C10M:
Defending the Internet at scale

by Robert David Graham
(Shmoocon 2013)

200%
180%
160%

=
N D
o O
X X

100%
80%
60%
40%
20%

0%

Requests/second

)

Performance

Scalability —

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Concurrent Connections

who this talk is for

e coders
— who write internet scale stuff

* everyone else
— who manages internet scale stuff

— who needs to know how stuff works

— who needs to know what’s possible

 that the limitations you are familiar with are software
not hardware

how this talk is organized

c10k — Internet scalability for the last decade
C10M — Internet scalability for the next decade
The kernel

Asynchronous

1. packet scalability

2. multi-core scalability

3. memory scalability

Questions

bonus—statemachineparsers

clOk a historical perspectlve
e SHN

.‘u

e

ARCHICYS o/ ——
/A ./lvl Jaia ¢ Thm

.f,, 4@3& 277 ﬂ,ﬁgmmm i

rrrrrr
=

": T g l‘n‘b’.’ {fq |
. v . F' %'l (?M H@ &i /
e TR
) : ;) e e w“t’ "

y 5"1:&5?:3 :

«t; A
mmm&m»;.t\m PN ikl TS umr...

s RN LT G B o e A S

Why servers could not handle 10,000
concurrent connections: O(n?)

e Connection = thread/process
— Each incoming packet walked list of threads
— O(n*m) where n=threads m=packets

* Connections = select/poll (single thread)
— Each incoming packet walked list of sockets
— O(n*m) where n=sockets m=packets

c10k solution

* First solution: fix the kernel

— Threads now constant time context switch,
regardless of number of threads

— epoll()/I0CompletionPort constant time socket
lookup

g
¢ =
L

'CS

epoll
eveny dmve . libevent

callback Select »
ch ronous
IlglIlX lighthttpd

emel

Market Share for Top Servers Across the Million Busiest Sites
| IETCRAFT
60% =9

Dec 2012
m Apache: 59%
40% ® Microsoft: 13%
0 w Other: 13%
® nginx: 12%
m Google: 2%

80%

20%

—)

WP o P o O o0 O g N N oV oV N
Y- N VA Y- U AN\ Y- SRV AR VL =Y S-SR\ X

0%

C10M: the future

C10M defined

10 million concurrent connections

1 million connections/second

10 gigabits/second

10 million packets/second

10 microseconcd
10 microseconc

atency
jitter

10 coherent CP

J cores

Who needs Internet scale?

DNS root server
TOR node

Nmap of Internet
Video streaming
Banking

Email receive
Spam send

Carrier NAT
VolP PBX

DPI, MitM
Load balancer
Web cache
IPS/IDS
Firewall

Who does Internet scale today?

* “Devices” or “appliances” rather than
“Servers”

— Primarily closed-source products tied to hardware

— But modern devices are just software running on
RISC or x86 processors

* “Network processors” are just MIPS/PowerPC/SPARC
with lots of cores and fixed-function units

— Running Linux/Unix

X86 prices on Newegg Feb 2013

e S1000 — 10gbps, 8-cores, 32gigs RAM
e S2500 — 20gbps, 16-cores, 128gigs RAM
* S5000 — 40gbps, 32-cores, 256gigs RAM

W.RICHARD STEVENS

BRENTICE HALL SOFTWARE SERES

How to represent an IP address?

char *ipl = “10.1.2.3%;

unsigned char ip2[] = {0xa,0x1,0x2,0x3};
int ip3 = 0x0a010203;

int ip4 = *(int*)ip2;

ip3 = ntohs(ip4);

robS cat test.c
#include <«<stdio.h>

int main{()

I
L

char *ipl = "10.1.2.3.4";
unsigned char ip2[] = {O0xA, Ox1l, Ox2, O0x3};

int ip3 = O0x0A010203;

int ip4 = *{int¥*)ip2;

printf({"ip3 = %x\n", ip3);
printf("ip4 %x\n", ip4);

return 0;

1
J

rob$ gcc test.c
robS ./a.out
ip3 = a010203
ip4 = 302010a
rob$

The kernel isn’t the solution
The kernel is the problem

asynchronous

the starting point

Asynchronous at low level

* read() blocks * select() blocks
— Thread scheduler — Tells you which sockets
determines which have data waiting
read() to call next — You decide which
* Depending on which read() to call next

data has arrived ,
— Because data is

available, read()
doesn’t block

— Then read() continues

* Apache, threads, blocking

— Let Unix do all the heavy lifting getting packets to
the right point and scheduling who runs

* Nginx, single-threaded, non-blocking
— Let Unix handle the network stack
— ...but you handle everything from that point on

1] packet scaling

functions system
layers

kernel/

system interfaces
Inux/syscalls.h system files

copy_from_user

{ o L:u«.c
interfaces “'T S ml_... |

map
Sys_reboot

processing
kemnel/

processes

Sys_execve sys_fork

sys_Viork
sys_clone

module

virtual

Linux kernel map
memory

mmy

memory access

sys_brk
sys_mmap2

storage

files & directories
access

Iprociselfimaps do_path_lookup

memory disk controllers netwo,

© 2007 Constantine Shulyupin www.MakeLinux.net/kernel_map

“ntrollerr

human
interface

HI char devices

user peripherals

Ver 0.6, 1/1/2008

Where can | get some?

* PF_RING * Netmap * Intel DPDK
— Linux — FreeBSD — Linux
— open-source — open-source — License fees
— Third party
support

e 6WindGate

200 CPU clocks per packet

Intel® Data Plane
Development Kit
(Intel® DPDK)
12.2 Mpps t) Linux User
Native Linux* Space
Stack
64 Byte Throughput
Intel® Xeon® Intel® Xeon® Next generation
Processor E5645 Processor E5645 Intel® Processor
2 Sockets 1 Socket 1 Socket
(6 x 2.4 GHz cores) (6 x 2.4 GHz cores) (8 x 2.0 GHz cores)

http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/
communications-packet-processing-brief.pdf

User-mode network stacks

* PF_RING/DPDK get you raw packets without a

stack
— Great for apps like IDS or root DNS servers

— Sucks for web servers

* There are many user-mode TCP/IP stacks

available

— 6windgate is the best known commercial stack,
working well with DPDK

Control plane vs. Data plane

[#2] multi-core scaling

multi-core is not the same thing as multi-
threading

Most code doesn’t scale past 4 cores

?Z]lm““illlm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Performance
—_
N
o
X

At Internet scale, code needs to use all
cores

1000%

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

Performance

Multi-threading is not the same as
multi-core

 Multi-threading
— More than one thread per CPU core

— Spinlock/mutex must therefore stop one thread to
allow another to execute

— Each thread a different task (multi-tasking)

e Multi-core

— One thread per CPU core

— When two threads/cores access the same data, they
can’t stop and wait for the other

— All threads part of the same task

spin-locks, mutexes, critical sections,
semaphores

no waiting

un-synchronization

~ v x john@bt: ~
File Edit View Terminal Help

john@bt:~$ ifconfig ethl

ethl Link encap:Ethernet Hwaddr 00:0c:29:34:90:¢e7
inet addr:172.16.134.128 Bcast:172.16.134.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fe34:90e7/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 -Metric:1

RX packets:201255 errors:0 dropped:® overruns:0 frame:@
TX packets:133251 errors:0 dropped:0 overruns:0 carrier:0
collisions:0® txqueuelen:1000

RX bytes:101236165 (101.2 MB) TX bytes:13531654 (13.5 MB)
Interrupt:19 Base address:0x2000

john@bt:~$

e core local data
* ring buffers
* read-copy-update (RCU)

atomics

cmpxchg
lock add
~_sync fetch and add()

~_sync bool compare and swap ()

Costs one L3 cache transaction (or 30 — 60 clock
cycles, more for NUMA)

“lock-free” data structures

GO
Atomics modify one value at a time

Special algorithms are needed to modify more
than one one value together

These are known by many names, but “lock-
free” is the best known

Data structures: lists, queues, hash tables, etc.
Memory allocators aka. malloc()

Be afraid

 The ABA problem

— You expect the value in memory to be A

— ...but in the meantime it’s changed from A to B
and back to A again

* The memory model problem
— X86 and ARM have different memory models

— Multi-core code written for one can mysteriously
fail on the other

Threading models

Pipelined — each thread
does a little work, then
hands off to another

Worker — each thread
does the same sort of
work, from begin to
end

Howto: core per thread

°* maxcpus=2

— Boot param to make Linux use only the first two
cores

 pthread setaffinity np()

— Configure the current thread to run on the third
core (or higher)

e /proc/irqg/smp_affinity

— Configure which CPU core handles which
Interrupts

[#3] CPU and memory

at scale, every pointer is a cache miss

O
20meg L3 cache

bud get e

200 clocks/pkt overhead
1400 clocks/pkt remaining
300 clocks cache miss

4 cache misses per packet

paging

e 32-gigs of RAM needs 64-megs of page tables
— page tables don’t fit in the cache
— every cache miss is doubled

e solution: huge pages
— 2-megabyte pages instead of 4k-pages

— needs to be set with boot param to avoid memory
fragmentation

co-locate data

* Don’t: data structures all over memory
connected via pointers

— Each time you follow a pointer it’ll be a cache miss
— [Hash pointer] -> [TCB] -> [Socket] -> [App]

* Do: all the data together in one chunk of
memory
— [TCB | Socket | App]

compress data

* Bit-fields instead of large integers

* Indexes (one, two byte) instead of pointers (8-
bytes)

* Getrid of padding in data structures

“cache efficient” data structures

alblef - |x/yvlgq | HashTable
RN \“\
a-l | erospace m-z| rrow b-b| ike a-a | che b-z | omputer c-z | deskiop
gorithm t clice

“NUMA”

* Doubles the main memory access time

I/O
Controller

I/O
Controller

“memory pools”

Per object
Per thread
Per socket
Defend against resource exhaustion

“prefetch”

* E.g. parse two packets at a time, prefetch next
hash entry

“hyper-threading”

* Masks the latency because when one thread
waits, the other goes at full speed

* “Network processors” go to 4 threads, Intel
has only 2

Linux bootparam

hugepages=10000

Data Plane

RAM

e L LLLLLL
NIC 19%9

Control Plane

Takeaways

e Scalability and performance are orthogonal

e C10M devices exist today
— ...and it’s just code that gets them there

* You can’t let the kernel do you heavy lifting
— Byte parsing, code scheduling

— Packets, cores, memory

http://c10m.robertgraham.com

