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Abstract—This paper describes methods for recovering time-varying shape and motion of nonrigid 3D objects from uncalibrated

2D point tracks. For example, given a video recording of a talking person, we would like to estimate the 3D shape of the face at each

instant and learn a model of facial deformation. Time-varying shape is modeled as a rigid transformation combined with a nonrigid

deformation. Reconstruction is ill-posed if arbitrary deformations are allowed, and thus additional assumptions about deformations are

required. We first suggest restricting shapes to lie within a low-dimensional subspace and describe estimation algorithms. However, this

restriction alone is insufficient to constrain reconstruction. To address these problems, we propose a reconstruction method using a

Probabilistic Principal Components Analysis (PPCA) shape model and an estimation algorithm that simultaneously estimates 3D shape

and motion for each instant, learns the PPCA model parameters, and robustly fills-in missing data points. We then extend the model to

represent temporal dynamics in object shape, allowing the algorithm to robustly handle severe cases of missing data.

Index Terms—Nonrigid structure-from-motion, probabilistic principal components analysis, factor analysis, linear dynamical systems,

expectation-maximization.

Ç

1 INTRODUCTION AND RELATED WORK

A central goal of computer vision is to reconstruct the
shape and motion of objects from images. Reconstruc-

tion of shape and motion from point tracks—known as
structure-from-motion—is very well understood for rigid
objects [17], [26] and multiple rigid objects [10], [16].
However, many objects in the real world deform over time,
including people, animals, and elastic objects. Reconstructing
the shape of such objects from imagery remains an open
problem.

In this paper, we describe methods for Nonrigid
Structure-From-Motion (NRSFM): extracting 3D shape and
motion of nonrigid objects from 2D point tracks. Estimating
time-varying 3D shape from monocular 2D point tracks is
inherently underconstrained without prior assumptions.
However, the apparent ease with which humans interpret
3D motion from ambiguous point tracks (for example, [18],
[30]) suggests that we might take advantage of prior
assumptions about motion. A key question is what should
these prior assumptions be? One possible approach is to
explicitly describe which shapes are most likely (for
example, by hard-coding a model [32]), but this can be
extremely difficult for all but the simplest cases. Another
approach is to learn a model from training data. Various
authors have described methods for learning linear sub-
space models with Principal Components Analysis (PCA)

for recognition, tracking, and reconstruction [4], [9], [24],
[31]. This approach works well if appropriate training data
is available; however, this is often not the case. In this
paper, we do not assume that any training data is available.

In this work, we model 3D shapes as lying near a low-
dimensional subspace, with a Gaussian prior on each shape
in the subspace. Additionally, we assume that the nonrigid
object undergoes a rigid transformation at each time instant
(equivalently, a rigid camera motion), followed by a weak-
perspective camera projection. This model is a form of
Probabilistic Principal Components Analysis (PPCA). A key
feature of this approach is that we do not require any prior
3D training data. Instead, the PPCA model is used as a
hierarchical Bayesian prior [13] for the measurements. The
hierarchical prior makes it possible to simultaneously
estimate the 3D shape and motion for all time instants,
learn the deformation model, and robustly fill-in missing
data points. During estimation, we marginalize out defor-
mation coefficients to avoid overfitting and solve for MAP
estimates of the remaining parameters using Expectation-
Maximization (EM). We additionally extend the model to
learn temporal dynamics in object shape, by replacing the
PPCA model with a Linear Dynamical System (LDS). The
LDS model adds temporal smoothing, which improves
reconstruction in severe cases of noise and missing data.

Our original presentation of this work employed a simple
linear subspace model instead of PPCA [7]. Subsequent
research has employed variations of this model for recon-
struction from video, including the work of Brand [5] and our
own [27], [29]. A significant advantage of the linear subspace
model is that, as Xiao et al. [34] have shown, a closed-form
solution for all unknowns is possible (with some additional
assumptions). Brand [6] describes a modified version of this
algorithm employing low-dimensional optimization. How-
ever, in this paper, we argue that the PPCA model will obtain
better reconstructions than simple subspace models, because
PPCA can represent and learn more accurate models, thus
avoiding degeneracies that can occur with simple subspace
models. Moreover, the PPCA formulation can automatically
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estimate all model parameters, thereby avoiding the diffi-
culty of manually tuning weight parameters. Our methods
use the PPCA model as a hierarchical prior for motion and
suggest the use of more sophisticated prior models in the
future. Toward this end, we generalize the model to represent
linear dynamics in deformations. A disadvantage of this
approach is that numerical optimization procedures are
required in order to perform estimation.

In this paper, we describe the first comprehensive
performance evaluation of several NRSFM algorithms on
synthetic data sets and real-world data sets obtained from
motion capture. We show that, as expected, simple subspace
and factorization methods are extremely sensitive to noise
and missing data and that our probabilistic method gives
superior results in all real-world examples.

Our algorithm takes 2D point tracks as input; however,
due to the difficulties in tracking nonrigid objects, we
anticipate that NRSFM will ultimately be used in concert
with tracking and feature detection in image sequences such
as in [5], [11], [27], [29].

Our use of linear models is inspired by their success in face
recognition [24], [31], tracking [9] and computer graphics [20].
In these cases, the linear model is obtained from complete
training data, rather than from incomplete measurements.
Bascle and Blake [2] learn a linear basis of 2D shapes for
nonrigid 2D tracking, and Blanz and Vetter [4] learn a PPCA
model of human heads for reconstructing 3D heads from
images. These methods require the availability of a training
database of the same “type” as the target motion. In contrast,
our system performs learning simultaneously with recon-
struction. The use of linear subspaces can also be motivated
by noting that many physical systems (such as linear
materials) can be accurately represented with linear sub-
spaces (for example, [1]).

2 SHAPE AND MOTION MODELS

We assume that a scene consists of J time-varying 3D points
sj;t ¼ ½Xj;t; Yj;t; Zj;t�T , where j is an index over scene points,
and t is an index over image frames. This time-varying shape
represents object deformation in a local coordinate frame. At
each time t, these points undergo a rigid motion and weak-
perspective projection to 2D

pj;t|{z}
2�1

¼ ct|{z}
1�1

Rt|{z}
2�3

ð sj;t|{z}
3�1

þ dt|{z}
3�1

Þ þ nt|{z}
2�1

; ð1Þ

where pj;t ¼ ½xj;t; yj;t�T is the 2D projection of scene point j
at time t, dt is a 3� 1 translation vector, Rt is a
2� 3 orthographic projection matrix, ct is the weak-
perspective scaling factor, and nt is a vector of zero-mean
Gaussian noise with variance �2 in each dimension.

We can also stack the points at each time-step into vectors

pt|{z}
2J�1

¼ Gt|{z}
2J�3J

ð st|{z}
3J�1

þ Dt|{z}
3J�1

Þ þ Nt|{z}
2J�1

; ð2Þ

where Gt replicates the matrix ctRt across the diagonal,
Dt stacksJ copies of dt, and Nt is a zero-mean Gaussian noise
vector. Note that the rigid motion of the object and the rigid
motion of the camera are interchangeable. For example, this
model can represent an object deforming within a local
coordinate frame, undergoing a rigid motion, and viewed by
a moving orthographic camera. In the special case of rigid

shape (with st ¼ s1 for all t), this reduces to the classic rigid
SFM formulation studied by Tomasi and Kanade [26].

Our goal is to estimate the time-varying shape st and
motion ðctRt;DtÞ from observed projections pt. Without
any constraints on the 3D shape st, this problem is
extremely ambiguous. For example, given a shape st and
motion ðRt;DtÞ and an arbitrary orthonormal matrix At, we
can produce a new shape Atst and motion ðctRtA

�1
t ;AtDtÞ

that together give identical 2D projections as the original
model, even if a different matrix At is applied in every
frame [35]. Hence, we need to make use of additional prior
knowledge about the nature of these shapes. One approach
is to learn a prior model from training data [2], [4].
However, this requires that we have appropriate training
data, which we do not assume is available. Alternatively,
we can explicitly design constraints on the estimation. For
example, one may introduce a simple Gaussian prior on
shapes st � Nðs; IÞ or, equivalently, a penalty term of the
form

P
t kst � sk2 [35]. However, many surfaces do not

deform in such a simple way, that is, with all points
uncorrelated and varying equally. For example, when
tracking a face, we should penalize deformations of the
nose much more than deformations of the lips.

In this paper, we employ a probabilistic deformation
model with unknown parameters. In Bayesian statistics, this
is known as a hierarchical prior [13]: shapes are assumed to
come from a common probability distribution function
(PDF), but the parameters of this distribution are not known
in advance. The prior over the shapes is defined by
marginalizing over these unknown parameters.1 Intuitively,
we are constraining the problem by simultaneously fitting
the 3D shape reconstructions to the data, fitting the shapes
to a model, and fitting the model to the shapes. This type of
hierarchical prior is an extremely powerful tool for cases
where the data come from a common distribution that is not
known in advance. Suprisingly, hierarchical priors have
seen very little use in computer vision.

In the next section, we introduce a simple prior model
based on a linear subspace model of shape and discuss why
this model is unsatisfactory for NRSFM. We then describe a
method based on PPCA that addresses these problems,
followed by an extension that models temporal dynamics in
shapes. We then describe experimental evaluations on
synthetic and real-world data.

2.1 Linear Subspace Model

A common way to model nonrigid shapes is to represent
them in a K-dimensional linear subspace. In this model,
each shape is described by a K-dimensional vector zt; the
corresponding 3D shape is

st|{z}
3J�1

¼ �s|{z}
3J�1

þ V|{z}
3J�K

zt|{z}
K�1

þ mt|{z}
3J�1

; ð3Þ

where mt represents a Gaussian noise vector. Each column of
the matrix V is a basis vector, and each entry of zt is a
corresponding weight that determines the contributions of
the basis vector to the shape at each time t. We refer to the
weights zt as latent coordinates. (Equivalently, the space of
possible shapes may be described by convex combinations of
basis shapes by selectingK þ 1 linearly independent points in
the space.) The use of a linear model is inspired by the
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1. For convenience, we estimate values of some of these parameters
instead of marginalizing.



observation that many high-dimensional data sets can be
efficiently represented by low-dimensional spaces; this
approach has been very successful in many applications
(for example, [4], [9], [31]).

Maximum likelihood estimation entails minimizing the
following least squares objective with respect to the
unknowns

LMLE ¼ � ln pðp1:T jc1:T ;R1:T ;V1:K;d1:T ; z1:T Þ ð4Þ

¼ 1

2�2

X
j;t

kpj;t � ctRtð�sj þVjzt þ dtÞk2

þ JT lnð2��2Þ; ð5Þ

where Vj denotes the row of V corresponding to the
jth point.

Ambiguities and degeneracies. Although the linear sub-
space model helps constrain the reconstruction problem,
many difficulties remain.

Suppose the linear subspace and motion ðS;V;Gt;DtÞ
were known in advance and that GtV is not full rank, at some
time t. For any shape represented as zt, there is a linear
subspace of distinct 3D shapes zt þ �w that project to the
same 2D shape, where w lies in the nullspace of GtV, and� is
an arbitrary constant. (Here, we assume that V is full rank; if
not, redundant columns should be removed). Since we do not
know the shape basis in advance, the optimal solution may
select GtV to be low rank and use the above ambiguity to
obtain a better fit to the data at the expense of very unreliable
depth estimates. In the extreme case of K ¼ 2J , reconstruc-
tion becomes totally unconstrained, since V represents the
full shape space rather than a subspace. We can avoid the
problem by reducing K, but we may need to make K
artificially small. In general, we cannot assume that small
values of K are sufficient to represent the variation of real-
world shapes. These problems will become more significant
for larger K. Ambiguities will become increasingly signifi-
cant when point tracks are missing, an unavoidable occur-
rence with real tracking.

In general, we expect the linear subspace model to be
sensitive to the choice ofK. IfK is too large for the object being
tracked, then the extra degrees of freedom will be uncon-
strained by the data and end up fitting noise. However, ifK is
too small, then important degrees of variation will be lost. In
practice, there may not be a clear “best” value of K that will
capture all variation while discarding all noise. Empirically,
the eigenvalue spectrum obtained from PCA on real-world
3D shapes tends to fall off smoothly rather than being
bounded at a small value ofK. An example from facial motion
capture data is shown in Fig. 1.

An additional ambiguity occurs in the representation of
the subspace; specifically, we can apply an arbitrary affine
transformation A to the subspace (replacing V with VA�1

and z with Az). However, this does not change reconstruc-
tion error or the underlying subspace, so we do not consider
it to be a problem.

Although the subspace model can be made to work in
simple situations, particularly with limited noise and small
values of K, the above ambiguities indicate that it will scale
poorly to larger problems and become increasingly sensi-
tive to manual parameter tuning. As the number of basis
shapes grows, the problem is more likely to become
unconstrained, eventually approaching the totally uncon-
strained case described in the previous section, where each
frame may have an entirely distinct 3D shape.

Most NRSFM methods make an additional assumption
that the recovered shape and motion can be obtained by
transforming a low-rank factorization of the original point
tracks [5], [6], [7], [34]. The main appeal of these approaches is
that they decompose the problem into much simpler ones.
However, this approach is only justified when measurement
noise is negligible; with non-negligible noise, these methods
give no guarantee of statistical optimality,2 and may in
practice be highly biased. We do not expect noise in real
NRSFM problems to be negligible, and the importance of
noise modeling is borne out by our experiments.

2.2 Probabilistic PCA Model

We propose using PPCA [22], [25] to describe the distribution
over shapes. In PPCA, we place a Gaussian prior distribution
on the weights zt and define the rest of the model as before

zt � Nð0; IÞ; ð6Þ

st ¼ �sþVzt þmt; ð7Þ

pt ¼ Gtðst þDtÞ þ nt; ð8Þ

where mt and nt are zero-mean Gaussian vectors, with
variance �2

m and �2. Moreover, when estimating unknowns
in PPCA, the latent coordinates zt are marginalized out: we
never explicitly solve for zt. Because any linear transforma-
tion of a Gaussian variable is Gaussian, the distribution
over pt is Gaussian.3 Combining (6)-(8) gives

pt � NðGtð�sþDtÞ; Gt VVT þ �2
mI

� �
GT
t þ �2IÞ: ð10Þ
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2. NRSFM can be posed as a constrained least squares problem: factor
the data into the product of two matrices that minimize reprojection error
while satisfying certain constraints. Singular Value Decomposition (SVD)
provides an optimal least squares factorization but does not guarantee that
any constraints are satisfied. One approach has been to find a subspace
transformation to the SVD solution to attempt to satisfy the constraints, but
there is no guarantee that such a transformation exists. Hence, such
methods cannot guarantee both that the constraints are satisfied and that
the solution is optimal. For example, Tomasi and Kanade’s algorithm [26]
guarantees optimal affine reconstructions but not optimal rigid reconstruc-
tions. In practice, it often finds acceptable solutions. However, in the
NRSFM case, the constraints are much more complex.

3. This may also be derived by directly marginalizing out zt:

pðptÞ ¼
R
pðpt; ztÞdzt ¼

R
pðptjztÞpðztÞdzt; ð9Þ

where pðptjztÞ is Gaussian (as given by (7) and (8)), and pðztÞ ¼ N ðztj0; IÞ,
assuming that we condition on fixed values of s, V, Gt, Dt, �

2, and �2
m.

Simplifying the above expression gives (10).

Fig. 1. (a) Two-dimensional coordinates obtained by applying conven-
tional PCA to aligned 3D face shapes. The best-fit Gaussian distribution
is illustrated by a gray ellipse. (b) Eigenvalue spectrum of the face data.
(Details of the original data are given in Section 4.2.)



In this model, solving NRSFM—estimating motion while
learning the deformation basis—is a special form of
estimating a Gaussian distribution. In particular, we simply
maximize the joint likelihood of the measurements p1:T or,
equivalently, the negative logarithm of the joint likelihood

L ¼ 1

2

X
t

ðpt � ðGtð�sþDtÞÞT ðGtðVVT þ �2
mIÞGT

t þ �2IÞ

ðpt � ðGtð�sþDtÞÞ

þ 1

2

X
t

ln
��GtðVVT þ �2

mIÞGT
t þ �2I

��þ JT lnð2�Þ:

ð11Þ

We will describe an estimation algorithm in Section 3.2.
Intuitively, the NRSFM problem can be stated as solving

for shape and motion such that the reconstructed 3D shapes
are as “similar” to each other as possible. In this model,
shapes arise from a Gaussian distribution with mean s and
covariance VVT þ �2

mI. Maximizing the likelihood of the
data simultaneously optimizes the 3D shapes according to
both the measurements and the Gaussian prior over shapes
while adjusting the Gaussian prior to fit the individual
shapes. An alternative approach would be to explicitly learn a
3J � 3J covariance matrix. However, this involves many
more parameters than necessary, whereas PPCA provides a
reduced-dimensionality representation of a Gaussian. This
model provides several advantages over the linear subspace
model. First, the Gaussian prior on zt represents an explicit
assumption that the latent coordinates zt for each pose will be
similar to each other, that is, the zt coordinates are not
unconstrained. Empirically, we find this assumption to be
justified. For example, Fig. 1 shows 2D coordinates for
3D shapes taken from a facial motion capture sequence,
computed by conventional PCA. These coordinates do not
vary arbitrarily but remain confined to a small region of
space. In general, we find this observation consistent when
applying PCA to many different types of data sets. This
Gaussian prior resolves the important ambiguities described
in the previous section. Depth and scaling ambiguities are
resolved by preferring shapes with smaller magnitudes of zt.
The model is robust to large or misspecified values ofK, since
very small variances will be learned for extraneous dimen-
sions. A rotational ambiguity remains: replacing V and z with
VAT and Az (for any orthonormal matrix A) does not change
the likelihood. However, this ambiguity has no impact on the
resulting distribution over 3D shapes and can be ignored.

Second, this model accounts for uncertainty in the latent
coordinates zt. These coordinates are often underconstrained
in some axes and cannot necessarily be reliably estimated,
especially during the early stages of optimization. Moreover,
a concern with largeK is the large number of unknowns in the
problem, including K elements of zt for each time t.
Marginalizing over these coordinates removes these vari-
ables from estimation. Removing these unknowns also makes
it possible to learn all model parameters—including the prior
and noise terms—simultaneously without overfitting. This
means that regularization terms need not be set manually for
each problem and can thus be much more sophisticated and
have many more parameters than otherwise. In practice, we
find that this leads to significantly improved reconstructions
over user-specified shape PDFs. It might seem that, since the
parameters of the PDF are not known a priori, the algorithm

could estimate wildly varying shapes and then learn a
correspondingly spread-out PDF. However, such a spread-
out PDF would assign very low likelihood to the solution and
thus be suboptimal; this is a typical case of Bayesian inference
automatically employing “Occam’s Razor” [19]: data fitting is
automatically balanced against the model simplicity. One
way to see this is to consider the terms of the log probability in
(11): the first term is a data-fitting term, and the second term is
a regularization term that penalizes spread-out Gaussians.
Hence, the optimal solution trades-off between 1) fitting the
data, 2) regularizing by penalizing distance between shapes
and the shape PDF, and 3) minimizing the variance of the
shape PDF as much as possible. The algorithm simulta-
neously regularizes and learns the regularization.

Regularized linear subspace model. An alternative approach
to resolving ambiguities is to introduce regularization terms
that penalize large deformations. For example, if we solve
for latent coordinates zt in the above model rather than
marginalizing them out, then the corresponding objective
function becomes

LMAP ¼ � ln pðp1:T jR1:T ;V1:K;d1:T ; z1:T Þ

¼ 1

2�2

X
j;t

kpj;t � ctRtð�sj þVjzt þ dtÞk2 ð12Þ

þ 1

2�2
z

X
t

kztk2 þ JT
2

lnð2��2Þ þ TK
2

lnð2��2
zÞ; ð13Þ

which is the same objective function, as in (5) with the
addition of a quadratic regularizer on zt. However, this
objective function is degenerate. To see this, consider an
estimate of the basis V̂ and latent coordinates ẑ1:T . If we
scale all of these terms as

V̂ 2V̂; ẑt  
1

2
ẑt; ð14Þ

then the objective function must decrease. Consequently,
this objective function is optimized by infinitesimal latent
coordinates but without any improvement to the recon-
structed 3D shapes.

Previous work in this area has used various combinations
of regularization terms [5], [29]. Designing appropriate
regularization terms and choosing their weights is generally
not easy; we could place a prior on the basis (for example,
penalize the Frobenius norm of V), but it is not clear how to
balance the weights of the different regularization terms; for
example, the scale of the V weight will surely depend on the
scale of the specific problem being addressed. One could
require the basis to be orthonormal, but this leads to an
isotropic Gaussian distribution, unless separate variances
were specified for every latent dimension. One could also
attempt to learn the weights together with the model, but this
would almost certainly be underconstrained with so many
more unknown parameters than measurements. In contrast,
our PPCA-based approach avoids these difficulties without
requiring any additional assumptions or regularization.

2.3 Linear Dynamics Model

In many cases, point tracking data comes from sequential
frames of a video sequence. In this case, there is an additional
temporal structure in the data that can be modeled in the
distribution over shapes. For example, 3D human facial
motion shown in 2D PCA coordinates in Fig. 1 shows distinct
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temporal structure: the coordinates move smoothly through

the space, rather than appearing as random independent and

identically distributed (IID) samples from a Gaussian.
Here, we model temporal structure with a linear dynami-

cal model of shape

z1 � Nð0; IÞ; ð15Þ
zt ¼ �zt�1 þ vt; vt � Nð0; QÞ: ð16Þ

In this model, the latent coordinates zt at each time step are

produced by a linear function of the previous time step,

based on the K �K transition matrix �, plus additive

Gaussian noise with covariance Q. Shapes and observations

are generated as before

st ¼ �sþVzt þmt; ð17Þ
pt ¼ Gtðst þDtÞ þ nt: ð18Þ

As before, we solve for all unknowns except for the latent

coordinates z1:T , which are marginalized out. The algorithm

is described in Section 3.3. This algorithm learns 3D shape

with temporal smoothing while simultaneously learning the

smoothness terms.

3 ALGORITHMS

3.1 Least Squares NRSFM with a Linear Subspace
Model

As a baseline algorithm, we introduce a technique that

optimizes the least squares objective function (5) with block

coordinate descent. This method, which we refer to as BCD-

LS, was originally presented in [29]. No prior assumption is

made about the distribution of the latent coordinates, and

so, the weak-perspective scaling factor ct can be folded into

the latent coordinates by representing the shape basis as

~V � ½�s;V�; ~zct � ct½1; zTt �
T : ð19Þ

We then optimize directly for these unknowns. Addition-

ally, since the depth component of rigid translation is

unconstrained, we estimate 2D translations Tt � GtDt ¼
½ctRtdt; . . . ; ctRtdt� � ½tt; . . . ; tt�. The variance terms are

irrelevant in this formulation and can be dropped from (5),

yielding the following two equivalent forms:

LMLE ¼
X
j;t

kpj;t �Rt
~Vj~z

c
t � ttk2 ð20Þ

¼
X
t

kpt �Ht
~V~zct �Ttk2; ð21Þ

where Ht is a 2J � 3J matrix containing J copies of Rt

across the diagonal.
This objective is optimized by coordinate descent

iterations applied to subsets of the unknowns. Each of

these steps finds the global optimum of the objective

function with respect to a specific block of the parameters

while holding the others fixed. Except for the rotation

parameters, each update can be solved in closed form.

For example, the update to tt is derived by solving

@LMLE=@tt ¼ �2
P

jðpj;t �Rt
~Vj~z

c
t � ttÞ ¼ 0. The updates

are as follows:

vecð ~VjÞ  Mþðpj;1:T �TtÞ; ð22Þ
~zct  ðHt

~VÞþðpt �TtÞ; ð23Þ

tt  
1

J

X
j

ðpj;t �Rt
~Vj~z

c
tÞ; ð24Þ

where pj;1:T ¼ ½pTj;1; . . . ;pTj;T �
T , M ¼ ½~zc1 �RT

1 ; . . . ; ~zcT �RT
T �
T ,

� denotes Kronecker product, and the vec operator stacks
the entries of a matrix into a vector.4 The shape basis update
is derived by rewriting the objective as

LMLE /
X
j

kpj;1:T �Mvecð ~VjÞ �Ttk2 ð25Þ

and by solving @LMLE=@vecð ~VjÞ ¼ 0.
The camera matrix Rt is subject to a nonlinear orthonorm-

ality constraint and cannot be updated in closed form.
Instead, we perform a single Gauss-Newton step. First, we
parameterize the current estimate of the motion with a
3� 3 rotation matrix Qt, so that Rt ¼ �Qt, where

� ¼ 1 0 0
0 1 0

� �
:

We define the updated rotation relative to the previous
estimate as Qnew

t ¼ �Qt
Qt. The incremental rotation �Qt

is parameterized in exponential map coordinates by a
3D vector �t ¼ ½!xt ; !

y
t ; !

z
t �
T

�Qt
¼ e�̂t ¼ Iþ �̂t þ �̂2

t =2!þ . . . ; ð26Þ

where �̂t denotes the skew-symmetric matrix

�̂t ¼
0 �!zt !yt
!zt 0 �!xt
�!yt !xt 0

2
4

3
5: ð27Þ

Dropping nonlinear terms gives the updated value as
Qnew
t ¼ ðIþ �̂tÞQt. Substituting Qnew

t into (20) gives

LMLE /
X
j;t

kpj;t ��ðIþ �̂tÞQt
~Vj~z

c
t � ttk2 ð28Þ

/
X
j;t

k��̂taj;t � bj;tk2; ð29Þ

where aj;t ¼ Qt
~Vj~z

c
t and bj;t ¼ ðpj;t �Rt

~Vj~z
c
t � ttÞ. Let

aj;t ¼½axj;t; a
y
j;t; a

z
j;t�

T . Note that we can write the matrix

product ��̂taj;t directly in terms of the unknown twist vector

�t ¼ ½!xt ; !
y
t ; !

z
t �
T :

��̂taj;t ¼
0 �!zt !yt

!zt 0 �!xt

� � axj;t

ayj;t
azj;t

2
64

3
75 ð30Þ

¼
0 azj;t ayj;t
�azj;t 0 axj;t

" #
�t: ð31Þ

We use this identity to solve for the twist vector �t
minimizing (29):

�t ¼
X
j

CT
j;tCj;t

 !�1 X
j

CT
j;tbj;t

 !
; ð32Þ
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4. For example, vec
a0 a2

a1 a3

� �� �
¼ ½a0; a1; a2; a3�T .



where

Cj;t ¼ 0 azj;t ayj;t
�azj;t 0 axj;t

� �
: ð33Þ

We finally compute the updated rotation as Qnew
t  e�̂tQt,

which is guaranteed to satisfy the orthonormality constraint.
Note that, since each of the parameter updates involves the

solution of an overconstrained linear system, BCD-LS can be
used even when some of the point tracks are missing. In such
event, the optimization is carried out over the available data.

The rigid motion is initialized by the Tomasi-Kanade [26]
algorithm; the latent coordinates are initialized randomly.

3.2 NRSFM with PPCA

We now describe an EM algorithm to estimate the PPCA
model from point tracks. The EM algorithm is a standard
optimization algorithm for latent variable problems [12];
our derivation follows closely those for PPCA [22], [25] and
factor analysis [14]. Given tracking data p1:T , we seek to
estimate the unknowns G1:T , T1:T , s, V, and �2 (as before,
we estimate 2D translations T, due to the depth ambiguity).
To simplify the model, we remove one source of noise by
assuming �2

m ¼ 0. The data likelihood is given by

pðp1:T jG1:T ;T1:T ;�s;V; �
2Þ ¼

Y
t

pðptjGt;Tt;�s;V; �
2Þ; ð34Þ

where the per-frame distribution is Gaussian (8). Addition-
ally, if there are any missing point tracks, these will also be
estimated. The EM algorithm alternates between two steps:
in the E step, a distribution over the latent coordinates zt is
computed; in the M step, the other variables are updated.5

E-step. In the E step, we compute the posterior distribu-
tion over the latent coordinates zt given the current
parameter estimates, for each time t. Defining qðztÞ to be
this distribution, we have

qðztÞ ¼ pðztjpt;Gt;Tt;�s;V; �
2Þ ð35Þ

¼ N ðztj�ðpt �Gt�s�TtÞÞ; I� �GtVÞ; ð36Þ
� ¼ VTGT

t ðGtVVTGT
t þ �2IÞ�1: ð37Þ

The computation of � may be accelerated by the Matrix
Inversion lemma

� ¼ ��2I�GtVðIþ ��2VTGT
t GtVÞ�1VTGT

t �
�4: ð38Þ

Given this distribution, we also define the following
expectations:

�t � E½zt� ¼ �ðpt �Gt�s�TtÞ; ð39Þ
�t � E½ztzTt � ¼ I� �GtVþ �t�Tt ; ð40Þ

where the expectation is taken with respect to qðztÞ.
M-step. In the M step, we update the motion parameters

by minimizing the expected negative log likelihood:

Q � E½� log pðp1:T jG1:T ;T1:T ;�s;V; �
2Þ� ð41Þ

¼ 1

2�2

X
t

E½kpt�ðGtð�sþVztÞ�TtÞk2� þ JT logð2��2Þ:ð42Þ

This function cannot be minimized in closed form, but closed
form updates can be computed for each of the individual
parameters (except for the camera parameters, discussed
below). To make the updates more compact, we define the
following additional variables:

~V � ½�s;V�; ~zt � ½1; zTt �
T ; ð43Þ

~�t � ½1; �Tt �
T ; ~�t �

1 �Tt
�t �t

� �
: ð44Þ

The unknowns are then updated as follows; derivations are
given in the Appendix.

vecð ~VÞ  
X
t

ð ~�Tt � ðGT
t GtÞÞ

 !�1

vec
X
t

GT
t ðpt �TtÞ~�Tt

 !
;

ð45Þ

�2  1

2JT

X
t

kpt �Ttk2 � 2ðpt �TtÞTGt
~V~�tþ

	
ð46Þ

tr ~VTGT
t Gt

~V ~�t
� ��

; ð47Þ

ct  
X
j

~�Tt
~VT
j RT

t ðpj;t�ttÞ=
X
j

tr ~VT
j RT

t RT
t

~Vj
~�t

	 

; ð48Þ

tt  
1

J

X
j

pj;t � ctRt
~Vj~�t

� �
: ð49Þ

The system of equations for the shape basis update is
large and sparse, so we compute the shape update using
conjugate gradient.

The camera matrix Rt is subject to a nonlinear orthonorm-
ality constraint and cannot be updated in closed form.
Instead, we perform a single Gauss-Newton step. First, we
parameterize the current estimate of the motion with a
3� 3 rotation matrix Qt, so that Rt ¼ �Qt, where

� ¼ 1 0 0
0 1 0

� �
:

The update is then

vecð�Þ  AþB; ð50Þ
Rt  �e�Qt; ð51Þ

where A and B are given in (70) and (71).
If the input data is incomplete, the missing tracks are

filled in during the M step of the algorithm. Let point pj0;t0
be one of the missing entries in the 2D tracks. Optimizing
the expected log likelihood with respect to the unobserved
point yields the update rule

pj0;t0  ct0Rt0
~Vj0 ~�t0 þ tt0: ð52Þ

Once the model is learned, the maximum likelihood 3D shape
for frame t is given by sþV�t; in camera coordinates, it is
ctQtðsþV�t þDtÞ. (The depth component of Dt cannot be
determined and, thus, is set to zero).

Initialization. The rigid motion is initialized by the Tomasi-
Kanade [26] algorithm. The first component of the shape
basis V is initialized by fitting the residual using separate
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5. Technically, our algorithm is an instance of the Generalized EM
algorithm, since our M step does not compute a global optimum of the
expected log likelihood.



shapes St at each time step (holding the rigid motion fixed)
and then applying PCA to these shapes. This process is
iterated (that is, the second component is fit based on the
remaining residual, and so forth) to produce an initial
estimate of the entire basis. We found the algorithm to be
likely to converge to a good minimum when �2 is forced to
remain large in the initial steps of the optimization. For this
purpose, we scale �2 with an annealing parameter that
decreases linearly with the iteration count and finishes at 1.

3.3 NRSFM with Linear Dynamics

The linear dynamical model introduced in Section 2.3 for
NRSFM is a special form of a general LDS. Shumway and
Stoffer [15], [23] describe an EM algorithm for this case,
which can be directly adapted to our problem. The
sufficient statistics �t, �t, and E½ztzTt�1� can be computed
with Shumway and Stoffer’s E step algorithm, which
performs a linear-time Forward-Backward algorithm; the
forward step is equivalent to Kalman filtering. In the
M step, we perform the same shape update steps as above;
moreover, we update the � and Q matrices using Shumway
and Stoffer’s update equations.

4 EXPERIMENTS

We now describe quantitative experiments comparing
NRSFM algorithms on both synthetic and real data sets.
Here, we compare the following models and algorithms:6

. BCD-LS. The least squares algorithm described in
Section 3.1.

. EM-PPCA. The PPCA model using the EM algo-
rithm described in Section 3.2.

. EM-LDS. The LDS model using the EM algorithm
described in Section 3.3.

. XCK. The closed-form method by Xiao et al. [34].

. B05. Brand’s “direct” method [6].

We do not consider here the original algorithm by Bregler
et al. [7], since we and others have found it to give
inferior results to all subsequent methods; we also omit
Brand’s factorization method [5] from consideration.

To evaluate results, we compare the sum of squared
differences between estimated 3D shapes to ground-truth
depth: kŝC1:T � sC1:TkF , measured in the camera coordinate
system (that is, applying the camera rotation, translation, and
scale). In order to avoid an absolute depth ambiguity, we
subtract out the centroid of each shape before comparing. In
order to account for a reflection ambiguity, we repeat the test
with the sign of depth inverted (�Z instead of Z) for each
instant and take the smaller error. In the experiments
involving noise added to the input data, we perturbed the
2D tracks with additive Gaussian noise. The noise level is
plotted as the ratio of the noise variance to the norm of the
2D tracks, that is, JT�2=kp1:TkF . Errors are averaged over
20 runs.

4.1 Synthetic Data

We performed experiments using two synthetic data sets. The
first is a data set created by Xiao et al. [34], containing six rigid
points (arranged in the shape of a cube) and three linearly
deforming points, without noise. As reported previously, the

XCK and B05 algorithms yield the exact shape with zero error
in the absence of measurement noise. In contrast, the other
methods (EM-PPCA, EM-LDS) have some error; this is to be
expected, since the use of a prior model or regularizer can add
bias into estimation. Additionally, we found that EM-PPCA
and EM-LDS did not obtain good results in this case unless
initialized by XCK. For this particular data set, the methods of
XCK and B05 are clearly superior; this is the only data set on
which Xiao et al. [34] perform quantitative comparisons
between methods. However, this data set is rather artificial,
due to the absence of noise and the simplicity of the data. If we
introduce measurement noise (Fig. 2), EM-PPCA and EM-
LDS give the best results for small amounts of noise, when
initialized with XCK (this is the only example in this paper in
which we used XCK for initialization).

Our second synthetic data set is a 3D animation of a shark,
consisting of 3D points. The object undergoes rigid motion
and deformation corresponding to K ¼ 2 basis shapes; no
noise is added. Reconstruction results are shown in Fig. 3, and
errors plotted in Fig. 4, the iterative methods (BCD-LS, EM-
PPCA, and EM-LDS) perform significantly better than B05
and XCK. The ground-truth shape basis is degenerate (that is,
individual elements of the deformation are not full rank when
viewed asJ � 3 matrices), a case that Xiao et al. [34] point to as
being problematic (we have not tested their solution to this
problem). Performance for BCD-LS gets significantly worse
as superfluous degrees of freedom are added ðK > 2Þ,
whereas EM-PPCA and EM-LDS are relatively robust to
choice of K; this suggests that BCD-LS is more sensitive to
overfitting with large K. EM-LDS performs slightly better
than EM-PPCA, most likely because the very simple
deformations of the shark are well modeled by linear
dynamics.

In order to test the ability of EM-PPCA and EM-LDS to
estimate noise variance ð�2Þ, we compare the actual with
estimated variances in Fig. 5. The estimation is generally very
accurate, and error variance across the multiple runs is very
small (generally less than 0.04). This illustrates an advantage
of these methods: they can automatically learn many of the
parameters that would otherwise need to be set “by hand.”

4.2 Motion Capture Data

We performed experiments with two motion capture
sequences. The first sequence was obtained with a Vicon
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6. The authors are grateful to Brand and to Xiao et al. for providing the
source code for their algorithms.

Fig. 2. Reconstruction error as a function of measurement noise for the

cube-and-points data in [34].
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Fig. 3. Reconstructions of the shark sequence using the five algorithms. Each algorithm was given 2D tracks as inputs; reconstructions are shown
here from a different viewpoint than the inputs to the algorithm. Ground-truth features are shown as green circles; reconstructions are blue dots.

Fig. 4. Reconstruction error as a function of the number of basis shapes ðKÞ for the synthetic shark data. The ground-truth shape has K ¼ 2. The

plot on the left compares all methods discussed here, and the plot on the right compares only our methods.



optical motion capture system, with 40 markers attached to
the subject’s face (Fig. 6). The motion capture systems track
the markers and triangulates to estimate the 3D position of
all markers. We subsampled the data to 15 Hz, yielding a
sequence 316 frames long. The subject performed a range of
facial expressions and dialogue. Test data is generated by
orthographic projection.

Reconstruction results are shown in Fig. 7 and reconstruc-
tion error plotted in Fig. 8. As is visible in the figure, the XCK
and B05 algorithms both yield unsatisfactory reconstruc-
tions,7 regardless of the choice of K, whereas the iterative
methods (BCD-LS, EM-PPCA, EM-LDS) perform signifi-
cantly better. EM-PPCA yields the best results on the original
data. The performance of BCD-LS degrades as K increases,
suggesting an overfitting effect, whereas EM-PPCA only
improves with largerK. We also performed this test with EM-
PPCA using a pure orthographic projection model ðct � 1Þ,
and the error curve was very similar to that of scaled
orthographic projection.

We tested a MAP version of the algorithm that
optimizes LMAP (13) plus a penalty on the Frobenius
norm of V by block coordinate descent. We found this
method to give worse results than the least squares
optimization (that is, optimizing LMLE by BCD-LS), for all
regularization weights that we tested. This suggests that
selecting appropriate regularization is not trivial.

We also performed experiments with noise added to the
data and with random tracks removed. The missing data case
is important to test, because 3D points will necessarily
become occluded in real-image sequences and may also
“disappear” for other reasons such as dropped tracks or
specularities. We simulate missing data by omitting each
measurement uniformly at random with a fixed probability.
(In real situations, occlusions typically occur in a much more
structured manner [8]). Fig. 9 demonstrates the sensitivity of

the different iterative estimation methods to missing data;
these figures suggest that EM-PPCA and EM-LDS are more
robust to missing data, whereas BCD-LS degrades much
faster. These results are computed by averaging over
30 random runs. Again, EM-LDS performs best as the amount
of missing data increases. We did not test XCK and B05 on
these data sets, as these methods assume that no data is
missing, and will therefore depend on how this missing data
is imputed in the initial factorization step.

In order to visualize the model learned by EM-PPCA,
Fig. 10 shows the mean shape and the modes of deforma-
tion learned with K ¼ 2.

We additionally tested the algorithms’ sensitivity to the
size of the data set (Fig. 11). Tests were conducted by
sampling the face sequence at different temporal rates. (Due
to local minima issues with BCD-LS, we performed 30 mul-
tiple restarts for each BCD-LS test.) We found that the data set
size did not have a significant effect on the performance of the
algorithm; surprisingly, reconstruction error increased some-
what with larger data sets. We suspect that this reflects
nonstationarity in the data, for example, some frames having
significantly greater variations than others, or non-Gaussian
behavior. We also performed the same experiment on
synthetic data randomly generated from a linear-subspace
model and found the behavior to be much more as predicted,
with error monotonically decreasing as the data set grew, and
then leveling off.

In some applications of NRSFM, there may be significant
structure in the deformations that are not represented in the
model or not known in advance. In order to explore this case,
we performed experiments on a full-body human motion
capture data of a person walking. This human body can be
approximately modeled as an articulated rigid-body system.
The articulation is not modeled by the NRSFM methods
considered here, and we cannot expect perfect results from
this data. However, if the simple NRSFM models work well in
this case, they may provide useful initialization for an
algorithm that attempts to determine the articulation struc-
ture or the kinematics. We chose walking data that includes
turning (Fig. 6),8 in order to ensure adequate rotation of the
body; as in rigid SFM, without rotation, there is inadequate
information to estimate shape. The input to the algorithm is
an orthographic projection of 3D marker measurements.
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Fig. 6. (a) The facial motion capture session, which provided test data
for this paper. (b) The full-body motion capture session (from the
Carnegie Mellon University (CMU) mocap database) used in this paper.

7. One possible explanation would be that this data suffers from
degenerate bases; however, this did not appear to be the case, as we
determined by testing the PCA bases of the aligned ground-truth data.

8. We used sequence 16-18 from the CMU motion capture database
(http://mocap.cs.cmu.edu). The sequence was subsampled by discarding
every other frame and most of the markers. The resulting data has
260 frames and 55 points per frame.

Fig. 5. Noise estimation for the synthetic shark data set. For each true
noise variance (x-axis), the variance estimated by our algorithm is
shown on the y-axis. The diagonal line corresponds to ground truth.
Results are averaged over 20 runs. Error bars are not shown because
the sample variance is very small.



Reconstructions are shown in Fig. 12. As plotted in Fig. 13, all

of the algorithms exhibit nontrivial reconstruction error.

However, EM-PPCA gives the best results, with BCD-LS

somewhat worse; XCK and B05 both yield very large errors.

Additionally, B05 exhibits significant sensitivity to the choice

of the number of basis shapes ðKÞ, and as before, the

reconstruction from BCD-LS degrades slowly as K grows,

whereas EM-PPCA is very robust to the choice of K.
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Fig. 7. Reconstruction of the facial motion capture data. The top row shows selected frames from the input data. The remaining rows show
reconstruction results (blue dots), together with ground truth (green circles), viewed from below.

Fig. 8. Reconstruction error for the face motion capture data, varying the number of basis shapes ðKÞ used in the reconstruction.



5 DISCUSSION AND FUTURE WORK

In this work, we have introduced NRSFM. Due to the
inevitable presence of measurement noise, missing data and
high-dimensional spaces, we argue that NRSFM is best posed
as a statistical estimation problem. This allows us to build
explicit generative models of shape to marginalize out
hidden parameters and to use prior knowledge effectively.
As shown by our experiments, closed-form methods—while
obtaining perfect results on noiseless synthetic data—yield
much higher errors on noisy data and real measurements.
The superiority of EM-PPCA to BCD-LS in all of our tests
illustrates the importance of marginalizing out latent
coordinates. The superiority of EM-LDS over EM-PPCA for
highly noisy real data illustrates the value of the use of a

motion model, although a first-order linear dynamical model
was too weak for our data sets.

We did find that, on synthetic, noiseless data, our
methods had issues with local minima, whereas the
closed-form methods performed very well on these cases.
This indicates that testing on pure synthetic data, while
informative, cannot replace quantitative testing on real
data, and may in fact give opposite results from real data.
The cube-and-points data set is one for which our prior
distribution may not be appropriate.

Linear models provide only a limited representation of
shape and motion, and there is significant work to be done
in determining more effective models. For example,
nonlinear time-series models (for example, [21], [33]) can
represent temporal dependencies more effectively;
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Fig. 9. Reconstruction error for the face motion capture data. (a) shows the dependence on added measurement noise and (b) shows increasing
amounts of missing data. Note that “0 percent” noise corresponds to zero noise added to the data, in addition to any noise already present in the
measurements.

Fig. 10. Three-dimensional mean shape and modes recovered by EM-PPCA with K ¼ 2. Shape modes are generated by adding each deformation

vector (scaled) to the mean shape. The lines are not part of the model; they are shown for visualization purposes only.



perspective projection is a more realistic camera model for
many image sequences. However, we believe that, what-
ever the model, the basic principles of statistical estimation
should be applied. For example, NRSFM for articulated

rigid-body models will likely benefit from marginalizing
over joint angles. We do not address the selection of K in
this paper, although our results suggest that the methods
are not extremely sensitive to this choice. Alternatively,
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Fig. 11. Dependence on data set size for the face data. We suspect that the odd behavior of the plots is due to nonstationarity of the facial motion
data; some frames are fit much better by the model than others.

Fig. 12. Reconstruction of the walking motion capture data. The top row shows selected frames from the input data. The remaining rows show

reconstruction results (blue dots), together with ground truth (green circles), viewed from below.



methods such as Variational PCA [3] could be adapted in
order to estimate K or integrate it out.

Another important direction is the integration of NRSFM
with image data. An advantage of the statistical estimation
framework is that it can be directly tied to an appearance
model [27], whereas other methods must somehow extract
reliable tracks without the benefit of 3D reconstruction.

Although we have chosen to use the EM algorithm for
estimation, it is possible that other numerical optimization
methods will give better results. For example, conjugate
gradient could be applied directly to the log posterior.

APPENDIX

We now derive the M-step step updates used in Section 3.2.
The expected negative log likelihood is

Q ¼ 1

2�2

X
t

E½kpt � ðGt
~V~zþTtÞk2� þ JT logð2��2Þ: ð53Þ

To derive updates, we solve for the minimizing value of Q
with respect to each of the unknowns, holding the others
fixed. Closed-form updates exist for each of the individual
unknowns, aside from the rotation matrices.

To derive the shape basis ~V update, we solve for the
stationary point

@Q

@ ~V
¼ � 1

2�2

X
t

E½GT
t ðpt � ðGt

~V~zþTtÞÞ~zT � ð54Þ

¼ � 1

2�2

X
t

GT
t ðpt �TtÞ~�Tt þ

1

2�2

X
t

GT
t Gt

~V ~�t: ð55Þ

Applying the vec operator to both sides and using the
identities vecðABCÞ ¼ ðCT �AÞvecðBÞ and vec @Q

@ ~V
¼ @Q

@vecð ~VÞ
gives

@Q

@vecð ~VÞ
¼ � 1

2�2
vec

X
t

GT
t ðpt �TtÞ~�Tt

 !
ð56Þ

þ 1

2�2

X
t

ð ~�Tt � ðGT
t GtÞÞvecð ~VÞ: ð57Þ

Solving @Q

@vecð ~VÞ ¼ 0 yields the shape basis update (45).

To solve for the variance update, we can solve @Q=@�2 ¼ 0
and then simplify

�2 ¼ 1

2JT

X
t

E½kpt � ðGt
~V~zt þTtÞk2� ð59Þ

¼ 1

2JT

X
t

kpt �Ttk2 � 2ðpt �TtÞTGt
~V~�t

	
ð59Þ

þ E½~zTt ~VTGT
t Gt

~V~zt�
�
: ð60Þ

The final term in this expression is a scalar, and so, we
can apply a trace, and using the identity trðABÞ ¼ trðBAÞ,
we get:

E½~zTt ~VTGT
t Gt

~V~zt� ¼ trð ~VTGT
t Gt

~VE½~zt~zTt �Þ
¼ trð ~VTGT

t Gt
~V ~�tÞ:

To solve for the camera updates, we first rewrite the
objective function using (1) and, for brevity, drop the
dependence on �2

Q ¼
X
j;t

E½kpj;t � ðctRt
~Vj~zt þ ttÞk2�; ð61Þ

where ~Vj are the rows of ~V corresponding to the jth point
(that is, rows 3j� 2 through 3j), and tt are the x and
y components of the translation in image space. The partial
for translation is

@Q

@tt
¼ �

X
j;t

2E½ðpj;t � ðctRt
~Vj~zt þ ttÞÞ� ð62Þ

¼ �2
X
j

ðpj;t � ctRt
~Vj ~�tÞ þ 2Jtt: ð63Þ

The update to ct is derived as follows:

@Q

@ct
¼
X
j

E½�2~zTt
~VT
j RT

t ðpj;t � ðctRt
~Vj~zt þ ttÞÞ� ð64Þ

¼ �2
X
j

~�Tt
~VT
j RT

t ðpj;t�ttÞþ2ct
X
j

tr ~VT
j RT

t RT
t

~Vj
~�t

	 

:

ð65Þ
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Fig. 13. Reconstruction error as a function of basis shapes ðKÞ for full-body motion capture data. This noise is added in addition to any noise already
present in the measurements.



The camera rotation is subject to a orthonormality

constraint, for which we cannot derive a closed-form update.

Instead, we derive the following approximate update. First,

we differentiate (61)

@Q

@Rt
¼ Rtc

2
t

X
j

~Vj
~�t ~VT

j � ct
X
j

ðpj;t � ttÞ~�Tt ~VT
j : ð66Þ

Since we cannot obtain a closed-form solution to

@Q=@Rt ¼ 0, we linearize the rotation. We parameterize

the current rotation as a 3� 3 rotation matrix, such that

Rt ¼ �Qt, parameterize the updated rotation relative to

the previous estimate: Qnew
t ¼ �QQt. The incremental

rotation �Q is parameterized by an exponential map

with twist matrix �

�Q ¼ e� ¼ Iþ � þ �2=2!þ . . . : ð67Þ

Dropping nonlinear terms gives the updated value as

Qnew
t ¼ ðIþ �ÞQt. Substituting Qnew

t into (66) gives

@Q

@Rt
� �ðIþ �ÞQtc

2
t

X
j

~Vj
~�t ~VT

j � ct
X
j

ðpj;t� ttÞ~�Tt ~VT
j : ð68Þ

Applying the vec operator gives

vec
@Q

@Rt
� Avecð�Þ þB; ð69Þ

A ¼ c2
t

X
j

~Vj
~�t ~VT

j QT
t

 !
��; ð70Þ

B ¼ c2
t�Qt

X
j

~Vj
~�t ~VT

j � ct
X
j

ðpj;t � ttÞ~�Tt ~VT
j : ð71Þ

We minimize kAvecð�Þ þBkF with respect to � for the

update, giving vecð�Þ  AþB.
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