
AUTOMATIC LONG-TERM DECEPTION DETECTION IN GROUP INTERACTION VIDEOS

Chongyang Bai1, Maksim Bolonkin1, Judee Burgoon3, Chao Chen1, Norah Dunbar4,
Bharat Singh2, V. S. Subrahmanian1, Zhe Wu2

1Dartmouth College, 2Univerity of Maryland,
3University of Arizona, 4University of California Santa Barbara

ABSTRACT

Most work on automated deception detection (ADD) in

video has two restrictions: (i) it focuses on a video of one

person, and (ii) it focuses on a single act of deception in a one

or two minute video. In this paper, we propose a new ADD

framework which captures long term deception in a group set-

ting. We study deception in the well-known Resistance game

(like Mafia and Werewolf) which consists of 5-8 players of

whom 2-3 are spies. Spies are deceptive throughout the game

(typically 30-65 minutes) to keep their identity hidden. We

develop an ensemble predictive model to identify spies in Re-

sistance videos. We show that features from low-level and

high-level video analysis are insufficient, but when combined

with a new class of features that we call LiarRank, produce

the best results. We achieve AUCs of over 0.70 in a fully

automated setting.

1. INTRODUCTION

Sales presentations, business negotiations and diplomatic

talks often involve consistent deception in a group setting.

During a sales presentation, the seller may present deceptive

information about his products. During nuclear negotiations,

a country may be deceptive about its intentions. In particular,

deceivers in such situations engage in a mix of truthful and de-

ceptive acts over an extended period of time (anywhere from

30-minutes to days). We focus on group settings in which

there is visibility of each participant’s face.

Past work on automated deception in video [1, 2, 3]

focuses on videos of a single person in a short (15-200

secs) clip. In contrast, we present a fully automated sys-

tem (LiarOrNot) in which we take a frontal video of a sub-

ject interacting with a group and predict whether that person

is being deceptive in the long term, i.e. across the duration

of a 30-65 minute video. To achieve this, we conducted a

study that generated 44 games involving 285 players from 5

Authors’ emails: Chongyang Bai (cy@cs.dartmouth.edu),

Maksim Bolonkin (mbolonkin@cs.dartmouth.edu), Judee Burgoon

(judee@email.arizona.edu), Chao Chen (chao.chen.gr@dartmouth.edu), No-

rah Dunbar (ndunbar@comm.ucsb.edu), Bharat Singh (bharat@cs.umd.edu),

V. S. Subrahmanian (vs@dartmouth.edu), Zhe Wu (zhewu@umd.edu).

sites in 3 countries (Singapore, Israel and the USA) by run-

ning a version of the well-known Resistance game. Re-
sistance and its variants like Mafia and Werewolf naturally

induce long term deception in a highly interactive group set-

ting. Resistance usually involves 5-8 players, 2-3 of whom

are designated “spies” who win the game if they are not dis-

covered. Thus, they must be deceptive throughout the game,

but must intermix lies with truth in order to stay undiscov-

ered by others. We develop methods to predict “spies” and

“honest” players in the game.

In addition to the fact that long-term deception in group

settings has been rarely studied, LiarOrNot makes the follow-

ing innovations. Building on well-known image (VGG Face)

and audio features (Mel-frequency cepstral coefficients), (i)

we introduce a class of histogram-based features that build

on well known low-level (eye/head movement, facial action

units) and high-level (emotion features from Amazon Rekog-

nition) features. (ii) we introduce a novel class of “meta-

features” called LiarRank that builds on the basic features,

and (iii) we introduce an ensemble based prediction model.

Our 10-fold cross validations split the entire set of videos into

training and testing sets based on games. Hence, LiarOrNot
predicts on games and people that are completely disjoint

from those seen in training. We show that LiarOrNot achieves

an AUC of 0.705 in this hard test, significantly outperforming

other feature classes and past work. Additionally, as our data

set was collected across three very different countries and be-

cause there may be cultural differences in deception, our re-

sults are more robust across cultures than past studies (though

much additional work needs to be done to capture African and

Latin American cultures as well).

2. RELATED WORK

Zhang et al. [1] were among first to use fine-grained image

analysis to detect deception in facial and emotional expres-

sions in static images. To distinguish genuine facial expres-

sions from simulated ones, they proposed a set of features re-

lying on 58 manually labeled facial points, which makes the

approach not fully automated. Michael et al. [4] built upon

this approach by proposing a feature called motion patterns,

incorporating both head/hand movement and automatic facial

1600

2019 IEEE International Conference on Multimedia and Expo (ICME)

978-1-5386-9552-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ICME.2019.00276

landmarks tracking. The experimental setting in their work,

however, was constrained to an interview. LiarOrNot is de-

signed to detect deception in an hour-long group interaction,

instead of an interview. Wu et al. [3] took advantage of the

multi-modal nature of videos to detect deception in courtroom

trial videos. They used motion, audio, and text features as

well as facial micro-expressions to build a fully automated de-

ception detection engine achieving 0.877 AUC with inferred

micro-expressions. This work was tested only for short court-

room videos (which is similar to an interview) and not under

group interactions.

Chittaranjan et al. [5] pioneered the approach of using

videos of games. They collected a dataset of Werewolf
videos which is similar to Resistance. They used verbal

and non-verbal cues to predict players considered deceitful

by other players. They did not take visual appearance into

account. Moreover, they focused on predicting other players’

perception of deceitful behavior rather than actually predict-

ing the werewolves (who are similar to the spies in Resis-
tance). Demyanov et al. [6] created a dataset of Mafia game

videos and proposed a method to detect deceptive players.

They achieved 0.639 AUC by analyzing facial action units

of players. Yu et al. [7]’s important paper considered a game

called “Killer Game” with a similar set up. In this study play-

ers participated in the game online via voice or text messages.

Yu et al. [7] used sentiment analysis to infer players’ attitude

towards each other and to build a network to identify a group

of deceitful players.

Unlike previous studies [1, 3], we deal not with short

videos of an act of deception but rather with long (30–65 min-

utes) videos of humans, some of whom are actively avoid-

ing being deceptive. Thus, it is impossible to select a spe-

cific point in time when deception is happening, and the de-

cision whether a player is a spy or a member of resistance

should come from analyzing the whole video. Unlike [7], we

actively use audio–visual information; we ignore transcript

analysis for now. We build on the use of Facial Action Units

as in [6]. In addition, we use emotion predictions provided

by Amazon Rekognition, as well as some low level features

such as eye/head movements and Convolutional Neural Net-

work representations. Additionally, we propose a new class

of meta-features called LiarRank.

3. GAME AND DATASET DESCRIPTION

Our Resistance dataset contains a set of videos depicting

groups of 5-8 people playing a social game.

The Game. Each player is secretly told that she belongs to

a team of “spies” or a team of “resistance”. Spies know who

other spies are, but the resistance does not know any infor-

mation. There are 2–3 spies in a game. The game proceeds

in rounds (typically 3 to 7 in a game) called missions. Every

round has three stages: players nominate and elect a mission

team leader; the leader nominates mission team members, and

players vote for that mission team; finally, the mission team

“goes on the mission”. In the leader nomination stage, play-

ers get nominated to serve as a leader. All players vote for

or against the nominee. This stage is repeated until the team

leader is elected. In the second stage of the round, the team

leader nominates team members. After a discussion, all play-

ers vote on approval or rejection of the proposed team. This

stage is repeated up to three times or until the team is ap-

proved. In the third stage the team members secretly vote for

the success or failure of the mission. Spies want the mission

to fail, resistance want the mission to succeed. If the vote is in

favor of mission success, the resistance team collectively gets

a point. If some votes go the other way, the spies collectively

get a point. Spies also score a point if players fail to approve

the proposed team three times. A team (spies or resistance)

with the highest score at the end of the game wins. Therefore

spies have a natural incentive to get elected as team leaders

and to get on mission teams. For the resistance team it is ad-

vantageous to identify spies as soon as possible and prevent

them from getting on mission teams, which means spies need

to make sure they are not discovered.

Dataset description. Our Resistance dataset contains

a set of videos of Resistance games involving 285 players

(total of 113 spies and 172 members of resistance) collected

from 5 sites spread over 3 countries (three locations in USA

plus Israel and Singapore). Videos span a minimum of 30

minutes to a maximum of 65 minutes with the average dura-

tion being 46 minutes. In this paper we use video of a player

captured by a tablet camera directly in front of the player.

Since the players were interacting continuously throughout

the video, each camera also captured audio of all players.

4. LiarOrNot DECEPTION DETECTION SYSTEM

Architecture. Figure 1 shows the LiarOrNot architecture. Let

T G = {TG1, . . . , TGn} be the set of training game videos

(e.g. in some fold of cross validation) and let TGn+1 be any

game (either in T G or not). In any game TGj , let pji be the

i’th player in that game. In our data, i varies from 1 through

a max of 8. Each player pij’s frontal camera captures a video

vij of that player of length 30–65 minutes. Each player ap-
peared in exactly one game. Since we wish to predict whether

a player pij is deceptive or not, each player needs to have an

associated feature vector fv(pij) which we define as either a

basic feature vector bf(pij) or a LiarRank meta-feature vec-

tor sr(pij).
The rest of this section is organized as follows. We first ex-

plain the concept of LiarRank, showing how to associate a

LiarRank meta-feature vector sr(pij) with player pij . We then

explain how the “basic” features are derived. Finally, we ex-

plain our ensemble predictor. Throughout this section, we use

the ”dot” notation to denote the connection between represen-

tations and level of aggregation, e.g. fr.fi denotes feature fi
of the frame fr, and Cl.f denotes feature vector f of clip Cl.

1601

Fig. 1. LiarOrNot Architecture. Steps: Uniformly sample n clips from a player’s video, then (1) extract frame features,

including VGG Face, emotions, facial action units and eye/head movements, (2) aggregate frame features and sub-second

MFCC features to clip features, (3) and (4) aggregate previous features to player features, (4) is histograms of low-dimension

high-level features, and (3) is Fisher Vectors (FV), (5) build LiarRank of player features. Finally, predictions made from each

feature type are used in our ensemble spy predictor to generate the final prediction.

Algorithm 1: LIARRANK(T G, TGn+1, p
�
n+1, fh)

Input : Training set T G = {TG1, . . . , TGn}, Player

p�n+1 from some game TGn+1, basic feature

fh
Output: srh(p�n+1)

1 for j ∈ [1, . . . , n] do
2 V als(fh, j) = {p�n+1.fh} ∪

⋃8
i=1{pij .fh}

3 Sort V als(fh, j) in descending order

4 rj= position of p�n+1.fh’s value in V als(fh, j)

5 end
6 return the vector 〈r1, . . . , rn〉

4.1. LiarRank Features

Suppose BF = {fh}kh=1 is any set of basic features. Given

any basic feature fh, we will first define the LiarRank
srh(p

i
j) of player pij w.r.t. feature fh. The LiarRank vec-

tor sr(pij) is then the vector 〈sr1(pij), . . . , srk(pij)〉 obtained

by concatenating these individual feature-ranks.

The LiarRank algorithm shown above takes as input, a

training set T G = {TG1, . . . , TGn}, a game TGn+1 (which

could be in T G or not), as well as a player and a single feature

fh. It returns a vector of length n (i.e. number of games in

the training set) which captures the position of players p�n+1’s

value for feature fh w.r.t. the corresponding values for other

players in each of the n games. To do this, it computes the

value of the feature for the player p�n+1 as well as every player

who participated in any of the training games. The resulting

set of features values is stored in the set V als(fh). This set

of values is then sorted in descending order. The first item

in the descending order has position (or rank) 1, the second

has position (or rank) 2, etc. The LiarRank of player p�n+1

w.r.t. feature fh is its position in the sorted V als(fh) list. In-

tuitively, LiarRank of player p�n+1 w.r.t. feature fh is the rel-
ative rank of player p�n+1 had she participated in that game.

The above defines the LiarRank vector of a player w.r.t. a

feature. The LiarRank vector of a player is the concatenation

of the feature vectors. There is some similarity between Liar-
Rank and the rank transform proposed in [8] and the local

binary pattern descriptor (LBP) in computer vision.

4.2. Basic Features

Sampling. We sample 10-second clips at an interval of 30 sec-

onds per video. Since games are 30-65 minutes long, different

videos may consist of different numbers of clips. From each

clip, we further sample a set of m = 300 frames for Eye/Head

Estimations and m = 20 frames for the rest of visual features

(see below). As low/high-level video features as well as au-

dio features for each player may vary substantially over the

length of the video, we define features at both the frame-level

and clip-level. For each (ClipId, FrameId) pair, we extract

a set of basic features.

Basic Frame Features. For sampled frames, we extract

the following basic features: VGG Face [9]; Facial Action

Units (FAU) and Eye/Head Estimations (E/H) using Open-

Face [10]; Amazon Rekognition for 7 emotions (happy, sad,

angry, confused, disgusted, surprised, calm) and 3 facial at-

tributes (open eyes, open mouth, smile); and MFCC fea-

tures [11].

Basic Clip-level features. We aggregate frame-level features

into clip-level features with average-pooling. If a clip Cl is a

set of sampled frames, then the value of a clip-level feature fh
for clip Cl is given by Cl.fh = 1

|Cl|Σfr∈Clfr.fh. Clip-level

features smooth variations in frame level features, especially

as those variations can be substantial for some features, e.g.

emotion features.

Player-level features. As the goal is to extract features at a

1602

per-player level, we aggregate clip-level features into player-

level features using Fisher Vectors (for VGG Face represen-

tations), or histograms (for Facial Action Units, Eye/Head

movement, and Amazon Rekognition features).

Fisher Vector features. Fisher vector (FV) is a bag-of-words

based model heavily used for object recognition in images.

Note that each video may have a different number of clips.

Fisher Vectors aggregate the clip level features of an arbitrar-

ily long video into a fixed length encoding.

Histogram features. We compute three types of histogram

features for every basic feature such as Facial Action Units,

Eye/Head movement, and Amazon Rekognition features.

These are histograms of frame-level features, histograms of

clip-level features, and combination of the first two.

For a player Pl and a basic frame feature fh, we have a

set of all feature values for all frames {frst.fh}, where

frst ∈ Clt and Clt ∈ Pl (or a set of clip-level fea-

tures {Cl1.fh, Cl2.fh, . . . , Cl|Pl|.fh} where Cli ∈ Pl.).

We build a histogram of frame-level features Vframes
h =

〈v1h, v2h, . . . , vbh〉 where vih are frequencies of values frst.fh
falling into the ith bin, and b is the number of bins (sim-

ilarly Vclips
h = 〈v1h, v2h, . . . , vbh〉 for a histogram of clip-

level features). We form a histogram feature by concate-

nating histograms for all or some of basic features Pl.f =
〈Vframes

h1
,Vframes

h2
, . . .〉 (or Pl.f = 〈Vclips

h1
,Vclips

h2
, . . .〉 for

clip-level histograms). Finally, we also build combined his-

togram features by concatenating frame-level histograms and

clip-level histograms of the same combination of features

Pl.f = 〈Vframes
h1

,Vclips
h1

,Vframes
h2

,Vclips
h2

, . . .〉. Optimal

number of bins b is determined through cross-validation.

4.3. Ensemble classifier

The previous steps associate with each player pij a feature

vector fv(pij) represented by the basic features or associated

LiarRank features listed above at the player level (aggregat-

ing from frame- and clip-levels as described above). Thus,

there are five types of features: LiarRank of Fisher Vector

of VGG Face, Facial Action Units, Rekognition Emotions,

Eye/Head movement, and MFCC. We trained a suite of clas-

sifiers and used them to produce a late fusion model. Each

classifier returns a score denoting the probability of a subject

being a spy. If Si is the score returned by a classifier for the

ith feature type for i ∈ {1, . . . , 5}, then the final score S is

obtained by late fusion of named models:

S =
5∑

i=1

αiSi ,

where
∑5

i=1 αi = 1. Late fusion weights αi are obtained by

grid-search and cross-validation. For each of the five types

of features, we select the best classifier, and combine them as

above via late fusion.

5. EXPERIMENTS

5.1. Experimental setup

We use videos of 285 players from 44 games. We split the

dataset into 10 folds by games, i.e. all players from a game

are in either the training or the testing part of a fold. Our clas-

sifier suite includes: k-Nearest Neighbors (KNN), Logistic

Regression (LR), Gaussian Naive Bayes (NB), Linear SVM

(L-SVM) and Random Forest (RF). As a performance metric

we report the mean AUC over 10 folds.

5.2. Prediction using single-feature classifiers

LiarRank. Table 2 shows performance of different aggre-

gations from VGG Face-based and MFCC-based features

including LiarRank. As a baseline we use the feature

obtained by averaging all frame-level VGG Face features.

This baseline does not even achieve 0.55 AUC, which means

simple averaging is not a good strategy to capture the relevant

behavior of a player over a long video.

Another baseline we explore is to consider every clip-level

feature as a point in the dataset, and to assign each clip

the label of the player this clip belongs to. To generate

player-level predictions, we perform inference for every

clip and average clip-level predictions. The highest AUC

we achieve using VGG Face is 0.55, which supports the

claim that for deceptive behavior detection it is necessary to

consider video as a whole.

Fisher Vector (FV) is better than the above baselines, achiev-

ing an AUC of 0.584. We attribute this to the fact that FV

captures statistical information from the whole video rather

than from a short clip.

Finally, LiarRank of Fisher Vector of VGG Face feature

obtains the highest 0.663 AUC after feature selection (FS),

and this improvement is statistically significant (p < 0.01).

To verify that improvement comes from the proposed meta-

feature and not merely from feature selection procedure,

we perform feature selection on Fisher Vector of VGG

Face (base feature for LiarRank in our experiments), which

achieves the highest AUC of 0.522. This experiment suggests

that LiarRank is important for the improvement in accuracy.

Histogram features. As baselines we use mean values of

Amazon Rekognition features, Facial Action Units and

Eye/Head movement features over all the frames in a video.

Although some of these baselines (0.586 AUC for Amazon

Rekognition, 0.6 AUC for Facial Action Units and 0.5 AUC

for Eye/Head movement) outperform VGG Face baselines,

they are significantly inferior to histogram-based player-level

features based on corresponding frame-level features.

Each aforementioned frame-level representation consists

of several features corresponding to individual emotions or

facial expressions, not all of which are useful for the task of

deception detection. To address this problem, we perform

cross-validation with exhaustive search through all possible

1603

Amazon Rekognition

Frame hist. Clip hist. Combined

Disgusted, Surprised 0.630 Smile, Angry, Disgusted 0.634 Smile, Angry, Disgusted 0.676
Surprised 0.622 Smile , Angry 0.623 Smile, Disgusted 0.647

Calm 0.622 Smile, Disgusted, Calm 0.618 Angry 0.638

All features 0.557 All features 0.544 All features 0.563

Facial Action Units

Frame hist. Clip hist. Combined

AU07+AU10+AU12 0.621 AU06+AU14 0.609 AU07+AU09+AU10 0.621
AU12+AU23+AU25 0.614 AU07+AU09+AU10 0.606 AU07+AU10+AU23 0.617

AU09+AU10+AU12 0.612 AU07+AU14+AU45 0.603 AU12+AU25 0.611

All features 0.592 All features 0.577 All features 0.608

Eye/Head movement

Frame hist. Clip hist. Combined

3+8 0.632 1+6+8 0.671 1+3+4+5+6+8 0.643

3 0.624 1+6 0.642 1+3+5+8 0.627

3+7 0.615 1+3+6+8 0.636 1+3+5+6+8 0.625

All features 0.591 All features 0.560 All features 0.618

Table 1. Performance (AUC) of histogram based representations: top three subsets and all features for frame-level histograms,

clip-level histograms, and combined histograms. In all cases sets of all features perform worse than proper subsets due to

excessive noise introduced by irrelevant features. For Action Units numbers refer to FACS [12]. Movement features encoding

is the following: 1/2: horizontal/vertical eyes movements, 3-5: Euler angles of head rotations, 6-8: x, y, z head translations.

Features RF L-SVM NB LR KNN

Average VGG Face (baseline) 0.516 0.533 0.549 0.546 0.50

VGG Face clip-level voting 0.503 0.520 0.550 0.527 0.479

FV of VGG Face 0.468 0.573 0.502 0.584 0.502

FV of VGG Face + FS 0.506 0.470 0.491 0.467 0.522

LiarRank of FV of VGG Face + FS 0.639 0.647 0.663 0.652 0.603

FV of MFCC frame-level 0.606 0.395 0.56 0.608 0.579

FV of MFCC clip-level 0.586 0.441 0.533 0.579 0.595

Table 2. Performance (AUC) of different aggregations of vi-

sual (VGG Face) and audio (MFCC) representations. Top to

bottom: 1. Average pooling of all frames; 2. Clip-level VGG

Face features are used to train and test, scores are averaged

for player-level inference; 3. Fisher Vector of clip-level VGG

Face features; 4. Fisher Vector of clip-level VGG Face fea-

tures after feature selection procedure; 5. LiarRank of the

Fisher Vector of clip-level VGG Face features after feature

selection; 6. Fisher Vector of all MFCC features; 7. Fisher

Vector of clip-level MFCC features.

combinations of features within every representation. So,

when computing histogram vectors, we concatenate his-

tograms of a subset of features.

Table 1 shows that different ways of producing histograms

(from frame-level features and from clip-level features)

perform differently not just in terms of classification perfor-

mance but also in terms of best subset of features. In case

of Amazon Rekognition features and Facial Action Units,

it is advantageous to use combined histogram features. For

Eye/Head movement features, however, clip-level histograms

yield the best performance.

Our experiments show that for Amazon Rekognition based

features, the combination of three expressions “Smile”, “An-

gry” and “Disgusted” performs the best and achieves 0.676

AUC. For Facial Action Units, the combination of AU07,

AU09 and AU10 achieves 0.621 AUC. The combination

of horizontal eyes movements and x, z head translations

achieves 0.671 AUC. In all cases representations including

all the individual feature histograms (”All features” in Table

1) perform worse than some of the subsets.

5.3. Ensemble Prediction and Feature Importance

For our ensemble classifier, we use five best performing fea-

tures: histogram features of facial action units (AU07, AU09,

AU10), Fisher Vectors of MFCC, histogram features of Ama-

zon Rekognition predictions (Smile, Angry, Disgusted), his-

togram features of best movement feature combinations in

Table 1 and LiarRank of VGG Face Fisher Vector. Since

for single-feature experiments we use a number of classifiers,

we perform exhaustive search through all possible combina-

tions of classifiers for the mentioned features. Once single-

feature classifiers are trained, we perform late fusion using

grid search as described in the Section 4.3. Table 3 shows

our Top-5 ensemble prediction results, including what classi-

fiers were used for the corresponding features. Best predictive

models yield an AUC of 0.705.

To assess the importance of features for the ensemble classi-

fier, we repeated the process leaving out one class of features

at a time. We show the results of this ablation experiment

in Table 4. We can see that LiarRank of VGG Face Fisher

Vectors and the Emotion (Amazon Rekognition) histogram

features are the most important.

5.4. Human Study

To assess the complexity of the task and obtain some objec-

tive baseline we conducted a human study using the Amazon

Mechanical Turk service. To provide a fair comparison, we

presented workers with the same data we are using for test-

1604

Classifiers AUC F1 FNR FPR Precision Recall

LR+RF+NB+L-SVM+NB 0.705 0.466 0.621 0.142 0.666 0.379

LR+L-SVM+NB+L-SVM+NB 0.705 0.466 0.610 0.169 0.660 0.390

KNN+RF+NB+RF+NB 0.704 0.403 0.673 0.173 0.622 0.327

NB+L-SVM+NB+L-SVM+NB 0.704 0.406 0.667 0.151 0.624 0.333

LR+KNN+NB+L-SVM+NB 0.704 0.468 0.620 0.143 0.684 0.380

Table 3. Performance (AUC) of Top 5 ensemble models.

Classifiers in the table are trained on the features in the fol-

lowing order: histograms of AU07, AU09, AU10; Fisher Vec-

tors of MFCC; histograms of Smile, Angry, Disgusted; his-

tograms of horizontal eyes movement, x and z head move-

ment; LiarRank of VGG Face Fisher Vector.

Removed feature AUC F1 FNR FPR Precision Recall

MFCC 0.703 0.463 0.610 0.175 0.655 0.390

E/H Movement 0.703 0.508 0.548 0.197 0.599 0.452

FAUs 0.702 0.448 0.598 0.209 0.587 0.402

Amazon Rek. 0.688 0.524 0.485 0.281 0.556 0.516

LiarRank 0.688 0.411 0.344 0.721 0.104 0.560

Table 4. Classification performance (AUC) when one feature

class is left out in ensemble predictions. Features details are

in Table 3.

ing our model: we stitched 10-second clips together with a 1

second transition between them keeping the sound on. Work-

ers were provided with a brief description of the game they

were about to watch and asked to make a decision whether

the player in the video was a spy or a member of the resis-

tance. To further verify the quality of annotations, workers

were asked to provide written justification for their decision.

We selected 10 games containing 66 videos in total, and got

every video annotated by 3 different workers. Correct player’s

role was guessed by a majority (2-3 workers out of 3) only in

53% of videos. We also used the average vote of turkers as

a prediction score for the video. In this case, the AUC for

human prediction is 0.583, while our ensemble predictor gets

0.701 AUC for the same data (p < 0.01). This suggests that

detecting deception in long videos is a hard task for humans.

We also found that in more than 80% of the videos, players

were suspected to be spies when the actual ratio of spies in the

dataset was 42%. This means that humans, when presented

with the fact that a player could be a spy, tend to interpret a

player’s behavior as suspicious.

6. CONCLUSIONS

We presented an ensemble based automated deception detec-

tion framework called LiarOrNot which predicts deception

in a group setting by processing long videos. Our framework

utilizes appropriate representations at different temporal reso-

lutions for multiple features which capture low and high level

information. We also propose a novel class of meta-features

called LiarRank which provides a significant boost in over-

all performance. We evaluated LiarOrNot on a dataset col-

lected across different sites and cultures. In a rigorous cross-

validation based testing protocol, which separates identities

and games during training and inference, we obtained an AUC

greater than 0.7, which was 12% better than average human

performance.

Role of Authors. Authors Burgoon and Dunbar designed the

Resistance-style game, designed how the game would be

run face to face, and collected the Resistance data. The re-

maining authors designed the feature extraction and machine

learning algorithms and software, and designed/ran all exper-

iments.

Acknowledgement. This work was funded by ARO Grant

W911NF1610342.

7. REFERENCES

[1] Z. Zhang, V. Singh, T. E. Slowe, S. Tulyakov, and

V. Govindaraju, “Real-time automatic deceit detection

from involuntary facial expressions,” in CVPR, 2007.

[2] V. Pérez-Rosas, M. Abouelenien, R. Mihalcea, and

M. Burzo, “Deception detection using real-life trial

data,” in ICMI, 2015, pp. 59–66.

[3] Z. Wu, B. Singh, L.S. Davis, and V. S. Subrahmanian,

“Deception detection in videos,” AAAI, 2017.

[4] N. Michael, M. Dilsizian, D. N. Metaxas, and J. K. Bur-

goon, “Motion profiles for deception detection using

visual cues,” in ECCV, 2010.

[5] G. Chittaranjan and H. Hung, “Are you a werewolf? de-

tecting deceptive roles and outcomes in a conversational

role-playing game,” in ICASSP, March 2010.

[6] S. Demyanov, J. Bailey, K. Ramamohanarao, and

C. Leckie, “Detection of deception in the mafia party

game,” in ICMI, 2015.

[7] D. Yu, Y. Tyshchuk, H. Ji, and W. Wallace, “Detecting

deceptive groups using conversations and network anal-

ysis,” in ACL 2015/ IJCNLP 2015, pp. 857–866.

[8] R. Zabih and J. Woodfill, “Non-parametric local trans-

forms for computing visual correspondence,” in ECCV,

1994, pp. 151–158.

[9] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face

recognition,” in BMVC, 2015.

[10] T. Baltrusaitis, A. Zadeh, Y. C. Lim, and L. P. Morency,

“Openface 2.0: Facial behavior analysis toolkit,” in

IEEE FG, 2018, pp. 59–66.

[11] S. Davis and P. Mermelstein, “Comparison of paramet-

ric representations for monosyllabic word recognition in

continuously spoken sentences,” ICASSP, 1980.

[12] P. Ekman and W. Friesen, Facial Action Coding System:
A Technique for the Measurement of Facial Movement,
Consulting Psychologists Press, Palo Alto, 1978.

1605

