LZW Data Compression

Another approach to lossless compression, especiallgxbrtakes ad-
vantage of information that recurs in the text, though natessarily in
consecutive locations. Consider, for example, a famousatjoa from

John F. Kennedy's inaugural address:

Ask not what your country can do for you—ask what you can do
for your country.

Except for the worahot, each word in the quotation appears twice. Sup-
pose we made a table of the words:

index word
ask

not
what
your
country
can

do

for

you

O©ooO~NOOOTh WNPE

Then we could encode the quotation (ignoring capitalizatind punc-
tuation) by

12345678913967845

Because this quotation consists of few words, and a byte ckhiir
tegers ranging frond to 255, we can store each index in a single byte.
Thus, we can store this quotation in orlly bytes, one byte per word,
plus whatever space we need to store the table. At one chanzet
byte, the original quotation, without punctuation but wihaces be-
tween words, requires7 bytes.

Of course, the space to store the table matters, for otheméscould
just number every possible word and compress a file by stamtg
indices of words. For some words, this scheme expands,rrdthe
compresses. Why? Let’s be ambitious and assume that thefevesr
than 232 words, so that we can store each index iBRebit word. We
would represent each word by four bytes, and so this scheses for

2 Chapter 1: LZW Data Compression

words that are three letters or shorter, which require onky loyte per
letter, uncompressed.

The real obstacle to numbering every possible word, howeés/érat
real text includes “words” that are not words, or rather, wotds in
the English language. For an extreme example, considerpbning
guatrain of Lewis Carroll's “Jabberwocky”:

"Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:
All mimsy were the borogoves,
And the mome raths outgrabe.

Consider also computer programs, which often use variadotees that
are not English words. Add in capitalization, punctuatiangdreally
long place namesand you can see that if we try to compress text by
numbering every possible word, we're going to have to adet of
indices. Certainly more that?? and, because any combination of char-
acterscould appear in text, in reality an unbounded amount.

All is not lost, however, for we can still take advantage afuing
information. We just have to not be so hung up on recurrsiagds.
Any recurring sequence of characters could help. Severapoession
schemes rely on recurring character sequences. The onlesxaathine
is known asLZW,? and it's the basis for many compression programs
used in practice.

LZW makes a single pass over its input for compression andder
compression. In both, it builds a dictionary of charactejusmces that
it has seen, and it uses indices into this dictionary to smprecharacter
sequences. Think of the dictionary as an array of charatiags. We
can index into this array, so that we can speak oftitsentry. Toward
the beginning of the input, the sequences tend to be shaitrepre-
senting the sequences by indices could result in expansitmer than
compression. But as LZW progresses through its input, theesees
in the dictionary become longer, and representing them hgdax can
save quite a bit of space. For example, | ran the tex¥loby Dick

1Such as Llanfairpwligwyngyligogerychwyrndrobwillllarsijiogogogoch, a Welsh vil-
lage.

2As you probably guessed, the name honors its inventorsy Veetch created LZW
by modifying the LZ78 compression scheme, which was pragphbgeAbraham Lempel
and Jacob Ziv.

Chapter 1: LZW Data Compression 3

through an LZW compressor, and it produced in its output darrep-
resenting the 0-character sequengefrom,_ the , 20 times. (Each_,
indicates one space character.) It also output an indersepting the
eight-character sequenceof, ,the_, 33 times.

Both the compressor and decompressor seed the dictionényawi
one-character sequence for each character in the chasattéfsing the
full ASCII character set, the dictionary starts with6 single-character
sequences; théth entry in the dictionary holds the character whose
ASCII code isi.

Before going into a general description of how the compressoks,
let’s look at a couple of situations it handles. The commessilds
up strings, inserting them into the dictionary and prodgas output
indices into the dictionary. Let's suppose that the congoestarts
building a string with the charactér, which it has read from its in-
put. Because the dictionary has every single-charactareseg, the
compressor find3 in the dictionary. Whenever the compressor finds
the string that it’s building in the dictionary, it takes thext character
from the input and appends that character to the stringuilsling up.
So now let’s suppose that the next input characté. ighe compres-
sor appendd\ to the string it’s building, gettind A. Let’s suppose that
TA s also in the dictionary. The compressor then reads theinput
character, let's sag. It appendsGto the string it's building, resulting
in TAG, and this time let's suppose th@AG is not in the dictionary.
The compressor does three things: (1) it outputs the dimtiomdex of
the stringTA; (2) it inserts the strind AGinto the dictionary; and (3) it
starts building a new string, initially containing just thkaracter @
that caused the strinfAGto not be in the dictionary.

Here is how the compressor works in general. It produces zeseg
of indices into the dictionary. Concatenating the stringfhese indices
gives the original text. The compressor builds up stringthedictio-
nary one character at a time, so that whenever it inserténg stito the
dictionary, that string is the same as some string alreadlyardictio-
nary but extended by one character. The compressor managasga
of consecutive characters from the input, maintaining tivariant that
the dictionary always containsin some entry. Even if is a single
character, it appears in the dictionary, because the datjois seeded
with a single-character sequence for each character imidmacter set.
Initially, s is just the first character of the input. Upon reading a new
character, the compressor checks to see whether the stringormed

4 Chapter 1: LZW Data Compression

by appending: to the end ofs, is currently in the dictionary. If it is,
then it appends to the end ofs and calls the resuk; in other words,

it setss to s c. The compressor is building a longer string that it will
eventually insert into the dictionary. Otherwiseis in the dictionary
buts c is not. In this case, the compressor outputs the indexiothe
dictionary, inserts ¢ into the next available dictionary entry, and sets
s to just the input character. By insertings ¢ into the dictionary, the
compressor has added a string that extenldg one character, and by
then setting to ¢, it restarts the process of building a string to look up
in the dictionary. Because is a single-character string in the dictio-
nary, the compressor maintains the invariant thappears somewhere
in the dictionary. Once the input is exhausted, the compresstputs
the index of whatever stringremains.

The procedure LZW-OMPRESSORappears on the next page. Let's
run through an example, compressing the XTAGATCTTAATATA.
(The sequenc@AG that we saw on the previous page will come up.)
The following table shows what happens upon each iterafitimedoop
in step 3. The values shown for the stringre at the start of the itera-
tion.

Iteration s c Output New dictionary string

1 T A 84 (T) 256: TA
2 A T 65 (A) 257: AT
3 T A

4 TA G 256 (TA) 258: TAG
5 G A 71 ©Q 259: GA
6 A T

7 AT C 257 AT) 260: ATC
8 C T 67 © 261:CT
9 T T 84 (T) 262:TT
10 T A

11 TA A 256 (TA) 263: TAA
12 A T

13 AT A 257 (AT) 264: ATA
14 A T

15 AT A

step 4 ATA 264 ATA)

After step 1, the dictionary has one-character stringsdchef the256
ASCII characters in entrie® through255. Step 2 sets the stringto
hold just the first input charactef,. In the first iteration of the main
loop of step 3¢ is the next input charactef. The concatenatiosc is

the stringTA, which is not yet in the dictionary, and so step 3C runs. Be-

Chapter 1: LZW Data Compression 5

Procedure LZW-COMPRESSORtext)
Input: text: A sequence of characters in the ASCII character set.
Output: A sequence of indices into a dictionary.

1. For each characterin the ASCII character set:

A. Insertc into the dictionary at the index equal & numeric
code in ASCII.
Sets to the first character frorext.
3. Whiletext is not exhausted, do the following:
A. Take the next character frotext, and assign it te.
B. If s ¢ is in the dictionary, then satto s c.
C. Otherwise { ¢ is not yet in the dictionary), do the following:
i. Output the index of in the dictionary.
ii. Inserts ¢ into the next available entry in the dictionary.
iii. Sets to the single-character strirg

4. Output the index of in the dictionary.

e

cause the string holds justT, and the ASCII code of is 84, step 3Ci
outputs the indeg4. Step 3Cii inserts the stringA into the next avail-
able entry in the dictionary, which is at inde%6, and step 3Ciii restarts
building s, setting it to just the charactéy. In the second iteration of
the loop of step 3¢ is the next input character, The strings ¢ = AT
is not in the dictionary, and so step 3C outputs the ingtegthe ASCII
code forA), inserts the strind\T into entry257, and sets to holdT.

We see the benefit of the dictionary upon the next two itematiof
the loop of step 3. In the third iteration,becomes the next input char-
acter,A. Now the strings ¢ = TAIs present in the dictionary, and so the
procedure doesn't output anything. Instead, step 3B agptredinput
character onto the end of settings to TA. In the fourth iteration¢ be-
comesG. The strings ¢ = TAGis not in the dictionary, and so step 3Ci
outputs the dictionary indeX56 of s. One output number gives not one,
but two charactersTA.

Not every dictionary index is output by the time LZWe®PRESSOR
finishes, and some indices may be output more than once. lEgnu
catenate all the characters in parentheses in the outpuhoolyou get
the original text, TATAGATCTTAATATA.

6 Chapter 1: LZW Data Compression

This example is a little too small to show the real benefit ofW.Z
compression. The input occupiéé bytes, and the output consists of
10 dictionary indices. Each index requires more than one lyten if
we use two bytes per index in the output, it occugiedytes. If each
index occupies four bytes, a common size for integer valhesoutput
takes40 bytes.

Longer texts tend to yield better results. LZW compressentuces
the size oMoby Dick from 1,193,826 bytes to 919,012 bytes. Here, the
dictionary contains 230,007 entries, and so indices haletat least
four bytes® The output consists of 229,753 indices, or 919,012 bytes.
That's not as compressed as the result of Huffman coding,%6%3
bytes), but we’ll see some ideas a little later to improvedbmpres-
sion.

LZW compression helps only if we can decompress. Fortuyetes
dictionary does not have be stored with the compressedniaon.

(If it did, unless the original text contained a huge amoumeourring

strings, the output of LZW compression plus the dictionaputd con-

stitute an expansion, not a compression.) As mentioneteedtZW

decompression rebuilds the dictionary directly from thenpoessed in-
formation.

Here is how LZW decompression works. Like the compressar, th
decompressor seeds the dictionary with #3 single-character se-
guences corresponding to the ASCII character set. It rezdsj@ence
of indices into the dictionary as its input, and it mirrorsatihe com-
pressor did to build the dictionary. Whenever it producetpot, it's
from a string that it has added to the dictionary.

Most of the time, the next dictionary index in the input is &or entry
already in the dictionary (we’ll soon see what happens tke o&the
time), and so the LZW decompressor finds the string at thagxina
the dictionary and outputs it. But how can it build the dinaoy? Let's
think for a moment about how the compressor operates. Wicengtits
an index within step 3C, it has found that, although the gtsiris in
the dictionary, the string ¢ is not. It outputs the index of in the
dictionary, inserts ¢ into the dictionary, and starts building a new string

3I'm assuming that we represent integers using the standampater representations
of integers, which occupy one, two, four, or eight bytes.Hedry, we could represent
indices up to 230,007 using just three bytes, so that theubwtpuld take 689,259
bytes.

Chapter 1: LZW Data Compression 7

to store, starting witle. The decompressor has to match this behavior.
For each index it takes from its input, it outputs the stirag that index
in the dictionary. But it also knows that at the time the coasgor
output the index fors, the compressor did not have the string in
the dictionary, where is the character immediately following The
decompressor knows that the compressor inserted the siriimgo the
dictionary, so that's what the decompressor needs to dortaaity.
It cannot inserts ¢ yet, because it hasn't seen the characteil hat's
coming as the first character of the next string that the decessor
will output. But the decompressor doesn’t have that nekigiust yet.
Therefore, the decompressor needs to keep track of two cainge
strings that it outputs. If the decompressor outputs striXigandY, in
that order, then it concatenates the first charactéf ohto X and then
inserts the resulting string into the dictionary.

Let's look at an example, referring to the table on page 4.ctwhi
shows how the compressor operatesT&{TAGATCTTAATATA. In it-
erationl1, the compressor outputs the ind&56 for the stringTA, and
it inserts the string AA into the dictionary. That's because, at that time,
the compressor already had= TAIn the dictionary but nat ¢ = TAA.
That lastA begins the next string output by the compresgdr, (in-
dex 257), in iteration 13. Therefore, when the decompressor sees in-
dices256 and257, it should outputTA, and it also should remember
this string so that when it outpu#sT, it can concatenate thefrom AT
with TA and insert the resulting stringAA, into the dictionary.

On rare occasions, the next dictionary index in the decossprés
input is for an entry not yet in the dictionary. This situatiarises so
infrequently that when decompressiimpby Dick, it occurred for only
15 of the 229,753 indices. It happens when the index output by th
compressor is for the string most recently inserted intodilcdonary.
This situation occurs only when the string at this indextstand ends
with the same character. Why? Recall that the compressputsuthe
index for a strings only when it findss in the dictionary but ¢ is not,
and then it inserts ¢ into the dictionary, say at index and begins a
new strings starting withc. If the next index output by the compressor
is going to bei, then the string at index in the dictionary must start
with ¢, but we just saw that this string isc. So if the next dictionary
index in the decompressor’s input is for an entry not yet i dictio-
nary, the decompressor can output the string it had mostitlgaitput,

8 Chapter 1: LZW Data Compression

concatenated with the first character of this string, andrirthis new
string into the dictionary.

Because these situations are so rare, an example is a hilvednt
The stringTATATAT causes it to occur. The compressor does the fol-
lowing: outputs index84 (T) and insertsTA at index256; outputs in-
dex65 (A) and insertAT at index257; outputs indexX56 (TA) and in-
sertsTAT at index258; and finally outputs inde258 (TAT—the string
just inserted). The decompressor, upon reading in irrd8xtakes the
string it had most recently outputA, concatenates the first character
of this string,T, outputs the resulting strinGAT, and inserts this string
into the dictionary.

Although this rare situation occurs only when the stringtstand
ends with the same character, this situation does not oceuy ¢me
the string starts and ends with the same character. For égamipen
compressingMoby Dick, the string whose index was output had the
same starting and ending character 11,376 times (a shaee b¥of
the time) without being the string most recently insertdd the dictio-
nary.

The procedure LZW-BCOMPRESSOR 0N the next page, makes all
of these actions precise. The following table shows whapéag in
each iteration of the loop in step 4 when given as input thecasdin
the output column in the table on page 4. The strings indemetia
dictionary byprevious andcurrent are output in consecutive iterations,
and the values shown fgrevious andcurrent in each iteration are after
step 4B.

Iteration previous current Output) New dictionary string

Steps 2, 3 84 T
1 84 65 A 256: TA
2 65 256 TA 257: AT
3 256 71 G 258: TAG
4 71 257 AT 259: GA
5 257 67 C 260: ATC
6 67 84 T 261:CT
7 84 256 TA 262:TT
8 256 257 AT 263: TAA
9 257 264 ATA 264: ATA

Except for the last iteration, the input index is alreadyhie dictionary,
so that step 4D runs only in the last iteration. Notice that dictio-
nary built by LZW-DEcoMPRESSORmMatches the one built by LZW-
COMPRESSOR

Chapter 1: LZW Data Compression 9

Procedure LZW-D ECOMPRESSORindices)

Input: indices: a sequence of indices into a dictionary, created by
LZW-COMPRESSOR

Output: The text that LZW-@OMPRESSORtOOK as input.

1. For each characterin the ASCII character set:

A. Insertc into the dictionary at the index equal ¢ numeric
code in ASCII.
2. Setcurrent to the first index inndices.
3. Output the string in the dictionary at indewrrent.
4. Whileindices is not exhausted, do the following:

A. Setprevious to current.

B. Take the next number fromndices and assign it taurrent.

C. If the dictionary contains an entry indexed dyrent, then do
the following:

I. Sets to be the string in the dictionary entry indexed by
current.

ii. Output the strings.

iii. Insert, into the next available entry in the dictionatiye
string at the dictionary entry indexed pyevious,
concatenated with the first charactersof

D. Otherwise (the dictionary does not yet contain an entry
indexed bycurrent), do the following:

i. Sets to be the string at the dictionary entry indexed by
previous, concatenated with the first character of this
dictionary entry.

ii. Output the strings.

iii. Insert, into the next available entry in the dictionatlye
strings.

| haven't addressed how to look up information in the dicsignin
the LZW-ComPRESSORand LZW-DeEcOMPRESSORprocedures. The
latter is easy: just keep track of the last dictionary indegd) and if
the index incurrent is less than or equal to the last-used index, then the
string is in the dictionary. The LZW-GMPRESSORprocedure has a
more difficult task: given a string, determine whether itighe dictio-

10 Chapter 1: LZW Data Compression

nary and, ifitis, at what index. Of course, we could just perf a linear
search on the dictionary, but if the dictionary contairitems, each lin-
ear search take®(n) time. We can do better by using either one of a
couple of data structures. | won'’t go into the details heosydver. One

is called drie, and it’s like the binary tree we built for Huffman coding,
except that each node can have many children, not just twbeaoh
edge is labeled with an ASCII character. The other data tstreids a
hash table, and it provides a simple way to find strings in the directory
that is fast on average.

