
LZW Data Compression

Another approach to lossless compression, especially for text, takes ad-
vantage of information that recurs in the text, though not necessarily in
consecutive locations. Consider, for example, a famous quotation from
John F. Kennedy’s inaugural address:

Ask not what your country can do for you—ask what you can do
for your country.

Except for the wordnot, each word in the quotation appears twice. Sup-
pose we made a table of the words:

index word
1 ask
2 not
3 what
4 your
5 country
6 can
7 do
8 for
9 you

Then we could encode the quotation (ignoring capitalization and punc-
tuation) by

1 2 3 4 5 6 7 8 9 1 3 9 6 7 8 4 5

Because this quotation consists of few words, and a byte can hold in-
tegers ranging from0 to 255, we can store each index in a single byte.
Thus, we can store this quotation in only17 bytes, one byte per word,
plus whatever space we need to store the table. At one character per
byte, the original quotation, without punctuation but withspaces be-
tween words, requires77 bytes.

Of course, the space to store the table matters, for otherwise we could
just number every possible word and compress a file by storingonly
indices of words. For some words, this scheme expands, rather than
compresses. Why? Let’s be ambitious and assume that there are fewer
than232 words, so that we can store each index in a32-bit word. We
would represent each word by four bytes, and so this scheme loses for



2 Chapter 1: LZW Data Compression

words that are three letters or shorter, which require only one byte per
letter, uncompressed.

The real obstacle to numbering every possible word, however, is that
real text includes “words” that are not words, or rather, notwords in
the English language. For an extreme example, consider the opening
quatrain of Lewis Carroll’s “Jabberwocky”:

’Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:
All mimsy were the borogoves,
And the mome raths outgrabe.

Consider also computer programs, which often use variable names that
are not English words. Add in capitalization, punctuation,and really
long place names,1 and you can see that if we try to compress text by
numbering every possible word, we’re going to have to usea lot of
indices. Certainly more than232 and, because any combination of char-
acterscould appear in text, in reality an unbounded amount.

All is not lost, however, for we can still take advantage of recurring
information. We just have to not be so hung up on recurringwords.
Any recurring sequence of characters could help. Several compression
schemes rely on recurring character sequences. The one we’ll examine
is known asLZW,2 and it’s the basis for many compression programs
used in practice.

LZW makes a single pass over its input for compression and forde-
compression. In both, it builds a dictionary of character sequences that
it has seen, and it uses indices into this dictionary to represent character
sequences. Think of the dictionary as an array of character strings. We
can index into this array, so that we can speak of itsi th entry. Toward
the beginning of the input, the sequences tend to be short, and repre-
senting the sequences by indices could result in expansion,rather than
compression. But as LZW progresses through its input, the sequences
in the dictionary become longer, and representing them by anindex can
save quite a bit of space. For example, I ran the text ofMoby Dick

1Such as Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch, a Welsh vil-
lage.

2As you probably guessed, the name honors its inventors. Terry Welch created LZW
by modifying the LZ78 compression scheme, which was proposed by Abraham Lempel
and Jacob Ziv.



Chapter 1: LZW Data Compression 3

through an LZW compressor, and it produced in its output an index rep-
resenting the10-character sequencetfromtthet 20 times. (Eacht
indicates one space character.) It also output an index representing the
eight-character sequencetoftthet 33 times.

Both the compressor and decompressor seed the dictionary with a
one-character sequence for each character in the characterset. Using the
full ASCII character set, the dictionary starts with256 single-character
sequences; thei th entry in the dictionary holds the character whose
ASCII code isi .

Before going into a general description of how the compressor works,
let’s look at a couple of situations it handles. The compressor builds
up strings, inserting them into the dictionary and producing as output
indices into the dictionary. Let’s suppose that the compressor starts
building a string with the characterT, which it has read from its in-
put. Because the dictionary has every single-character sequence, the
compressor findsT in the dictionary. Whenever the compressor finds
the string that it’s building in the dictionary, it takes thenext character
from the input and appends that character to the string it’s building up.
So now let’s suppose that the next input character isA. The compres-
sor appendsA to the string it’s building, gettingTA. Let’s suppose that
TA is also in the dictionary. The compressor then reads the nextinput
character, let’s sayG. It appendsG to the string it’s building, resulting
in TAG, and this time let’s suppose thatTAG is not in the dictionary.
The compressor does three things: (1) it outputs the dictionary index of
the stringTA; (2) it inserts the stringTAG into the dictionary; and (3) it
starts building a new string, initially containing just thecharacter (G)
that caused the stringTAG to not be in the dictionary.

Here is how the compressor works in general. It produces a sequence
of indices into the dictionary. Concatenating the strings at these indices
gives the original text. The compressor builds up strings inthe dictio-
nary one character at a time, so that whenever it inserts a string into the
dictionary, that string is the same as some string already inthe dictio-
nary but extended by one character. The compressor manages astrings

of consecutive characters from the input, maintaining the invariant that
the dictionary always containss in some entry. Even ifs is a single
character, it appears in the dictionary, because the dictionary is seeded
with a single-character sequence for each character in the character set.
Initially, s is just the first character of the input. Upon reading a new
characterc, the compressor checks to see whether the strings c, formed



4 Chapter 1: LZW Data Compression

by appendingc to the end ofs, is currently in the dictionary. If it is,
then it appendsc to the end ofs and calls the results; in other words,
it setss to s c. The compressor is building a longer string that it will
eventually insert into the dictionary. Otherwise,s is in the dictionary
but s c is not. In this case, the compressor outputs the index ofs in the
dictionary, insertss c into the next available dictionary entry, and sets
s to just the input characterc. By insertings c into the dictionary, the
compressor has added a string that extendss by one character, and by
then settings to c, it restarts the process of building a string to look up
in the dictionary. Becausec is a single-character string in the dictio-
nary, the compressor maintains the invariant thats appears somewhere
in the dictionary. Once the input is exhausted, the compressor outputs
the index of whatever strings remains.

The procedure LZW-COMPRESSORappears on the next page. Let’s
run through an example, compressing the textTATAGATCTTAATATA.
(The sequenceTAG that we saw on the previous page will come up.)
The following table shows what happens upon each iteration of the loop
in step 3. The values shown for the strings are at the start of the itera-
tion.
Iteration s c Output New dictionary string

1 T A 84 (T) 256:TA
2 A T 65 (A) 257:AT
3 T A
4 TA G 256 (TA) 258:TAG
5 G A 71 (G) 259:GA
6 A T
7 AT C 257 (AT) 260:ATC
8 C T 67 (C) 261:CT
9 T T 84 (T) 262:TT
10 T A
11 TA A 256 (TA) 263:TAA
12 A T
13 AT A 257 (AT) 264:ATA
14 A T
15 AT A

step 4 ATA 264 (ATA)

After step 1, the dictionary has one-character strings for each of the256

ASCII characters in entries0 through255. Step 2 sets the strings to
hold just the first input character,T. In the first iteration of the main
loop of step 3,c is the next input character,A. The concatenations c is
the stringTA, which is not yet in the dictionary, and so step 3C runs. Be-



Chapter 1: LZW Data Compression 5

Procedure LZW-COMPRESSOR.text/

Input: text: A sequence of characters in the ASCII character set.

Output: A sequence of indices into a dictionary.

1. For each characterc in the ASCII character set:

A. Insertc into the dictionary at the index equal toc’s numeric
code in ASCII.

2. Sets to the first character fromtext.
3. While text is not exhausted, do the following:

A. Take the next character fromtext, and assign it toc.
B. If s c is in the dictionary, then sets to s c.
C. Otherwise (s c is not yet in the dictionary), do the following:

i. Output the index ofs in the dictionary.
ii. Insert s c into the next available entry in the dictionary.

iii. Set s to the single-character stringc.

4. Output the index ofs in the dictionary.

cause the strings holds justT, and the ASCII code ofT is 84, step 3Ci
outputs the index84. Step 3Cii inserts the stringTA into the next avail-
able entry in the dictionary, which is at index256, and step 3Ciii restarts
building s, setting it to just the characterA. In the second iteration of
the loop of step 3,c is the next input character,T. The strings c D AT
is not in the dictionary, and so step 3C outputs the index65 (the ASCII
code forA), inserts the stringAT into entry257, and setss to holdT.

We see the benefit of the dictionary upon the next two iterations of
the loop of step 3. In the third iteration,c becomes the next input char-
acter,A. Now the strings c D TA is present in the dictionary, and so the
procedure doesn’t output anything. Instead, step 3B appends the input
character onto the end ofs, settings to TA. In the fourth iteration,c be-
comesG. The strings c D TAG is not in the dictionary, and so step 3Ci
outputs the dictionary index256 of s. One output number gives not one,
but two characters:TA.

Not every dictionary index is output by the time LZW-COMPRESSOR

finishes, and some indices may be output more than once. If youcon-
catenate all the characters in parentheses in the output column, you get
the original text,TATAGATCTTAATATA.



6 Chapter 1: LZW Data Compression

This example is a little too small to show the real benefit of LZW
compression. The input occupies16 bytes, and the output consists of
10 dictionary indices. Each index requires more than one byte.Even if
we use two bytes per index in the output, it occupies20 bytes. If each
index occupies four bytes, a common size for integer values,the output
takes40 bytes.

Longer texts tend to yield better results. LZW compression reduces
the size ofMoby Dick from 1,193,826 bytes to 919,012 bytes. Here, the
dictionary contains 230,007 entries, and so indices have tobe at least
four bytes.3 The output consists of 229,753 indices, or 919,012 bytes.
That’s not as compressed as the result of Huffman coding (673,579
bytes), but we’ll see some ideas a little later to improve thecompres-
sion.

LZW compression helps only if we can decompress. Fortunately, the
dictionary does not have be stored with the compressed information.
(If it did, unless the original text contained a huge amount of recurring
strings, the output of LZW compression plus the dictionary would con-
stitute an expansion, not a compression.) As mentioned earlier, LZW
decompression rebuilds the dictionary directly from the compressed in-
formation.

Here is how LZW decompression works. Like the compressor, the
decompressor seeds the dictionary with the256 single-character se-
quences corresponding to the ASCII character set. It reads asequence
of indices into the dictionary as its input, and it mirrors what the com-
pressor did to build the dictionary. Whenever it produces output, it’s
from a string that it has added to the dictionary.

Most of the time, the next dictionary index in the input is foran entry
already in the dictionary (we’ll soon see what happens the rest of the
time), and so the LZW decompressor finds the string at that index in
the dictionary and outputs it. But how can it build the dictionary? Let’s
think for a moment about how the compressor operates. When itoutputs
an index within step 3C, it has found that, although the string s is in
the dictionary, the strings c is not. It outputs the index ofs in the
dictionary, insertss c into the dictionary, and starts building a new string

3I’m assuming that we represent integers using the standard computer representations
of integers, which occupy one, two, four, or eight bytes. In theory, we could represent
indices up to 230,007 using just three bytes, so that the output would take 689,259
bytes.



Chapter 1: LZW Data Compression 7

to store, starting withc. The decompressor has to match this behavior.
For each index it takes from its input, it outputs the strings at that index
in the dictionary. But it also knows that at the time the compressor
output the index fors, the compressor did not have the strings c in
the dictionary, wherec is the character immediately followings. The
decompressor knows that the compressor inserted the strings c into the
dictionary, so that’s what the decompressor needs to do—eventually.
It cannot inserts c yet, because it hasn’t seen the characterc. That’s
coming as the first character of the next string that the decompressor
will output. But the decompressor doesn’t have that next string just yet.
Therefore, the decompressor needs to keep track of two consecutive
strings that it outputs. If the decompressor outputs strings X andY, in
that order, then it concatenates the first character ofY ontoX and then
inserts the resulting string into the dictionary.

Let’s look at an example, referring to the table on page 4, which
shows how the compressor operates onTATAGATCTTAATATA. In it-
eration11, the compressor outputs the index256 for the stringTA, and
it inserts the stringTAA into the dictionary. That’s because, at that time,
the compressor already hads D TA in the dictionary but nots c D TAA.
That lastA begins the next string output by the compressor,AT (in-
dex 257), in iteration13. Therefore, when the decompressor sees in-
dices256 and257, it should outputTA, and it also should remember
this string so that when it outputsAT, it can concatenate theA from AT
with TA and insert the resulting string,TAA, into the dictionary.

On rare occasions, the next dictionary index in the decompressor’s
input is for an entry not yet in the dictionary. This situation arises so
infrequently that when decompressingMoby Dick, it occurred for only
15 of the 229,753 indices. It happens when the index output by the
compressor is for the string most recently inserted into thedictionary.
This situation occurs only when the string at this index starts and ends
with the same character. Why? Recall that the compressor outputs the
index for a strings only when it findss in the dictionary buts c is not,
and then it insertss c into the dictionary, say at indexi , and begins a
new strings starting withc. If the next index output by the compressor
is going to bei , then the string at indexi in the dictionary must start
with c, but we just saw that this string iss c. So if the next dictionary
index in the decompressor’s input is for an entry not yet in the dictio-
nary, the decompressor can output the string it had most recently output,



8 Chapter 1: LZW Data Compression

concatenated with the first character of this string, and insert this new
string into the dictionary.

Because these situations are so rare, an example is a bit contrived.
The stringTATATAT causes it to occur. The compressor does the fol-
lowing: outputs index84 (T) and insertsTA at index256; outputs in-
dex65 (A) and insertsAT at index257; outputs index256 (TA) and in-
sertsTAT at index258; and finally outputs index258 (TAT—the string
just inserted). The decompressor, upon reading in index258, takes the
string it had most recently output,TA, concatenates the first character
of this string,T, outputs the resulting stringTAT, and inserts this string
into the dictionary.

Although this rare situation occurs only when the string starts and
ends with the same character, this situation does not occur every time
the string starts and ends with the same character. For example, when
compressingMoby Dick, the string whose index was output had the
same starting and ending character 11,376 times (a shade under 5% of
the time) without being the string most recently inserted into the dictio-
nary.

The procedure LZW-DECOMPRESSOR, on the next page, makes all
of these actions precise. The following table shows what happens in
each iteration of the loop in step 4 when given as input the indices in
the output column in the table on page 4. The strings indexed in the
dictionary byprevious andcurrent are output in consecutive iterations,
and the values shown forprevious andcurrent in each iteration are after
step 4B.

Iteration previous current Output (s) New dictionary string
Steps 2, 3 84 T

1 84 65 A 256:TA
2 65 256 TA 257:AT
3 256 71 G 258:TAG
4 71 257 AT 259:GA
5 257 67 C 260:ATC
6 67 84 T 261:CT
7 84 256 TA 262:TT
8 256 257 AT 263:TAA
9 257 264 ATA 264:ATA

Except for the last iteration, the input index is already in the dictionary,
so that step 4D runs only in the last iteration. Notice that the dictio-
nary built by LZW-DECOMPRESSORmatches the one built by LZW-
COMPRESSOR.



Chapter 1: LZW Data Compression 9

Procedure LZW-DECOMPRESSOR.indices/

Input: indices: a sequence of indices into a dictionary, created by
LZW-COMPRESSOR.

Output: The text that LZW-COMPRESSORtook as input.

1. For each characterc in the ASCII character set:

A. Insertc into the dictionary at the index equal toc’s numeric
code in ASCII.

2. Setcurrent to the first index inindices.
3. Output the string in the dictionary at indexcurrent.
4. While indices is not exhausted, do the following:

A. Setprevious to current.
B. Take the next number fromindices and assign it tocurrent.
C. If the dictionary contains an entry indexed bycurrent, then do

the following:
i. Sets to be the string in the dictionary entry indexed by

current.
ii. Output the strings.

iii. Insert, into the next available entry in the dictionary, the
string at the dictionary entry indexed byprevious,
concatenated with the first character ofs.

D. Otherwise (the dictionary does not yet contain an entry
indexed bycurrent), do the following:

i. Sets to be the string at the dictionary entry indexed by
previous, concatenated with the first character of this
dictionary entry.

ii. Output the strings.
iii. Insert, into the next available entry in the dictionary, the

strings.

I haven’t addressed how to look up information in the dictionary in
the LZW-COMPRESSORand LZW-DECOMPRESSORprocedures. The
latter is easy: just keep track of the last dictionary index used, and if
the index incurrent is less than or equal to the last-used index, then the
string is in the dictionary. The LZW-COMPRESSORprocedure has a
more difficult task: given a string, determine whether it’s in the dictio-



10 Chapter 1: LZW Data Compression

nary and, if it is, at what index. Of course, we could just perform a linear
search on the dictionary, but if the dictionary containsn items, each lin-
ear search takesO.n/ time. We can do better by using either one of a
couple of data structures. I won’t go into the details here, however. One
is called atrie, and it’s like the binary tree we built for Huffman coding,
except that each node can have many children, not just two, and each
edge is labeled with an ASCII character. The other data structure is a
hash table, and it provides a simple way to find strings in the directory
that is fast on average.


