
A Meeting Detector and its Applications

Jue Wang, Guanling Chen, and David Kotz
Department of Computer Science, Dartmouth College

Hanover, NH, USA 03755

Dartmouth Computer Science Technical Report TR2004-486

Abstract

In this paper we present a context-sensing component that
recognizes meetings in a typical office environment. Our
prototype detects the meeting start and end by combining
outputs from pressure and motion sensors installed on the
chairs. We developed a telephone controller application
that transfers incoming calls to voice-mail when the user
is in a meeting. Our experiments show that it is feasible
to detect high-level context changes with “good enough”
accuracy, using low-cost, off-the-shelf hardware, and sim-
ple algorithms without complex training. We also note the
need for better metrics to measure context detection per-
formance, other than just accuracy. We propose several
metrics appropriate for our application in this paper. It
may be useful, however, for the community to define a
set of general metrics as a basis to compare different ap-
proaches of context detection.

1 Introduction
Context-aware computing is a pervasive computing
paradigm in which applications can discover and take ad-
vantage of contextual information [2]. The goal is to
make applications effective and adaptive to user’s infor-
mation needs without consuming too much of a user’s at-
tention. Context-aware applications need to classify or
recognize the environment or user activities, and take dif-
ferent actions for different situations. The challenge is
to determine whether applications can make meaningful
decisions without costly embedded sensors and complex
algorithms.

We are interested in detecting meeting status in an of-
fice environment, which we expect to be useful for two
classes of applications: 1) applications that help the user
to control devices in the room, such as programming the
phone to send incoming calls to voice-mail, to use au-
dio and video recorders to record the proceedings of a
meeting or to control the projector, lights, microphone,
or other devices in the meeting room; and 2) applications
that help remote users to know which rooms have meet-
ings in progress. For example, a room-scheduling service

can allow last-minute bookings based on real-time infor-
mation about availability.

Detecting high-level context such as user meetings is
a challenging problem. Although a user’s calendar may
provide some hints, it is an unreliable source because
many users fail to update her calendar consistently and
promptly. Instead, we choose to detect meetings with
embedded sensors. In this paper, we present the sensors
we selected, the detection algorithm, and the performance
evaluation of our prototype. We built a telephone con-
troller that redirects all incoming calls to a pre-configured
voice mailbox so that meetings will not be interrupted.
The telephone controller makes a decision to switch to
voice mail or not based on the output from our Meeting
Detector.

We built the Meeting Detector with an in-house
context-fusion platform, Solar, which is briefly discussed
in Section2. In Section3 we present the system design
and we give experimental results of the Meeting Detec-
tor in Section4. We discuss the practical advantages and
limitations of our Meeting Detector in Section5. Finally
we discuss related work in Section6 and conclude in Sec-
tion 7.

2 Background
In this section, we briefly discuss some background in-
formation about Solar, which is a middleware platform
that provides a flexible and scalable context fusion in-
frastructure. In Solar, sensors produce streams ofevents,
which represent raw information about the environment,
and applications aggregate and customize contextual in-
formation from sensors by injecting data-fusion operators
into Solar. Anoperator takes one or more event streams
as input and produces another event stream. Since raw
sensor events are often in the wrong format, are inaccu-
rate, or are incomplete and not useful without combin-
ing with other sensor inputs, sensor data typically needs
to go through several processing steps before it becomes
meaningful context desired by applications. Since many
context-aware applications ask for the same or similar
contextual information, such as a user’s location and cur-

1

David Kotz
© Copyright 2004 by the authors

rent activity, it is helpful to re-use overlapping context fu-
sion functions or sub-functions among applications. So-
lar’s approach is to decompose the context-fusion process
of every application into a series of modular and re-usable
operators, to encourage the reuse of both code classes and
operator instances, and to allow applications to compose
operators into a directed information flow graph, which
we call anoperator graph. More details about Solar can
be found in a previous paper [1].

3 System design
Our goal is to detect the beginning and ending of a meet-
ing, in near real time, without expecting every user that
might attend a meeting to wear special hardware such as
a location-tracking badge. We found that many regular
building occupants refuse to wear a badge, and visitors in
our open academic building of course never wear a badge.
We designed the Meeting Detector to detect a meeting’s
status by aggregating two kinds of sensors’ outputs. We
first introduce the system architecture and hardware setup,
and describe the operator graph in detail, then discuss the
combination algorithm.

3.1 System architecture
The Meeting Detector is designed to detect a meeting in
a user’s office. In the office there is a meeting area con-
taining a table and some chairs. We added sensors to the
chairs to detect the pressure of a seated person, and the
motion of the chair caused by a seated person. To reduce
cost, we use only one pressure mat (on the chair that is
always occupied in meetings by the office resident). We
also taped one motion sensor to each of four chairs around
the table. Thus we have two data collection systems.

The pressure mat on the seat of one chair uses a wireless
transmitter to communicate its status to a nearby receiver
every 120 seconds. Software on the receiver computer
sends each pressure reading into Solar as an event and logs
these data automatically. We call this log the “pressure
log.”

To detect chair motion status we used an existing com-
mercial location system,1 in which “personal badges” pe-
riodically send IR updates to ceiling-mounted sensors.
These badges happen to have an embedded motion sensor,
intended to conserve power when the badge is stationary.
A badge update packet contains the status of the motion
sensor so we can tell if the badge has recently moved. We
monitor the ceiling detectors and translate badge packets
into Solar events. The motion sensors can detect motion
status changes immediately; the badge sends updates ev-
ery 3.5 seconds when it is moving and every 2 minutes
when it is stationary. All the motion data is logged at a
server and we thus obtain a “motion log.”

1http://www.versustech.com/

Figure 1: Operator graph structure in Meeting Detector.
BF is Badge Filter and MA is Motion Aggregator.

3.2 Operator graph
Using these two kinds of sensor data, an operator graph
running on Solar determines the meeting’s status. The op-
erators filter the data from motion sensors and combine
it with the data from pressure sensors. We describe the
operator graph first and then the combination algorithm.
The Meeting Detector is an operator graph, which mainly
consists of two layers of filters and a combiner (see Fig-
ure1).

Before Solar can use raw data from sensors and other
data collection devices, the data must be converted into
attribute-value pairs within a Solar event. The Meeting
Detector has two Solar sources, a motion source and a
pressure source; each reads raw sensor data and uses the
Solar API to “publish” an event object for each sensor
reading. Events from the pressure source have two at-
tributes indicating whether pressure is detected by the
sensor and a timestamp. Events from the motion source
contain a badge number, its motion state, and a times-
tamp. Since the motion source collects the updates from
all badges, even those on chairs in other offices or those
not attached to chairs, we use the Badge Filter to pass
on events only from the badges we used in the meeting
room (each filter matches a particular badge number). The
Motion Aggregator keeps an internal state about whether
there is any movement of all chairs and publishes an event
whenever this state changes.

3.3 Combination algorithm
The Combiner is the key to the operator graph in Meet-
ing Detector. Its goal is to output an event whenever a
meeting begins or ends. It receives simple events from
the filters above, and internally records the most recent
observed state:p means there is pressure on the mat and

2

¬p means no pressure;m means there is motion in some
chair and¬m means no motion. Figure2 shows how we
combine the pressure and motion data to detect meeting
start and end, using a state machine.

We have four states: NO, YES, MAYBE1 and
MAYBE2. NO means no meeting is in progress and YES
means a meeting is in progress. Initially, we wait until
there is pressure and motion at the same time before we
decide that meeting starts. We declare the meeting over
if there is neither pressure nor motion in the most recent
readings. MAYBE1 and MAYBE2 mean the meeting may
have ended but we hesitate to make a decision immedi-
ately. These “hesitation” states deal with the intermittent
reports of no pressure or no motion even when a meeting
is in progress, because of unreliable sensor outputs. We
use two thresholds to control transitions out from these
hesitation states. TheT1 is for the state that there is pres-
sure but no motion andT2 is for the state that there is mo-
tion but no pressure. Heret is the time since the last state
change. In MAYBE1 ift exceedsT1, or in MAYBE2 if t
exceedsT2, we assume the meeting has ended despite one
sensor indicating a meeting is in progress. These timeouts
were necessary because sensors occasionally “stick”. We
setT1 to 10 minutes because we found that the motion
sensors often report a chair as stationary even when oc-
cupied: people do not move in the meeting all the time.
Thus,T1 can reduce the reporting of false meeting ends.
We setT2 to 1 minute because our pressure mat had sev-
eral unexplained 1-minute gaps even when the chair was
occupied. ThusT2 can avoid noting these gaps as a false
meeting end.

Essentially, we decide that a meeting is in progress
whenever both pressure and motion are detected (p & m).
Because our sensors occasionally report intermittent lack
of pressure or motion, the state machine hesitates to
declare “no meeting” immediately when one is false
(¬(p & m)), and we include two MAYBE states for the
casesp & ¬m and¬p & m. If thep & m condition returns
before a timer exceeds a threshold, the meeting continues
in state YES. If too much time elapses, we declare the end
of the meeting.

4 Evaluation
In this section, we report the performance of the Meeting
Detector. For this study, we test the sensibility and ac-
curacy of the Meeting Detector by matching the detected
meeting records from the Meeting Detector and the real
meeting records from a manual log of a several-week pe-
riod of actual meetings.

4.1 Experimental methods
We tested Meeting Detector in a professor’s office with
real meetings and real people during two periods in
September 2003 and February 2004. To obtain the
“ground truth” about actual meeting start and end times,

we implemented a simple Meeting Recorder, which we
installed on a tablet placed on the meeting table. This
application allows the professor to, with a single button,
manually log every meeting’s start and end. This results
in a “meeting log.” This log has some incorrect records
due to some human mistakes (failing to record a meeting,
or starting and ending late). We discard these incorrect
data and the corresponding data in the “pressure log” and
the “motion log.”

In total we have three log files: the “meeting log”, the
“pressure log”, and the “motion log”. By matching the
output of Meeting Detector (using pressure and motion
logs as input) with the meeting log, we can measure how
well the meeting detection works using three different de-
tectors: 1) we used only pressure data to detect meetings,
which is defined when the pressure mat reports true; 2) we
used only motion data to detect meetings, that is, when at
least one chair is in motion; and 3) we combined motion
data and pressure data using the algorithm in Section3.3.
We compare the outputs of all three detectors with the real
meeting log.

4.2 Experiment results
It was not immediately clear what might be an appropri-
ate metric to measure how well and how quickly detection
occurs. For a context classification component, we are in-
terested in both its accuracy and sensitivity. We define
several metrics to measure the matching accuracy com-
prehensively, as shown below and illustrated in Figure3.

1. ∆t start, the difference between real meeting start
time and detected meeting start time.

2. ∆t end, the difference between real meeting end
time and detected meeting end time.

3. Gap Length, the time length of a gap between two
detected meetings, where one real meeting is divided
into two or more detected meetings.

4. Gap Number, the number of gaps between detected
meetings for one real meeting.

5. Missed Gap Length, the time length of a gap, which
is not detected, between two real meetings.

6. Missed Gap Number, the number of gaps, which are
not detected, between real meetings.

7. Extra Meeting Length, the total time of extra de-
tected meetings (which map to no real meeting) per
day.

8. Extra Meeting Number, the number of extra meet-
ings per day.

9. Missed Meeting Length, the time length of a real
meeting thoroughly undetected.

10. Missed Meetings, the number of missed meetings,
which are thoroughly undetected, per day.

In Figure4 we present results of metrics (we only show
six due to limited space, and cases 5, 6, 9 and 10 happened
rarely so there is little data to present). Each plot has three

3

Figure 2: A state machine illustration on sensor combination algorithm. Heret is the time since the last state change.

Figure 3: The numbers correspond to different metrics.

curves, which show the cumulative distribution function
(CDF) of the quality of a meeting detector on the set of
points representing real meetings. In all metrics, smaller
(to the left) represents better detection performance.

Generally, a single sensor is not a good indicator for
meetings because of the reaction time, sensitivity or in-
herent hardware limitations. Although the motion scheme
was the most likely to catch the time of meeting start or
end due to its sensitivity, that same sensitivity led it to
detect meeting end prematurely unless one or more peo-
ple are moving frequently. It also tends to detect extra
meetings when passersby bump the chairs. The over-
all result was many extra meetings and many gaps. On
the other hand, the pressure mat was less sensitive than
the motion sensors, but avoids the problem of acciden-
tal bumped chairs. On the other hand, we found that the
pressure mat occasionally got stuck and produced some
excessively long meetings. Naturally, a combination was

best overall, although it was not the best one for the metric
like ∆t start.

Examining Figure4 more closely, (a) clearly shows
that the motion detector most quickly detected meetings
with a median of 28 seconds,2 which is 41 seconds ear-
lier than combined detector and 101.5 seconds earlier than
the pressure detector alone. This 41 second latency is the
price we pay to avoid the extraneous meetings and gaps,
a reasonable trade-off for many applications. The com-
bined detector shows its advantage in (b) with a median
∆t end of 88 seconds. Overall, we found that the Meet-
ing Detector did not work as well in detecting meeting
end time as it did the start time. This asymmetry arose be-
cause of the necessary MAYBE states and their associated
thresholds. But those hesitation states effectively reduce
extra meetings and gaps, in both lengths and numbers, as
shown in (c), (d), (e) and (f). Plot (c) shows that the pres-
sure detector had the longest extra meeting length because
sometimes the pressure mat was stuck and thus produced
a long extra meeting. Plot (e) shows that the motion detec-
tor had the longest gap length, because of the motion sen-
sor’s limitation mentioned above. Plots (d) and (f) show
that the combined detector was effective, reporting 5%
fewer extra meetings and 11% fewer gaps than motion
detector, 8% fewer extra meetings and 16% fewer gaps
than pressure detector. These results show clear advan-
tages of combined detector that overcomes limitations of
single sensor and enhances the performance significantly.

2We note that 28 seconds is well within the noise, since the basis
for comparison is the manual meeting log and it was not unusual for the
professor and others to sit down and get settled for a few seconds before
clicking the “meeting start” button.

4

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P

ro
po

rti
on

Delta−Start (s)

Pressure
Motion
Combined

(a)

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

po
rti

on

Delta−End (s)

Pressure
Motion
Combined

(b)

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

po
rti

on

Extra Meeting Length (s)

Pressure
Motion
Combined

(c)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

po
rti

on

Extra Meeting Number

Pressure
Motion
Combined

(d)

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

po
rti

on

Gap Length (s)

Pressure
Motion
Combined

(e)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

po
rti

on

Gap Number

Pressure
Motion
Combined

(f)

Figure 4: These plots represent several metrics. (a), (b), (e) and (f) show the metrics for each of the real meetings
encountered and (c) and (d) are for each day. In every plot, each curve is a cumulative distribution function (CDF)
across all meetings, showing the proportion of meetings with metric value less than the givenx value. The median is
easily read aty = 0.5. Most of the plots are truncated at the right; some glitches led to excessively long meetings or
gaps. In all metrics, smaller is better.

5

5 Discussion
Based on our experience and our experimental results, we
now discuss some practical advantages and limitations of
our approach. We also give some lessons we have learned
that have broader applicability.

We expect that our approach to detect meeting context
could be possible to implement at low cost, and easy to
use and maintain. Wireless pressure and motion sensors,
tied to a simple wireless receiver in the room, could easily
collect and forward the information via a WiFi or Eth-
ernet connection. If the sensors could be integrated into
the chair seat cushion, they should be rugged and easy
to maintain. No complex sensing infrastructure (such as
a location trackers) is required, although we happened to
leverage an existing such system for our test. Combina-
tion logic is easily implemented in software or hardware,
without any training necessary. Although training may
improve accuracy somewhat, it is inconvenient to retrain
whenever the meeting environment changes, the room is
visited by users with different habits, or to port the system
to other rooms.

There are limitations, however. First, detection qual-
ity is limited by sensor limitations. The low cost means
we sacrifice performance to some extent. Since different
applications of a meeting detector require different detec-
tion accuracy and sensitivity, the adequate accuracy we
achieved in our prototype may not be sufficient for other
applications. Some applications may require a highly sen-
sitive and accurate detection within several seconds; but
some scheduling applications may be satisfied with less
accuracy within several minutes. Second, we note that
we chose to define “motion” when one or more chairs
moved. Defining “motion” to be when two or more chairs
moved might avoid detecting extra meetings, but in our
experience this approach does not change∆t start and
∆t end much. Careful tuning of this parameter and oth-
ers should lead to better performance. Finally, in some
environments, where many short meetings occur close to-
gether, such as frequent five-minute meetings with one-
minute intervals, our Meeting Detector did not work as
well as it did in the ordinary case, since our pressure sen-
sor is not sensitive enough to react to these short intervals
in time.

We learned several lessons from our experience with
the Meeting Detector. First, a stable, flexible, and efficient
context-fusion platform (such as Solar) is a great help to
application developers. It significantly reduced the devel-
oper’s programming efforts. Solars ability to reuse both
classes and instances makes it easier to extend applica-
tions. Second, we found that a single type of sensor was
unable to gain the desirable accuracy, since every sensor
has its limitations. It helped to combine multiple sensor
types, since some sensors are complementary. Finally we
need to point out that an easy and effective fault-tracking

is necessary in the design of any “invisible” pervasive-
computing systems. If the phone rings during a meeting,
is it because detector made a wrong decision, or is there
something wrong with the hardware? Which sensor went
wrong, the motion badge or pressure mat? How can you
tell if they are embedded? Is there a hardware failure or
do they just need new battery? We had some system fail-
ure cases in our experiments and they took us significant
efforts to debug what went wrong.

6 Related work
Schmidt and others propose to detect high-level context
of a personal device by combining outputs of several on-
board sensors, using a training-based algorithm [3]. A
PDA and a mobile phone were used with the prototype
to demonstrate situational awareness. On the PDA, font
size and back-light were changed (e.g., when the user was
walking a large font, small font when stationary) depend-
ing on the context. In mobile phone the active user pro-
file was changed (e.g., a loud ring when at a noisy bar,
keep silent in library or meeting room). They performed
experiments for the context recognition, to show that it
is feasible to recognize high-level contexts using sensor
fusion. More specifically, they tested robustness of the
context classification and recognition. In the evaluation
they achieved accuracy close to 90%. Although their ap-
proach is somewhat similar to ours, we aggregated outputs
of distributed sensors using a training-free algorithm and
we provided a comprehensive set of metrics to measure
both accuracy and sensitivity of context detection.

7 Summary
We present a sensor fusion system to detect high-level
meeting context. The hardware and software are reason-
ably simple and portable, making our approach attrac-
tive for practical duplication and deployment. We re-
ported the performance evaluation both for single-sensor
and combined-sensor detection approaches. In the evalu-
ation we observe more than 95% of all meetings were de-
tected, though with some latency or gaps. Although it still
could be improved, particularly in more complex environ-
ments, by tuning parameters and by choosing hardware
more suited to the tasks, our Meeting Detector demon-
strated that it is feasible to recognize meeting context us-
ing unobtrusive low-cost sensors with high accuracy and
low latency. The contributions of this paper are the meet-
ing detection system itself, as a proof of concept, as well
as a set of metrics and an experimental evaluation of the
system.

References

[1] G. Chen and D. Kotz. Solar: An open platform for context-
aware mobile applications. InShort Paper Proceedings of
Pervasive 2002, August 2002.

6

[2] A. K. Dey, G. D. Abowd, and D. Salber. A conceptual
framework and a toolkit for supporting the rapid prototyp-
ing of context-aware applications.Human-Computer Inter-
action (HCI) Journal, 16(2-4), 2001.

[3] A. Schmidt, K. A. Aidoo, A. Takaluoma, U. Tuomela, K. V.
Laerhoven, and W. V. de Velde. Advanced Interaction in
Context. InHUC 1999, pages 89–101, September 1999.

7

	Introduction
	Background
	System design
	System architecture
	Operator graph
	Combination algorithm

	Evaluation
	Experimental methods
	Experiment results

	Discussion
	Related work
	Summary

