edu/∼map/.

[15] R. Beyah, S. Kangude, G. Yu, B. Strickland, and J. Copeland,
“Rogue access point detection using temporal traffic character-
istics,” in Proceedings of IEEE Global Communications Confer-
ence, Dec. 2004.

[16] P. Bahl and V. N. Padmanabhan, “RADAR: An In-Building RF-
Based User Location and Tracking System,” in Proceedings of
the 19th Annual Joint Conference of the IEEE Computer and
Communications Societies, Tel Aviv, Israel, Mar. 2000.

APPENDIX

We are given a finite set of APs and a finite set of
sniffers that are used to monitor these APs. Each AP
operates on a specific channel. A sniffer is a network
device that can monitor a set of APs at the same time
as long as they satisfy the following three conditions:

1) These APs operate on the same channel.
2) These APs are within the sensing range of the

sniffer.
3) The sniffer is tuned to the same channel of these

APs.
We consider the following optimization problem:

MINIMUM-COST WIRELESS NETWORK SNIFFERS
(MWNS)

Instance: A finite set T of APs and a finite set F of
sniffers. Each sniffer can monitor a subset of APs with
appropriate channel tuning.

Output: A smallest subset of sniffers that can monitor
all APs with the minimum number of tuning.

Theorem 1: MWSN is NP-hard.

To show that Theorem 1 is NP-hard, we consider the
following decision version of MWNS:

WIRELESS NETWORK SNIFFERS (WNS)
Instance: (T, F, α, β), where T is a finite set of APs,

F a finite set of sniffers, α > 1 and β ≥ 1 are integers.
Question: Does there exist a subset F ′ ⊆ F , with

|F ′| ≤ α, such that all APs in T can be monitored by
sniffers in F ′ with at most β times of tuning?

The following lemma is straightforward:
Lemma 2: If MWNS is solvable in polynomial time,

then so is WNS.
Thus, to show that MWNS is NP-hard, it suffices to

show that WNS is NP-complete.
Theorem 3: WNS is NP-complete.

Proof: We will reduce Minimum Cover to
WNS. Recall that Minimum Cover is the following
NP-complete problem (Garey and Johnson 1979):

MINIMUM COVER (MC)
Instance: Collection C of subsets of a finite set S,

positive integer K ≤ |C|.
Question: Does C contain a cover for S of size K

or less, i.e., a subset C ′ ⊆ C with |C ′| ≤ K such that
every element of S belong to at least one member of
C?

Let (S, C, K) be a given instance of MC. Define a
polynomial-time computable reduction f as follows:

f(S, C, K) = (TS , FC ,K, 0),

where TS is equal to S, i.e., each element in S is viewed
as an AP with the same channel; FC is the set of sniffers,
where each sniffer corresponds to an element in C, i.e.,
this sniffer has exactly those Ps in this element of C.

Assume that (S, C, K) is a positive instance of MC,
that is, there exists C ′ ⊆ C such that |C ′| ≤ K and
every element in S is included in at least one element
in C ′. Write

C ′ = {C1, . . . , Ck}
k ≤ K

Let
FC′ = {s1, . . . , sk},

where each sniffer si covers exactly those APs in Ci.
Thus, every AP in TS is covered by at least one sniffer
in FC′ . Moreover, there is no tuning needed, for all APs
have the same channel. Thus, (TS , FC ,K, 0) is also a
positive instance of WNS.

Now assume that (TS , FC ,K, 0) is a positive instance
of WNS. This means that there is a subset of sniffers of
size at most K that cover all APs in TS without tuning.
This is equivalent to saying that (S, C, K) is a positive
instance of MC.

http://www.cs.dartmouth.edu/~map/

	Introduction
	Network Model
	Wired Traffic Monitoring
	Rogue AP Verification
	Packet size selection
	Binary hypothesis testing
	Sniffer channel scheduling

	Evaluation Results
	Wired traffic monitoring
	Sniffer channel scheduling
	Empirical implementation

	Discussion
	Related Work
	Conclusion
	References
	Appendix

