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Chapter 1

Introduction

Protocols are rules by which two or more entities communicate to accomplish some task. In the context of

computing, these entities are software or hardware and the tasks may be as mundane as transferring a file

between two computers or as complex as many people playing a real-time game. Protocols such as IP [46]

achieve the goal of sending arbitrary data across the Internet; USB [24] allows a multitude of different devices

to plug into the same physical port on a computer; ELF [15] lets a compiler describe a program in such

a way that the kernel can run it; proprietary protocols enable players to shoot virtual rocket launchers at

each other from across the globe. In short, to say protocols are ubiquitous would run the risk of underselling

them.

The protocols used by modern computers are constantly evolving: new ones are being developed and

old ones are being repurposed; it is unrealistic to assume either will ever stop happening. Old protocols are

frequently re-implemented (for example, in embedded systems) and introduce new, potentially vulnerable

artifacts into the wild. At the same time, new protocols bring their own set of baggage to the security

table because with them come new specifications, new implementations, and therefore new vulnerabilities.

Engineers have been developing, implementing, and deploying new protocols for decades and yet still we see

new vulnerabilities and exploits against them (Chapter 2 contains a survey).

1.1 Ubiquity of Ad-Hoc Protocol Parsing

In all protocols, otherwise-meaningless bits are communicated via some medium and meaning must be applied

to them by the receiving entity. In IP, this is the opaque payload carried by the underlying link layer; in
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0100 0101 0000 0000
0110 1010 0100 0000
0000 0000 0100 0000
...

Parser
src address = 192.168.0.2
dst address = 192.168.0.1
...

Figure 1.1: A parser takes an untyped, opaque bytestream and imposes meaning on it according to the
protocol specification (in this example, the Internet Protocol [46]) before handing it off to the kernel for
interpretation.

USB, these are the typeless bits flying over the physical wire; in ELF, this is the inert file sitting on disk. The

protocol specification defines both the syntax of this communication—the grouping of individual bits within

an otherwise-opaque datastream into distinct, typed fields—as well as the semantics—how to interpret and

respond to the various fields delineated by the syntactic rules. Figure 1.1 shows a stylized representation of

the parser’s job in, e.g., the Internet Protocol [46].

The component responsible for implementing a protocol syntax is called a parser and often sits directly

between the medium carrying the opaque data and the code implementing the communication semantics.

One might be tempted to dismiss parsers as trivial pieces of software that don’t merit much attention. This

is far from the case, however. The parser is the key front-end component responsible for deriving meaning

from input: for applying semantics to raw bits: for guarding the passage between the untrusted outside

world and the vulnerable internals. It’s what takes a stream of opaque bits from the ether and decides they

comprise a 32-bit unsigned big-endian integer or a stream of null-terminated 8-bit ASCII characters and so

on. Put another way, the parser takes arbitrary, untyped data and imposes on it a type before passing that

datum on to the rest of the system for further processing.

Frequently, the “rest of the system” implicitly trusts the type that the parser has imposed; the venerable

buffer overflow attack exemplifies this trust as well as its fragility. (This perspective, in fact, applies to

most memory corruption attacks [36].) One view of such an attack is that the vulnerable function assumed

the parser was delivering a null-terminated string of length no more than x when in fact it made no such

guarantee. In the case of stack-based buffer overflows, this allows a nefarious (or incompetent) input-

provider to overwrite portions of the stack and disrupt execution [41]. Such exploits cannot occur when the

characteristics of data guaranteed by the parser match the data-consumer’s expectations about it.

While they are near-mythic at this point, stack-based buffer overflows such as described in AlephOne’s

seminal paper are by no means the only vulnerabilities that would be prevented by mindful implementation

of parsers. In 1998, Thomas Ptacek and Timothy Newsham showed that parsers in TCP/IP stacks of popular
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operating systems were sufficiently varied and idiosyncratic in their behavior that it was possible to craft

a single packet or packet stream which would be interpreted in completely different ways by the different

hosts [48, 27]. Thus, any system behaving as a firewall or intrusion-detection system must simulate the

behavior of all systems under its protection, lest the protector inadvertently allow packets through that

tickle a vulnerability in one [51].

SQL injection vulnerabilities [40] are yet another example of the importance of parsers: code within the

application combines user input with preconstructed SQL query fragments under the assumption that the

input contains no single-quotes. It is too easy to skip parsing here—after all, the input is ASCII text and

the query is ASCII text, so what parsing is necessary?—but the input is implicitly blessed nonetheless and

therefore trusted by the query engine. Actively parsing the user input fixes this class of vulnerability, not

least because it forces the developer to explicitly encode the assumptions the rest of their code is making [44].

All systems that accept input—that is, all even-vaguely useful systems—implicitly or explicitly include

parsers. These parsers verify the correctness of the input before passing it to other components that process

said input. If the parser is not correct, it will permit incorrect input to pass through, and the other

components will perform incorrect operations. At best, these incorrect operations waste time; at worst, they

allow a clever input-provider to take control of the entire system. So how can we make parsers better?

1.2 A Better Way

To guide our steps towards producing more-secure parsers, let us consider what is involved in the code that

implements parsing.

First, we need to define the data structures that reflect the structure of the protocol messages. An

instance of such a data structure is, in fact, the result of parsing, as shown in Figure 1.1. Furthermore,

the consumer of the parsed data (be it the kernel, in the case of, e.g., IP or USB; or a userland program

in the case of an application-level protocol) needs some way to refer to the various parsed fields. Since the

overwhelming majority of kernel code remains C, collecting all those fields together in an instance of a C

struct is the natural solution. Additionally, a C struct is the easiest basis from which to create a C++, Java,

or Python object should the data consumer prefer a different format.

With types and corresponding data structure defined, we then need code that performs the actual parsing:

it must read in a bytestream or a fixed-size frame and produce an instance of the protocol-message data

structure. It should verify that the fields of the data structure conform to the requirements laid out in

the protocol specification. If the input violates the rules of the protocol, the parser should report an error.
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pass in quick on em0 proto tcp from any to any port 22 to 10.0.1.6

pass out quick on rl0 proto tcp from any to any port 80

pass in log on em0 proto {tcp ,udp} from any to any

Figure 1.2: Policies written for the pf IP firewall. Note that they include both a description of the data
using protocol-specific terminology (i.e., protocol type, port number, IP address) as well as an action (e.g.,
“pass in”) to take if the description matches.

Otherwise, the parser should return a well-formed member of the given type.

In addition to ensuring conformance to the protocol specification, ideally any parser would also support

the ability to apply a user-specified filtering policy to incoming data, to reject certain inputs known to be

troublesome. The canonical instance of such an ability is an IP firewall such as NetFilter [3] or pf [9], which

allow a system administrator to describe the kinds of IP packets that should and should not be allowed

passage. This may be a surprising entrant on the “need” list, but it shouldn’t be: if decades of observing the

security of communication protocols has taught us anything, it is to expect the unexpected. Baking-in the

ability to respond to vulnerability disclosures by deploying a new policy rather than deploying an entirely

new patched kernel makes defending vulnerable systems infinitely more practical.

Given such a filtering policy, then, we need to enforce it. At some point in the parsing process, the parser

needs to compare the input data against the user policy and, if the policy matches, take the prescribed

action. (Filtering policies frequently are of the form “take such-and-such an action if the input matches

such-and-such a pattern”. Examples of policies written for the pf firewall are shown in Figure 1.2.) The

language used to specify user-defined policies should closely mirror the underlying protocol so as to make

both writing and understanding the policy easier for mere humans.

With these components in hand, one might think our task is done. It is not. In addition to being able to

parse data and enforce policy, we must be able to test the system. Without the ability to test it, we can have

little or no confidence in its correctness under benign circumstances, let alone its behavior when targeted by

evildoers. We need two specific tools to fulfill this need.

Firstly, we need the ability to craft and inject arbitrary traffic into the parser. This task is somewhat

complicated by the fact that these parsers are often going to be running inside the kernel. Given that

many of the data sources whose parsers need to be tested will be hardware-based (e.g., network interface

controllers, USB devices, Thunderbolt devices), hardware might be required for injection. Buying a bunch

of USB devices from your local electronics store isn’t sufficient because (ideally) those devices will attempt

to conform to the protocol specification. We need to create and inject data that doesn’t conform to the

specification and verify that the parser correctly rejects it.
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Secondly, we need to be able to monitor the behavior of the parser while it is performing its task. That

is, the ability to debug the parser should be build into itself. Once again our task is complicated by the fact

that this code will often be running inside the kernel: we must balance the need for efficiency with the need

for transparency. Fortunately, there exist systems that balance these requirements quite well, which I will

describe later.

Thus, to summarize, we need:

• type definitions that represent protocol primitives (i.e., messages)—practically speaking, for kernel

code, these take the form of C structs;

• code to parse raw binary data into the aforementioned data structures (which must also recognize

when raw binary data fails to conform to rules regarding well-formed messages within the protocol,

and reject it);

• a way for users to specify protocol-specific policy that is orthogonal to the syntactic correctness of the

protocol itself (i.e., firewall rules);

• a way to enforce this user-defined filtering policy (which requires knowing where in the aforementioned

code to place the hooks that enforce user-defined policy);

• a way to craft and inject arbitrary data, so as to test an implementation; and

• a way to observe the code as it handles the injected data, so as to locate and fix bugs—an instrumen-

tation framework that exposes control flow within affected subsystems of the kernel.

With these tools in our pocket, we can proceed with relative confidence that our parser is, if not secure,

at least rooted in principled development practices, flexible to unexpected needs, and suited to debugging in

the face of misbehavior. This claim is intentionally weak: why should anyone believe the code I happen to

write is any more secure than other code written by someone else? The answer is: they shouldn’t.

Fortunately, besides the empirical evaluation against a suite of known vulnerability triggers, two separate

methods exist to instill confidence in the security of such code: automagic generation of parsers (i.e., “parser

generators”) and formal verification. I will discuss each of these in turn.

1.3 Automagic Generation

As shown above, parsers and related tools are an important part of the trusted computing base. One strategy

to improve security in general is to reduce the size of the trusted computing base such that it’s feasible for
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Description of protocol
written using domain-
specific language

Parser Generator Parser code

Figure 1.3: Workflow of a DSL-based parser generator. Given a description of the protocol language written
in the domain-specific language, the parser generator produces the parser code.

a (small) set of people to manually audit. To that end, efforts have arisen that attempt to minimize the

amount of code related to parsers, many resulting in domain-specific languages (DSLs) to describe protocols

and parser generators to generate the actual parsing code. The idea is that the DSL protocol description and

the parser generator—which is essentially a compiler from the DSL to, e.g., C—will individually be simple

enough to audit. Figure 1.3 shows a stylized rendition of this workflow.

A domain-specific language is, as the name implies, a language designed to address a particular need.

In contrast to general programming languages like C and Python, domain-specific languages are much

narrower in scope, with both smaller specifications and smaller compilers. Additionally, domain-specific

languages often need not be Turing-complete, which suggests that automating their verification may be

more tractable [57]. For the purposes of this dissertation, a domain-specific language for protocol analysis

provides a way to declaratively—as opposed to procedurally—describe the messages and state machine(s)

for a given protocol as well as a mechanism to translate that description into executable code that parses

messages of that protocol. In short, a language and a compiler for it.

1.3.1 Prior Work: DSL-based Parser Generators

This dissertation is not the first to use a domain-specific language to generate parsers. The classic example

is yacc [30], which historically was used to generate parsers for programming language source code rather

than messages in a wire protocol. Given a grammar describing the programming language, yacc produces

an LALR parser for that language, which can be augmented with code to execute when particular rules are

matched.

DSLs have also been used in the realm of more traditional communication protocols. In 1998, Vern

Paxson introduced the Bro [45] intrusion detection system (IDS), one of whose primary features is a domain-

specific language for describing TCP/IP traffic. Its intent was (and continues to be) to run on a standalone

machine on a network, examining all traffic for suspicious patterns. As such, it is not integrated with the

running kernel and it is optimized for applying a variety of acceptable patterns to a given message rather

than verifying the correctness of a single message in the context of a single machine. (Bro was, incidentally,
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inspired by an observation similar to the one attributed to Ptacek and Newsham in Section 1.1.).

More recently, GAPA [5] advertises itself as a “second-generation generic application-level protocol

analyzer”. While its intention is slightly orthogonal to the task of parsing protocol traffic for kernel

consumption—it’s targeted at rapidly creating vulnerability signatures to incorporate into userland intrusion-

detection systems—GAPA has some lessons to teach. First, a quick, intuitive description language is impor-

tant to encourage adoption. Second, while they originally intended for vulnerability detection, they realized

that the ability to clearly and concisely describe protocol messages was useful in other areas, as well. They

specifically mention tcpdump [29] and Wireshark [14] (née Ethereal), but the lesson applies even further

than they claim: why not use this power to improve the kernel itself?

PADS [23] comes from the programming-languages research community rather than the systems or se-

curity communities, but has much the same idea as the other projects described here, with one significant

difference: it is intended for parsing data that does not necessarily follow the strict rules of a protocol

specification. The authors found themselves needing to parse data that frequently deviated from a normal,

expected, easily-describable pattern, and therefore designed a DSL that produced parsers that were resilient

to these deviations. This desideratum lies in stark contrast to the other systems described here, which exist

precisely to ensure protocol traffic conforms to a standard. I will explore the significance of this shortly.

To round out our mini-survey, Packet Types [35] is perhaps the closest in spirit to my work. The

authors recognize that the task of parsing can be equated to the idea of testing whether a given message is

a valid member of a particular type, where a sufficiently descriptive specification of the type can ensure the

correctness of the message. Additionally, the authors draw explicit inspiration from functional programming

languages such as ML, which is similar to my work’s inspiration from Haskell. Packet Types, however, does

not attempt to integrate with existing operating systems, though they claim it would likely be possible.

Additional research that bears mention includes Shield [58] and binpac [43], both of which use domain-

specific languages to generate parsers for wire protocols. Their contributions are superseded by the afore-

mentioned, however.

The domain-specific languages and associated systems surveyed here, while not an exhaustive list, are

representative of the state of the art within the systems and security communities. They do, however, have

two significant shortcomings. First, all of the systems are intended to be run as userland applications,

independent of running kernels. In the case of an intrusion detection system, this is not necessarily a fatal

flaw (though defense in depth—i.e., validating protocol messages both at a network-wide IDS and at each

individual host—is a Good Thing). When considering protocols like USB, however, in which devices are
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plugged directly into hosts, one cannot feasibly offload protocol analysis to a separate machine.

The other drawback of these system is that, while they all feature extensive testing, none of them offer

guarantees or proofs of correctness. Given the importance of parsers as described earlier, this is an unfor-

tunate omission. Ideally, parsers would be subject to formal verification (described below, in Section 1.4).

Before delving into that world, however, let us consider another way to specify a domain-specific language,

one that does not require inventing a brand new language.

1.3.2 Embedded DSLs

The aforementioned systems created DSLs and their associated compilers from scratch. An alternative is to

use an existing, possibly general-purpose, language and its compiler to achieve the same goal, enhancing and

extending them as necessary. This approach is called an embedded domain-specific language (eDSL), because

the domain-specific features are grafted onto (i.e., embedded into) another language and its compiler. Due

to their already-declaratory form, functional programming languages are especially popular bases for eDSLs.

Additionally, given the observation above regarding the job of the parser being to annotate incoming data

with eloquent type information, a functional programming language that provides a rich type system is ideal.

Both of these desiderata scream for a Haskell-like language.

There exist many examples of embedded domain-specific languages, and many specifically using Haskell.

For instance, Parsec [33] is a library that provides a DSL for defining parser-combinators. It differs from

the work in this thesis in that it attempts to be a general-purpose parsing engine, it does not produce code

that can be natively integrated into a production kernel. Diagrams [22] is a Haskell-based eDSL for creating

vector graphics.

Yan Wang used Haskell as the basis of her Protege system [59, 61], which is similar to the work in this

thesis in that it embeds a domain-specific language for describing networking protocols and generates parser

code from. It differs, however, in that its primary target is embedded (i.e., hardware) systems, it does not

attempt to support user-written policies or injection, and it does not make any claims about correctness

beyond those derived from being an eDSL-based system. Furthermore, the protocol used in Protege’s proof

of concept—Modbus—is an entirely different domain to the protocol I used for my proof of concept: USB.

That said, my work does not handle layering and encapsulation, and can take inspiration from Protege’s

implementation of same.

The hypothesis, then, is that we could embed a parser-generator DSL in Haskell to produce the various

code artifacts described in Section 1.2. Therefore, to audit our system, we need only review the DSL
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description of the protocol in question and the Haskell code that “compiles” the DSL to C. We will have

thus reduced the size of the trusted computing base, made the job of auditing the code involved in our parser

much more tractable, and hence emerge with much more confidence in the security of our parser.

This is a significant win, but we can go one step further.

1.4 Formal Verification & Complete Mediation

For many years, the systems and security research communities have been using domain-specific languages

(DSLs) to produce protocol parsers for use in operating system kernels, firewalls, and intrusion detection

systems [5, 60, 23, 35]. These systems reduce the trusted computing base (TCB) of protocol parsers in the

sense that, if one trusts the parser generator to behave as it claims, one need only ensure the correctness of

the more-concise DSL description of the protocol. If one trusts the parser generator to behave as it claims.

Casting no aspersions whatsoever on its authors, one would be remiss in tacitly trusting in the correctness

of any software without formal proof to that effect.

Such proofs are the purview of the software verification community, which generally has a reputation for

avoiding low-level systems code. The NICTA group in Australia recently demonstrated, however, the feasi-

bility of producing a fully functional, fully verified, fully performant operating system kernel, l4.verified [31].

This project used a combination of hand-written Haskell, hand-written C, and hand-written proofs for the

Isabelle proof-checking environment to verify security properties of the resultant kernel. Other researchers

in the verification community have also turned their attention to low-level code (as evidenced by, e.g.,

RockSalt [38] and Idris [6]), but it is far from the norm.

Therefore, on the one hand we have domain-specific languages feeding parser generators to ease the

creation of parsers and on the other we have mechanisms to prove the correctness of low-level systems code.

It is the concerted opinion of this author that these two worlds should merge. To that end, this dissertation

presents a domain-specific language for describing protocols, one whose compiler produces not only the

code to parse the described protocol, but also the model to facilitate verifying the correctness of the code

produced.

Beyond verifying that the parser correctly parses protocol messages, we must also make sure that every

message received by the system is evaluated by the parser. This is the notion of complete mediation and is

distinct from formal verification in that the latter can only make claims about how it processes the messages it

actually sees. Both static and dynamic analysis can be used to ensure a system exhibits complete mediation;

I will survey some of those now.
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Static analysis is a technique in which inert code (source code or compiled machine code) is examined for

runtime properties—in this case, complete mediation. Zhang et al [62] used CQUAL to determine whether

the hooks provided by the Linux Security Modules framework really guard every avenue by which certain

vital kernel data structures are accessed. CMV [52] uses static analysis to verify that Java bytecode programs

exhibit complete mediation relative to system-level resources provided by the Java Virtual Machine.

In the realm of dynamic analysis, which analyzes running programs, Klee [11] uses symbolic execution to

explore possible execution paths of a program. Given that it tests exhaustively by design, Klee is guaranteed

to test for complete mediation, though its scaling properties leave much to be desired. Though admittedly

less comprehensive, an empirical method to determine whether a system exhibits complete mediation is to

instrument the system with hooks at the important places, send a great deal of crafted data at the system,

and verify that the hooks intercept all the data. Any demonstrable example of an input bypassing the hooks

would disprove complete mediation; of course, lack of such examples is heartening though not conclusive.

This is the purview of fuzz-testing, which has been widely adopted by the software industry as a means of

vulnerability testing. As I said, this is less comprehensive, but it can be easier to execute and its merits are

apparent in the broad adoption of fuzzing techniques for exploring system security.

1.5 Practical Matters

The preceding sections have outlined a number of desired security properties for parsers (and, more generally,

protocol stacks): specific technical artifacts whose code is both automagically generated and amenable to

formal verification. The primary contribution of this dissertation is conclusive evidence that these are

feasible in the context of a production-level operating system. In the following chapters, I will describe the

parser construction methodology and the various technical artifacts united by this methodology that I have

produced to this end. But first, a brief description of the protocol I chose for my case study (USB) and the

operating system with which I chose to integrate (FreeBSD).

1.5.1 Universal Serial Bus

Most security research involving parsing focusses on traditional networking interfaces such as Ethernet and

TCP/IP. The Universal Serial Bus (USB), which most users take for granted as being used for keyboards,

mice, and thumbdrives, was similarly taken more or less for granted by the security community—until about

2010 when our and other researchers’ results demonstrated that vulnerabilities in USB implementations
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could be easily and effectively developed [7, 21, 16, 34]. But the code that implements the USB protocol

runs with the same kernel privileges as the code that implements TCP/IP, although exploitation in the case

of USB requires physical access.

Not just that, but the very “universal” nature of USB makes it inherently more difficult to secure: the

protocol is explicitly intended to support arbitrary devices. Like the TCP/IP stack, then, the USB protocol is

layered such that arbitrary application-level protocols can be transmitted over the USB. The scary difference

between the two, however, is that the host-side code that handles the application-level protocol runs within

the kernel.

Therefore, a new kernel device driver is required to support a new USB device. Not only do device drivers

run within the kernel (and hence with full kernel privileges) but they happen to exhibit surprisingly high

vulnerability rates [13]. The large variety of USB devices induces the creation of a large variety of associated

device drivers. It is highly unlikely that these drivers have all received the same degree of exercise (and,

by extension, auditing) as, for example, the USB keyboard driver. Is it thus imprudent to believe that the

collection of USB device drivers that ship with a given kernel is free of vulnerabilities. This is unfortunate,

but not necessarily fatal: how many instances of obscure devices actually exist that can take advantage of

these potentially-vulnerable drivers? It turns out not to matter.

The USB protocol begins with a process called enumeration, in which the host queries the device for its

identity, so that the host can associate the correct application-level device driver with it. With a customized

device, an attacker can tweak the enumeration process to identify itself as any arbitrary device and thus pick

precisely which device driver within the kernel to communicate with. An attacker would presumably target

a driver with a known vulnerability; a defender would want to explore the behavior of drivers with potential

vulnerabilities. The data structures exchanged during enumeration are complex and must be parsed; this is

a known source of vulnerabilities [19].

To the best of my knowledge, very little effort has been expended to secure USB. In discussing this

seeming deficit with employees of Microsoft who work in this area, the prevailing notion is that USB is

limited to local attacks and are thus worth less attention than remote attacks to which, e.g., the TCP/IP

stack is exposed. While this is true, it undersells the insidiousness of USB as an attack surface. An attacker

can walk up to a powered-off machine, turn it on, stick in a USB device, and immediately have a direct line

to the kernel in the form of USB device enumeration.

Two anecdotes provide compelling evidence to support the claim that USB is worth attention.

First: Stuxnet, the malware used to compromise the Iranian nuclear facility at Natanz. Following sound
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network defense principles, the uranium enrichment centrifuges were on a physically separate network from

the outside world. That is, an airgap prevented attacks originating on the Internet from affecting the

machines performing the uranium enrichment. Despite this, those protected machines were compromised;

experts are convinced that USB was the vector by which those machines were infected [32]. Someone plugged

a USB device into a machine that was otherwise protected by the airgap and the infection spread from there.

Second: in March 2013, Microsoft issued a patch for Windows that “could allow elevation of privilege

if an attacker gains access to a system” [18]. CERT is more forthcoming in their description: “The USB

kernel-mode drivers in [many versions of Windows] do not properly handle objects in memory, which allows

physically proximate attackers to execute arbitrary code by connecting a crafted USB device” [12]. The

disclosure goes on to discuss that the vulnerability exists in the code that handles device enumeration.

These anecdotes are not intended as criticisms of any party involved. Rather, they are evidence that

USB is generally underappreciated as an attack vector and hence merits attention. The tools to deliver such

attacks are not figments of our imagination: various USB hacking tools use the Teensy [56] development

board to deliver scripted exploitative payloads via USB. A versatile open-hardware platform, USB Armory [4]

far supersedes these capabilities, adding a full-featured microprocessor behind a USB interface.

More generally, USB is representative of line-oriented protocols (e.g., transport protocols such as Thun-

derbolt and Fibre Channel; disk protocols such as SCSI) and thus the system I have implemented provides

a model for how those protocols might be implemented more securely, as well.

1.5.2 FreeBSD

I chose FreeBSD [47] as the kernel whose USB stack to augment with the aforementioned tools. FreeBSD

is a widely-deployed, high-performance kernel in the UNIX tradition, with a well-deserved reputation for

clean, understandable code and carefully-architected subsystems. Integrating with FreeBSD demonstrates

the viability of my approach in the context of a production-quality kernel (i.e., not just an academic toy).

1.6 Summary of Contributions

Thus, I have described the irreplaceable role protocols play in modern computing systems and the role

parsers play in their implementation. I have introduced the idea of using domain-specific languages to

generate parsers, with the goal of reducing the trusted computing base to the DSL specification of the

protocol and the DSL compiler. I have contrasted the DSL approach with that of formal verification and
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have argued that the two can (and should) be considered complementary strategies to producing trustworthy

parsers.

In light of this, the contributions of this dissertation are as follows.

I have developed a methodology for designing and implementing secure parsers and have successfully

applied it to the USB protocol in a production kernel. I have empirically demonstrated that the case-

study implementation is stable, effective in mediating malicious and non-standard inputs, and applied an

industry-standard test suite to it. Due to their method of construction—autogeneration from type defini-

tions of protocol messages and their elements—my USB parser/firewall is amenable to the same kind of

automated verification that produced the fully formally-verified seL4 microkernel. I do, however, relegate

such verification to future work as that effort is beyond the scope of a one-person project.

These contributions are presented in this dissertation as follows. First, I have already presented a detailed

checklist of the components that ought to be implemented when supporting a new protocol (Section 1.2).

Second, I present the tools I wrote to fulfill the needs of USB injection (Chapter 3) and inspection of

a running USB stack (Chapter 4). Third, I present a case study I performed wherein I automagically

generated a front-end parser for the USB protocol and integrated it with FreeBSD’s production USB stack

(Chapter 5). Finally, I empirically evaluate the security and performance of my implementation using an

industry-standard USB test suite (Chapter 6), demonstrating that it succeeded on all tests.

In short, I demonstrate that it is feasible to construct parser generators whose products parse real-world

protocols, are amenable to machine verification, integrate cleanly with existing operating systems, and are

sufficiently performant to make a compelling case for their use. My study demonstrates that a similar

approach can and therefore should be used in all security-critical systems.
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Chapter 2

Overview of USB: Protocol and

Vulnerabilities

This chapter provides an introduction to the USB protocol from the perspective of someone wishing to

explore the attack surface presented by a host with working USB ports. Following the description of the

protocol itself, I will review the most comprehensive study to date of USB vulnerabilities, produced by the

NCC Group in 2013 [19], which includes a classification of vulnerability types. Then I will examine all

USB-related vulnerabilities reported in the National Vulnerability Database [55] and attempt to place these

vulnerabilites in the classification scheme proposed by the NCC work. The ultimate intention is, in later

chapters, to show how the USB parser/firewall I produced can guard against these classes.

2.1 The Protocol

When a USB device is plugged into a host, the operating system running on that host communicates with it

by sending requests and receiving responses. In the majority of circumstances, all communication is intiated

by the host in the form of polling. (Low-level timing considerations are handled directly in the USB controller

hardware and are below the level of abstraction I focus on in this work.)

When a device is initially plugged in, the host must query it to determine its nature—whether it is, e.g., a

keyboard, a mouse, a MIDI device, or a printer. This initial conversation between host and device is referred

to as enumeration and happens for every device. In addition to determining characteristics of the device

such as polling frequency, preferred data transfer size, and power requirements, the host will also decide
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Host: 80 06 00 01 00 00 12 00

Device: 12 01 00 02 00 00 00 40 1E 04 02 04 00 01 01 02 03 01

Figure 2.1: A request from the host for the first 18 bytes of the device descriptor (id 1, byte 4) and the
device’s response.

which kernel device driver to associate with the device when enumeration is complete. The communication

channel that carries the enumeration messages is separate from application-level communication channels

and is retained throughout the connected lifetime of the device. Once enumeration has finished, however, the

associated device driver controls its own communication channels (called endpoints) to and from the device.

Note that this gives the device significant leverage over the operating system: it gets to pick and choose

precisely which driver to handle its application-level data. In essence, data sent by the device determines

the code paths and control flows that handle data sent henceforth. If an old, poorly maintained, buggy (i.e.,

vulnerable) driver is still shipped with an operating system, one could use a custom USB hardware device

to select it during the enumeration process and exploit it.

Note also that plugging a USB device into the machine gives an immediate communication channel

direct to the kernel. Even following enumeration, most application-level USB drivers still run in kernel mode

(though this is changing: see Microsoft’s User Mode Driver Framework [17]) as well. Despite the direct line

to the soft, defenseless innards of the operating system, I know of no framework—prior to mine presented

here—that defends against attacks by this vector.

Returning to enumeration, most of the messages that comprise this process are descriptors that contain

various parameters of the device in question. Figure 2.1 shows a request for a descriptor sent from the host

to a device and the response containing the descriptor itself. In this example, the fourth byte of the host’s

requests identifies the descriptor being requested (in this case, the “device” descriptor) and the seventh byte

indicates the amount of data the host would like to receive back (in this case, 0x12 = 18 bytes).

Then, in the response, the first byte indicates the total number of bytes sent by the device. This presents

a classic opportunity for an exploitable bug. If the host does not verify that the received data is in fact 18

bytes long (in this case), then the host runs the risk of either underflowing or verflowing a kernel buffer.

(The infamous Heartbleed [42] vulnerability is an example of an underflowed buffer and overflowed buffer

examples are legion [41, 49].)

My work in this thesis focusses entirely on the enumeration phase of the USB protocol. Some might

consider that limiting but, as we will see, this phase can harbor a surprisingly large number of bugs.
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2.2 USB As a Gateway to the Kernel

The previous section covers enumeration but not application-level protocols. Given that the nature of USB

enables a device to pick and choose precisely which driver within the kernel to exchange application-level

data with, this is a notable omission. Allow me to address that.

Like the TCP/IP family of networking protocols, USB is layered : it allows data from one protocol to be

encapsulated inside another. This is, in fact, precisely how USB supports such a wide variety of devices: once

enumeration is complete, the active part of the USB protocol steps aside and mostly just ensures the delivery

of application-level data between a collection of host and device endpoints through codepaths designated

during enumeration. Since many USB devices implement application-level protocols that have been natively

implemented in past (e.g., SCSI, audio, keyboards) this often provides a direct codepath to parts of the

kernel outside the USB stack itself.

The work we presented at the Workshop on Embedded System Security in 2012 [7] explored the reacha-

bility of kernel logic from the USB interface with a focus on the storage subsystem, down to the granularity

of basic blocks. We found that a USB device could access essentially the entire FreeBSD storage subsystem,

which is particularly notable because so many other aspects of the system depend on disks. Furthermore, this

is only the storage subsystem. We conjectured that our results could extrapolate to the many subsystems

in the kernel proper likely touched by USB devices, including printing, networking, and human-interface

devices.

Therefore, the fact that so many codepaths in the kernel are accessible via USB only increases the

importance of correctly parsing the data that arrives from untrusted devices. It is a crucial boundary to

ensuring the security of running systems.

2.3 Vulnerabilities

In 2013, Andy Davis of the NCC Group wrote a test suite, umap, to comprehensively explore the behavior of

operating systems in the face of unexpected input received during USB enumeration. He published his results

in an aptly-named technical report, Lessons learned from 50 bugs: Common USB driver vulnerabilities [19],

which I will summarize here. It should be noted that umap builds on the injection framework I constructed

as preparatory work for this thesis, which I will describe in Chapter 3. Thus, my initial work on this thesis

enabled the creation of an industry-standard security testing suite.

Using special-purpose hardware driven by Python scripts, he emulated a variety of USB devices being
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plugged into a target host and controlled every aspect of the data sent from these devices to the host during

each enumeration phase. His scripts caused the emulated devices to send intentionally malformed data to the

host while he observed how the host responded—a crash indicated that the host does not correctly handle

the malformed data. He tested a large variety of malformations and produced the following ontology of bugs.

2.3.1 USB Vulnerability Classes

Davis identified these five classes of USB bugs.

Unspecified Denial of Service in which the driver or host machine usually crashes, but not in a way

that is exploitable by an attacker. This class includes null-pointer dereferences and out-of-bounds reads.

Davis does not consider these security-related bugs in the context of USB drivers.

Buffer overflows in which bounds are not adequately checked prior to memory operations. As an example,

Davis described a Linux driver that allocates 80 bytes for the contents of a string descriptor; but the string

descriptor can be up to 252 bytes long. Thus, when a string descriptor longer than 80 bytes arrives, the

remaining data overwrites other kernel memory, which is certainly a bug and quite possibly exploitable.

Integer overflows and other length-related bugs in which arithmetic performed on numbers provided

by the device can lead to unintentional memory allocations. Consider the bug described in the previous

paragraph: the logical solution would be to read in the length of the descriptor (an 8-bit value), allocate

the appropriate amount of memory, and then copy the string into that memory. If, however, any arithmetic

is performed on the length, an attacker could cause the length to overflow past 255 and cause less memory

than necessary to be allocated. Then, when the string is copied, it could again overwrite existing data

structures. Davis identifies instances of this happening in hub descriptors, configuration descriptors, endpoint

descriptors, HID descriptors, image class data transfers, and printer class data transfers.

Format string bugs in which user-controlled input is used as the format string in calls to the printf

family of functions. Historically, this allowed an attacker to write to arbitrary locations in memory using

the ”%n” format specifier. While this specifier has been widely deprecated, many compilers still support it.

(In fact, Kees Cook demonstrated just such an attack using a custom USB device in 2012 [16].)

Logic Errors in which the operating system incorrectly handles a given input. As Davis points out, these

are implementation-specific because the logic of driver code often varies greatly between operating systems.
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Some such logic error result in memory corruption when an 8-bit field is set to 0xFF, where the protocol

specification only ever expects values between 0 and 127. In this case, the operating system is incorrectly

handling unexpected input.

2.3.2 National Vulnerability Database (CVEs)

A kind of ground truth of vulnerabilities in deployed software is captured in the National Vulnerability

Database. Vulnerability disclosures, dubbed “CVEs” (Common Vulnerablities and Exposures), are reported

and assigned on the basis of particular products and technologies found to be vulnerable. The CVE system

does not attempt to classify vulnerabilities. Recently, an attempt to provide an ontology of the underlying

causes for CVEs has been made in the form of the Common Weakness Enumeration (CWE) system [54]. For

our purposes, however, the NCC classification described above is more suitable, being targeted specifically

to USB.

Between January 2005 and December 2015, exactly 100 of the vulnerabilities reported to the NVD

contained the string “usb”. I surveyed all 100 of these vulnerabilities and attempted to place each in one of

the five categories identified by Davis. I use the result of this survey in Chapter 6 to gauge the effectiveness

of the USB firewall I created based on the distribution of bugs between classes. Not surprisingly, the bugs

mitigated by proper parsing form a significant subset.
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Chapter 3

Injection

“Security won’t get better until tools for practical exploration of the attack surface are made

available.” (Joshua Wright, 2011) [26]

The first piece of my research plan was a framework for injecting arbitrary, crafted frames into USB.

Despite the security benefits promised by formal verification, the ability to empirically evaluate the

security of deployed system remains vital; this ability rests on being able to craft and inject arbitrary traffic.

For starters, no fully-verified systems have been deployed in any meaningful quantity. Additionally, an

enormous number of unverified systems exist in the wild whose security we need to be able to analyze.

Additionally, the benefits espoused by the formal verification community are, perhaps, not as widely-

applicable as we might like to think. To see why, consider that formal verification attempts to prove

that certain properties of code are maintained (e.g., that execution proceeds linearly from instruction to

instruction except in the case of explicit, intended branches). These statement of formal correctness are only

useful if we are able to completely enumerate all relevant security properties. For the most generic software

models, the task may, in fact, be impossible [50].

As a side-note, symbolic execution is a complementary approach to formal verification that attempts to

explore how a system behaves in the face of all possible inputs. The state of the art in this area, Klee [11],

is effective for a wide variety of software, but it suffers from scalability issues due to the massive state-space

explosion incurred by branch-heavy code [10].

Due to these concerns, many security practitioners feel that we cannot trust the security of large-scale

systems without thorough probing of their attack surface. This notion is embodied by the quote above,

sometimes referred to as Wright’s Principle. This dissertation accepts this assertion: namely, that the
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Figure 3.1: The Facedancer board (version 10).

ability to inject arbitrary data into that system is crucial. While commercial solutions to inject arbitrary

bits onto a USB exist (e.g., MQP Packet-Master USB-500 [39]), it was not until Travis Goodspeed produced

the Facedancer [25] that this capability was accessible to a widespread audience.

3.1 Facedancer

The Facedancer platform—the board designed by Travis Goodspeed in collaboration with Sergey Bratus,

with software contributed by me—is a custom PCB based on the GoodFET, a general-purpose, open-source

JTAG adapter. As seen in Figure 3.1, it connects to both a host and a target (victim). The host sees

the connected Facedancer as a standard USB FDDI (serial) device which can be controlled using a simple

datagram-based protocol, whereas the target sees whatever USB device the host chooses to emulate.

This emulation is driven by commands received by the Facedancer over the serial line. A dedicated FDDI

chip passes commands received on to the Texas Instruments MSP430 microcontroller that serves as the main

computational brains of the board and speaks the generic GoodFET serial protocol. Commands that request

sending or receiving USB frames to or from the target are passed over an SPI bus to the MAX3421 USB

controller chip [28], which is connected to the target-facing USB type-A port.

The MAX3421 handles much of the low-level, time-sensitive aspects of the USB protocol—for instance,

responding with NAKs while the host-side code is composing a response to a request sent by the target

machine over the USB. The presence of the MAX3421 chip thus allows the host to focus on the content of

its responses rather than, e.g., timing issues on the bus.
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USBDevice

+-> USBConfiguration

| +-> USBInterface

| | +-> USBEndpoint

| | +-> USBEndpoint

| +-> USBInterface

| +-> USBEndpoint

| +-> USBEndpoint

+-> USBConfiguration

+-> USBInterface

+-> USBEndpoint

+-> USBEndpoint

+-> USBEndpoint

Figure 3.2: The USB hierarchy as implemented in the host-side Facedancer stack. This figure describes a
single USB device that supports two distinct configurations, the first consisting of two interface, each with
two endpoints, and the second consisting of a single interface with three endpoints.

3.2 Host-side Software

The Facedancer comes with a host-side Python library for emulating USB devices. As such projects are

wont to do, however, it evolved to meet the needs of debugging in-development hardware until the hardware

platform stabilized. The original code was thus poorly organized and poorly documented. Furthermore, it

did not reflect the structure of the USB protocol: in short, it was difficult to adapt to arbitrary uses, which

was the main purpose of the project to begin with.

Therefore, I wrote a brand-new host-side software stack for the Facedancer from scratch. I designed it

to mirror the structure of the USB component hierarchy as follows, with the intention that this would be

easier both to understand and to modify.

3.2.1 USB Component Hierarchy

My code follows the USB hierarchy of concepts with the intention that it be easier to understand and modify.

An example instance of this hierarchy is shown in Figure 3.2. This hierarchy captures the notion that a

single, physical USB device may have multiple configurations (i.e., sets of interfaces it may present to a

host), each of which may have multiple interfaces, each of which may have multiple endpoints. These terms

follow the established USB vocabulary.

Perhaps confusingly, the interface—in USB terminology—is what encapsulates the functionality of, e.g.,

a mouse or a keyboard. The notion of a device, on the other hand, is the physically-connected object,

which may present itself to a host as multiple logical devices. (Think of a USB keyboard with a trackpad:
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USB Ethernet Assumption Violation Attack Use
Transfer one round-trip,

maybe NAK’d
Intended device will re-
ply to the transfer

non-compliant
controller

hijack session, change
state under nose of
host

Transaction one set of trans-
fers, all but the
last NAK’d

host controller com-
plies with USB spec on
transactions

hijack session on
disconnect

use of trusted session
context

Packet packet fragment implicit length of con-
catenated frames will
matfh explicit length
of transaction

non-compliant
device

memory corruption,
info leak

Controller Ethernet card n/a n/a n/a
Bus D+/D- pair electrically legal sig-

nals, but in realize
those widely outside of
spec are accepted

non-compliant
controller

damage frames for ses-
sion hijack, jamming

Table 3.1

it connects to the host via a single cable, but the host recognizes it as two logical devices—a keyboard

and a mouse. In this example, the thing that plugs in is a device whereas the keyboard and mouse are

interfaces.) The operating-systems implication of this is that separate interfaces on a single (USB) device

may be associated with different (kernel) device drivers. This separation has been used by a number of

production designs, such as SanDisk’s U3 technology and related DRM schemes.

In USB, endpoints are channels of communication, somewhat analogous to ports in TCP and UDP.

(For additional analogies between USB and TCP/IP concepts, see Table 3.1, duplicated from our WESS

paper; further details may be found there.) They allow multiplexing communication over the single USB

cable. Their primary use is to segregate device-level control messages from application data; the former uses

endpoint 0 whereas the latter may use one or more of the remaining 255 interface-specific endpoints.

3.2.2 Enumeration

When a USB device is first connected to a host, the host and device carry out a process called enumeration,

in which the former interrogates the latter as to its capabilites. This conversation consists of descriptors sent

from the device to the host which describe all aspects of its behavior: configurations, interfaces, endpoints,

strings, etc.

My code cleanly delineates between the logic that implements enumeration and that which implements

application-level control. As such, it is easy to customize specific aspects of the emulated device. Instead

of the raw bit-banging typical in prototypes, the new stack cleanly delineates the various functionality in
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a class hierarchy that mirrors the hierarchy of USB itself. Therefore, to customize aspects of a particular

endpoint, one need only focus on the USBEndpoint instance that implements the functionality in question.

This is not to say that the new stack doesn’t support bit-banging! A combination of callback functions and

member variables allows arbitrary code to handle any aspect of the emulated-device-to-host communication,

so a potential fuzz-tester is welcome to override the default functionality in any way he or she sees fit. One

benefit of the class structure mirroring the structure of the USB protocol, however, is that finding the code

to override is much easier. Instead of having to dig through code that manually assembles hard-coded binary

strings to find where the configuration descriptor is created, one need only override the get descriptor

method of the USBConfiguration class.

As a result, creating a new emulated device or modifying an existing one is quicker, simpler, and more

intuitive. It was gratifying to find this code as the basis for the industry-standard test suite, umap.

3.3 Reference Emulations

Using the library described in the previous section, I have implemented programs that emulate a USB

keyboard, a USB mass storage device, and a USB FTDI (serial) device.

For each, I created a new class that derived from the USBInterface class, in which I defined the static

parameters of the device (e.g., number and type of endpoints, manufacturer and product strings). When this

class is instantiated, the library code takes care of marshalling and sending the various descriptors during

USB enumeration: no customization of device initialization is necessary. It just works.

Once enumeration is complete, the emulated device will need to handle incoming requests from the target

machine. These requests are handled entirely by a single function within the USBInterface class. Therefore,

to customize the behavior of the emulated device, one need only customize this particular function. Thus,

the author of an emulated USB device is insulated from the complication of the USB protocol itself and is

left to focus on the device-level protocol. (To wit: the source file that implements the USB FTDI device,

USBFtdi.py, is entirely composed of code that deals with serial requests. The only USB-specific parts are

those that define parameters of the device that will be sent during the enumeration phase.)

This design benefits a programmer seeking to implement a well-behaving device as well as one seeking

to implement a misbehaving device, for the purpose of probing the security of a host’s USB stack. In this

case, the programmer need only derive a new instance of the class which contains the functionality he wishes

to customize and override the appropriate function. For instance, if a programmer wanted to explore how

a host handles malformed configuration descriptors, he would derive from USBConfiguration and override
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the get descriptor function of his new class. Then, when the target machine asks the emulated device

for its configuration descriptor, it will be sent a descriptor produced by the customzed code rather than the

default, well-formed descriptor.

3.4 Code

All of the code I have described in this chapter is available in the public GoodFET repository on github:

https://github.com/travisgoodspeed/goodfet, under the “client” subdirectory.

The library code described in Section 3.2 is in the USB*.py files.

Code that implements the logic of emulated devices described in Section 3.3 is in USBKeyboard.py,

USBFtdi.py, and USBMassStorage.py.

Executables to run these emulated devices are in the facedancer-*.py files.
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Chapter 4

Inspection & Instrumentation

This chapter describes the instrumentation framework I designed, built, and applied to the USB subsystem

of the FreeBSD kernel. This framework had two goals: both to understand the existing structure of the

USB stack and to evaluate the effectiveness of my parser/firewall. The former goal was interesting in its

own right, but more importantly, it provided the insight necessary to integrate my USB parser/firewall with

FreeBSD’s USB stack. The latter was necessary for demonstrating the efficacy of my implementation.

Injecting custom-crafted data, as described in the previous chapter, is vital for exploring the security of

systems. It does not, however, directly allow for the improvement of those systems because the feedback is

usually not sufficiently specific to inform debugging, vulnerability mitigation, or vulnerability development

efforts. A systems engineer needs to know precisely which code handles the data and how so that when

crafted data causes runtime errors, the offending code can be found and fixed.

Mitigation plays an important practical role in operational security: specifically, in addition to fixing

bugs—which a user might wish to protect against before the vendor ships a fixing patch—one might wish

to implement user-defined policies on data flowing through the kernel. (Note that this is separate from but

complementary to checking that data flowing through the kernel conforms to the protocol specification. As

an example, one might wish to implement a policy that allows only HID devices like mice and keyboards

to be connected via USB.) Where in the flow of data through the kernel should such policies be enforced?

More specifically, where in the source code should enforcement hooks be placed?

The DTRACE [53] system available on FreeBSD and Solaris pioneered the very sort of fine-grained

observation of live systems that would achieve this goal. (SystemTap on Linux was inspired by DTRACE

and fulfills a similar need.)
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Unfortunately, even though DTRACE provides more (and more granular) insight into running systems

than has previously been available, it didn’t provide all the information necessary to guide debugging and

enforcement efforts. Specifically, its Function Boundary Testing probes were unreliable; not only that, but

they only fired when a function was called or returned: they did not communicate the flow of control within

a function. When considering kernel functions that may be hundreds of lines long, this is a significant gap

in observation.

Therefore, I implemented a set of custom, static DTRACE probes for FreeBSD that trace execution

within its USB stack at the basic-block level. Additionally, I implemented a set of scripts that visualize

these traces, showing the interaction between components of FreeBSD’s USB stack, at the level of both

functions and source files. These results have a number of benefits: they provide a unique view of control flow

within the kernel, they help readers of the kernel code understand how the various components fit together

(which can be useful to both kernel newbies and grizzled veterans alike), and they guide the placement of

policy-enforcement hooks such that they can be most effective.

This work was presented at the Workshop on Embedded Security in 2012 [7].

4.1 Instrumentation

DTRACE is an instrumentation framework for monitoring running FreeBSD and Solaris systems. As such, it

provides a large number of built-in probes that report on everything from system call invocations to disk I/O

patterns to system clock behavior. They do not, however, include probes that let us trace the execution of

kernel code at the basic-block level, which is necessary for the debugging and hook-placement tasks described

above.

Fortunately, DTRACE allows one to create custom sets of probes, and I did precisely that. I created the

usb bb probeset and defined the following probes within it:

• MY FUNC ENTER(filename, function name) at the beginning of every function.

• MY FUNC RETURN(filename, function name) at every point from which a function might return.

• MY BB START(filename, function name, index) at the beginning of every basic block, where index

uniquely identifies each basic block within the function.

• MY BB FINISH(filename, function name, index) at the end of every basic block, where index

matches the identifier of the associated MY BB START probe point.
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#!/usr/sbin/dtrace -qs

usb_bb:::enter,

usb_bb:::return

{

printf("%s/%s (%d) %s %s %s %d\n", curthread->td_proc->p_comm,

curthread->td_name, curthread->td_tid, probemod, probefunc,

probename, arg0);

}

Figure 4.1: Example script, written in D, that enables custom DTRACE probes MY FUNC ENTER and
MY FUNC RETURN; prints a message when execution reaches any of those points.

• MY MUX(filename, label) at every point where a control-flow decision is made based on an input

value—in practice, this ended up being mostly function-pointer calls.

I manually added these probes to a local copy of the FreeBSD kernel source code. Table 4.1 summarizes

the extent of these modifications within its USB stack.

probe qty event
MY FUNC ENTER(file, func) 204 upon function entry
MY FUNC RETURN(file, func) 356 upon function exit
MY BB START(file, func, n) 1235 upon starting basic block n in a given function
MY BB FINISH(file, func, n) 1235 upon finishing basic block n
MY MUX(label) 30 immediately prior to invocation of a callback

Table 4.1: Summary of static probes in our instrumentation framework.

Once these probes are placed in the kernel, they are quiescent until activated by a script written in a

special-purpose language called D. For example, the program in Figure 4.1 activates the MY FUNC ENTER and

MY FUNC RETURN probes and prints a message when execution reaches any of them. When this script is run

from the shell (with root privileges), it prints out one line per probe encountered and exits when the user

presses Control-C.

In the course of my instrumentation, I implemented many D scripts; descriptions of the notable scripts

follows.

• bb-count.d counts the number of times each instrumented basic-block executes.

• bb-trace.d prints a properly-indented message when a basic block is entered or left.

• mux-trace.d prints a message when a mux-point is reached, indicating the value of the data that

caused the choice of subsequent execution path.
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100036 usb_callback_proc enter 0

100036 usb_command_wrapper enter 0 3 4 5 6 8

100036 usbd_callback_wrapper enter 0 4 5 13

100036 umass_t_bbb_command_callback enter 0

100036 usbd_xfer_softc enter 0

100036 usbd_xfer_softc return

100036 usbd_xfer_state enter 0

100036 usbd_xfer_state return

100036 umass_t_bbb_command_callback in 2 3

100036 usbd_xfer_get_frame enter 0

100036 usbd_xfer_get_frame return

100036 usbd_copy_in enter 0 1

100036 usbd_get_page enter 0 1 2 3 6

100036 usbd_get_page return

100036 usbd_copy_in in 2 3

100036 usbd_copy_in return

Figure 4.2: Output from the bb-trace.d DTRACE script, showing the basic blocks executed in each func-
tion.

• cam-trace.d traces the execution of storage subsystem operations within the USB stack. I used this to

help understand the structure and behavior of interactions between the generic FreeBSD disk layer and

the USB mass storage device driver. (CAM stands for Common Access Method, a FreeBSD abstraction

for interfacing with storage devices.)

Of these, the most interesting is bb-trace.d. Running it while performing USB-related activities results

in a guide to how those activites are processed within the kernel. Figure 4.2 shows an example output. This

output begins with a call to usb callback proc in kernel thread 100036. In the zeroth basic block of that

function, usb command wrapper is called, which sees execution of its zeroth, third, fourth, fifth, sixth, and

eighth basic blocks. This pattern continues until umass t bbb command callback calls usbd xfer softc

which immediately returns, followed by a call to usbd xfer state which also immediately returns. Then

execution within umass t bbb command callback resumes in the second basic bloack.

This record can be related back to the actual instrumented source code, thus allowing the observer to

follow along in (somewhat) real time. Note that following along at this level of granularity is not possible

with the default set of DTRACE probes on FreeBSD (and even the function-level granularity provided by

the FBT probes is unreliable).

While undoubtedly interesting, the raw output of, e.g., bb-trace.d is less immediately useful. I wrote

a collection of Python, awk, and shell scripts to process this raw data into a more useful format. (Another

benefit to post-processing is to reduce the number of cycles required to process probes firing in real-time:
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-> usb_callback_proc 0

-> usb_command_wrapper 0 3 4 5 6 8

-> usbd_callback_wrapper 0 4 5 13

-> umass_t_bbb_command_callback 0

-> usbd_xfer_softc 0

-> usbd_xfer_state 0

umass_t_bbb_command_callback 2 3

-> usbd_xfer_get_frame 0

-> usbd_copy_in 0 1

-> usbd_get_page 0 1 2 3 6

usbd_copy_in 2 3

<- usbd_copy_in

Figure 4.3: Indented basic-block trace. (The underlying data is the same as in Figure 4.2.)

adding more intelligence to the D scripts causes probes to be dropped.) The most interesting of these scripts

is indent-bb-trace.py, which takes as input a basic-block trace such as the one shown in Figure 4.2 and

produces an indented trace as shown in Figure 4.3.

4.2 Experimental Results

My enhancement of the FreeBSD DTRACE dynamic probe system allows the user to formulate and test

hypotheses regarding reachability of specific parts of code—down to the granularity of basic blocks—by

specific USB inputs. To the best of my knowledge, this granularity has previously only been available in

static analysis tools such as IDA Pro [ida-pro], which are unsuitable for analysis of running systems. In this

section, I describe various measurements, such as code coverage, that can be performed with this system.

The fine-grained instrumentation described in the previous section provides a great deal of insight into

the code being executed inside the kernel. What can we do with this insight?

4.2.1 Measuring Code Coverage

While testing code thoroughly is a worthy goal, all too frequently code is shipped that has not undergone

sufficiently rigorous examination. When deployed, many pieces of software are implicitly tested by users in-

teracting with their systems performing everyday tasks. In the best-case scenario, upon discovering erroneous

behavior, a user will file a detailed bug report allowing the code’s author to fix the bug.

This informal testing can be effective, but it is far from complete. The instrumentation framework

described above can be used to measure how incomplete it really is. This achieves a tangible security benefit:

knowing the well-tested (even if informally) code paths allows one to concentrate code auditing efforts on
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Figure 4.4: Lines of code exercised per-file during a USB thumbdrive insertion, read, write, and removal.

the less-used (and therefore less informally-tested) code paths. By virtue of undergoing less exercise, these

latter paths are more likely to harbor potentially-exploitable bugs.

I used the bb-count.d probe script described above to gather the number of times each basic block in

FreeBSD’s USB stack was executed. I then inserted a USB thumbdrive (which uses the umass driver within

the USB stack), read a single block of data, wrote a single block of data, and ejected the drive. Finally,

I terminated the probe script. These actions exercised the normal code path for USB device enumeration,

USB mass storage device initialization, read and write interaction between the USB stack and the FreeBSD

storage subsystem, USB mass storage device finalization, and USB device removal.

By process of elimination, then, we can deduce the abnormal code path. To that end, Figure 4.4 shows the

number of basic blocks exercised (and not exercised) per file in FreeBSD’s USB stack during the experiment

described above. I did not see any variation in this data over multiple runs; but variation would certainly

be cause for concern! It would indicate that, despite inducing what should be a completely deterministic

sequence of code events, some aspect of the system is introducing randomness: a potential malicious actor
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4.2.2 Guiding Hook Placement

A more specific use of the basic-block traces is to identify where in the data-processing control flow would

be most advantageous to place enforcement hooks. That is, the function traces produced by the framework

described in this chapter are caused by activity happening on the USB. If we want to make sure that said

activity follows the rules of the protocol and/or conforms with a user-defined policy, we need to examine it.

Code that implements this examination must be called at some point in the control flow revealed by these

traces. But where?

This is a Goldilocks game of finding a place in the code that all USB events traverse. Ideally, for efficiency

reasons, we want the enforcement hooks invoked no more than once per event. On the other hand, we need

the enforcement hooks invoked at least once per event, otherwise enforcement will miss events and lose its

power. The basic-block traces described in this chapter provide precisely the data necessary to figure out

where to put the enforcement hooks. These will be described in detail in Section 5.5 along with the rest of

the work involved in integrating the enforcement system into FreeBSD.

4.2.3 Showing Inter-component Interactions

Finally, I used the traces produced by my instrumentation of FreeBSD’s USB stack to generate graphs

of the control flow between components within the stack. The source code is divided into separate files by

function (e.g., the controller interface is in controller/ehci.c, request handling is in usb request.c, DMA

operations are in usb busdma.c), therefore I chose source files as a reasonable approximation of “component”.

Figure 4.5
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4.2.4 Summary

In this chapter, I described how I instrumented the FreeBSD USB stack using DTRACE probes. Having

written various supporting scripts, I used this instrumentation to map the basic blocks within the stack that

are exercised during normal operating conditions; by extension, I identified the basic blocks that don’t get

exercised, which therefore might be good places to focus a security audit. These efforts come together in my

empirical evaluation of my parser/firewall’s efficacy at stopping malicious inputs.

I also foreshadowed how I would use the results of the instrumentation to inform the placement of

enforcement hooks that validate USB frames as they flow between host and device. Lastly, I presented

diagrams that describe the various inter-component interactions within the USB stack.
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Chapter 5

Generation

In Section 1.2, I offered a programme of code artifacts necessary to implement support for a protocol and

claimed that, given a specification of the protocol in question, this code could be automagically generated. I

intentionally eschew the term “automatically” because it does not encompass the structural qualities of the

resulting code; rather, I use the word “automag ically” to mean that the code exhibits additional properties

that make it amenable to further automatic processing, such as formal verification. The distinction is not a

trivial one; for example, the output of yacc and bison are opaque and difficult to analyze on their own.

In the previous chapters, I described my efforts to manually implement components that inject crafted

USB data onto the bus and provide a view of the code touched by the injected data. This chapter describes

the centerpiece of the programme—the autogeneration framework—the previous pieces are merely needed

to support and test it. I describe what a protocol specification entails, how the code is generated, and how

it is integrated into a production operating system kernel.

I claim that a great deal of code—in fact, much of the code that handles a protocol within the kernel—can

be generated automagically from a specification of the protocol. Consequently, the ad-hoc code that performs

these operations can be replaced in actual operating-system kernels and protocol stacks with generated code

without appreciable loss of efficiency and with significant gains in security (e.g., ability to mitigate malicious

inputs). I present a case study that demonstrates how this works for USB.

Specifically, the data structure(s) that hold protocol messages, the code that parses messages from the wire

into these data structures and verifies their contents, functions that access fields within the data structure,

and functions that print the contents of a message in human-readable format. Figure 5.1 shows a diagram

of the code that is generated from the protocol specification.

41



Protocol
Specification

data
structure
definition

parser code

accessor
functions

pretty-
printing
function

Figure 5.1: Given a protocol specification, shown in the middle, we can automagically generate the code
required to implement support for that protocol, shown in the leaves.

I begin with a description of the protocol-definition language I embedded into Haskell. Following that,

I show how a portion of the USB protocol is defined using this language, specifically the GET DESCRIPTOR

request message sent from the device to the host during enumeration. I extrapolate on that to describe the

code generated for the entire set of messages and close with a description of how I integrated this generated

code into the FreeBSD kernel.

Note that the definitions and generated code I describe in this chapter are a result of my efforts related

to USB. They are, however, directly relevant to any protocol for which one wishes to implement parsers

(though, admittedly, they are more amenable to binary protocols like TCP/IP rather than text protocols

like SMTP and HTTP). My intent is to provide the foundation upon which myriad other parsers can be

built and, most importantly, integrated with their existing stacks, replacing notoriously vulnerable ad-hoc

implementations [8]. For this reason, in what follows I describe the construction of my USB parser in most

generic terms, only using protocol-specific terminology when such is specific to USB (as in the case of USB

enumeration).

5.1 Protocol Definition

I define a Protocol to be a set of Messages. Each Message consists of a name, a set of Fields, and potentially

a data stage of variable length. (Figure 5.2 shows the definition of a Message using the domain-specific lan-

guage.) As simple as it appears, this definition describes every message exchanged during USB enumeration,
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data Message = Message MessageName [Field] DataLen

type MessageName = String

Figure 5.2: DSL specification of a Message within a protocol. A Message is defined by a name (a String), a
list of Fields, and a data length specifier.

data Field = Field FieldName FieldSize FieldValue

type FieldName = String

data FieldSize = Uint8

| Uint16

data FieldValue = Literal Int

| Variable

Figure 5.3: DSL specification of a Field within a Message. A Field is defined by a name (a String), a size
(in this case, either 8 or 16 bits), and an indication of whether its value is variable or fixed

dubbed “control messages”. Following enumeration, however, most communication is application-specific

and supporting such protocols using this framework reduces to the task of creating Message variables corre-

sponding to the application-specific messages. Control messages still flow between device and host even after

enumeration is complete, however, as they negotiate features like flow control and isochronous transfers.

The first value in a Message is a character string used for identification purposes. Following the name is

a list of Fields that make up the Message (how to specify names, types, etc. for these fields will be discussed

shortly). Fields are assumed to be ordered and contiguous within the Message; should the protocol specify

empty space or padding, one would need to specify an explicit Field reflecting those characteristics.

Let us express these and further relationships between the elements in a message in a grammar that, at

the same time, is the Haskell definition of the types within the protocol DSL. Message and field names are

thus Haskell type constructors; the entire DSL is thus a runnable definition and is therefore subject to the

Haskell type-checking framework, which is an effective form of static verification [37].

Each Field in a Message consists of a name and a size, as well as an indication of whether its contents

are literal or variable. (The definition of the Field type is shown in Figure 5.3.) Like Message, a Field

incorporates a character string used to identify it. The size of the field is either 8 or 16 bits—this covers all

messages exchanged during USB enumeration and could easily be expanded to support the needs of other

protocols, even those requiring bit-granularity.

The last field indicates whether the field is literal or variable. Many protocols specify an exact sequence

of bits or bytes to appear in certain places: for instance, IPv4 requires that the first 4 bits of an IP packet

be 0100, indicating the version of IP to which the packet conforms. Likewise, USB requires that, e.g.,
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data DataLen = NoData

| Bytes Int

| Ref FieldName

Figure 5.4: DSL specification of the length of the data stage of a Message. The length can be either zero, a
fixed number of bytes, or a number of bytes given in one of the fields of the Message.

GET DESCRIPTOR request messages have a RequestType field of 0x80 and a Request value of 6. These would

be specified as Literal fields, along with the value they require.

Alternatively, some fields are not precisely specified and instead must be available to higher-level code

that, e.g., changes state within the kernel upon the receipt of such a message. Examples of this include the

destination port number in TCP and the index of the descriptor being requested by a USB GET DESCRIPTOR

request message. These would be specified as Variable fields so that the appropriate code can be produced.

The list of Fields is of fixed size and the Fields themselves are of fixed size, therefore the entire Message

as described so far is of fixed size. These fields may be followed by a variable-sized data stage: the size may

be zero, a fixed size, or of a size given by one of the fields. The definition of the DataLen type is shown in

Figure 5.4.

Many messages in the USB protocol communicate no data, and therefore use the NoData constructor

for this field. Some messages include a fixed amount of data following the header, in which case they use

the “Bytes” constructor, specifying the number of bytes as the argument. Lastly, some messages (of which

the response to the GET DESCRIPTOR request is one) specify the length in one of the Fields, in which case

the “Ref” constructor is used. If the length is specified in the wLength field, the DataLen constructor would

appear as Ref "wLength".

Note that while the DataLen construct fulfills the needs of USB, it also immediately supports protocols

like IP and SCSI that have a similar structure. The latter (and many other protocol besides) feature headers

comprised of fixed-size fields followed by a variable-sized payload or data field.

This syntactic simplicity underscores the general applicability of this data modeling approach.

5.1.1 Example: GET DESCRIPTOR request message

As an example, consider the GET DESCRIPTOR request message, whose specification is shown in Figure 5.5.

The first parameter specifies the name (which will be used in a number of places in the generated code).

Following that are six fields: four 8-bit unsigned integers and two 16-bit unsigned integers. The first two

fields have literal values whereas the final four are marked as variable, to be interpreted above the parsing
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getDescriptorRequest :: Message

getDescriptorRequest = Message "GET_DESCRIPTOR req"

[ Field "request_type" Uint8 (Literal 0x80)

, Field "request" Uint8 (Literal 6)

, Field "desc_type" Uint8 Variable

, Field "desc_index" Uint8 Variable

, Field "language_id" Uint16 Variable

, Field "desc_length" Uint16 Variable

]

NoData

Figure 5.5: Description of USB protocol’s GET DESCRIPTOR request message, written in the domain-specific
language.

layer. Finally, this message does not include any trailing data.

The GET DESCRIPTOR message exercises most of the message-specification features I’ve discussed—fields of

different sizes, of both literal and variable contents, as well as a null data stage—but not all. The fixed-length

data stage is used in the GET STATUS response, GET CONFIGURATION response, and SYNCH FRAME messages.

The variable-length data stage is used in a number of messages, many of which are closely related to other

messages.

5.1.2 Specifying New Messages from Old Messages

Many protocols include related pairs of messages; think ICMP echo request and reply, DNS request and

reply, and so on. The USB protocol does, as well; the GET DESCRIPTOR request message shown above is the

request half of such a pair. For our protocol syntax specification to be complete, we will need to specify

the format of the response, but it seems wasteful and potentially error-prone to specify the message entirely

from scratch.

For USB, many of these request/response pairs differ only in that the response includes a data stage and

the request does not. Therefore, I created a Haskell function, withData that takes a Message instance, gives

it a new name and a new data stage specification, and produces a new Message. Figure 5.6 shows how I

used this function to specify the GET DESCRIPTOR response message.

While the withData function is no doubt useful, it is most certainly specific to USB. The general lesson

here is not, however, that the framework I’ve created is inextricably tied to USB; rather, this demonstrates

the power of an embedded domain-specific language. Because the protocol-specification language is really just

Haskell, we have at our fingertips all the tools that Haskell provides, which let us quickly, easily, and—most

importantly—reliably produce specifications of derived messages. Were we left to specify these messages by
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getDescriptorResponse :: Message

getDescriptorResponse = withData getDescriptorRequest

"GET_DESCRIPTOR response"

(Ref "desc_length ")

Figure 5.6: Code to derive the GET DESCRIPTOR response from the associated request message, using the
domain-specific language.

struct get_descriptor_req_msg {

uint8_t request_type;

uint8_t request;

uint8_t desc_type;

uint8_t desc_index;

uint16_t language_id;

uint16_t desc_length;

uint8_t data;

};

Figure 5.7: Generated C structure for the GET DESCRIPTOR request message.

hand in entire, we run the risk of introducing typos and inconsistencies, both of which are a breeding ground

for vulnerabilities.

5.2 Generating the Code

As shown pictorially in Figure 5.1, we can use the message definitions described in Section 5.1 to produce a

great deal of code pertaining to those messages. These various code artifacts are described in the following

subsections. All generation code is written in Haskell.

5.2.1 Generating the Data Structure

First and foremost, we need a data structure to represent each message. This structure can (and likely

should) be used both in the kernel proper as well as the parsing component. Additionally, it could be

used in programs that inject protocol data such as the Facedancer and its associated software described in

Chapter 3 as well as programs such as tcpdump that analyze protocol traces. Figure 5.7 shows the structure

definition generated from the GET DESCRIPTOR response message shown in Figure 5.6. (This example shows

the response rather than the request because the presence of a data stage in the response exposes a particular

implementation quirk that merits mention.)

Defining fields for fixed-size types is straightforward: the Uint8 and Uint16 of the definition from Fig-
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struct get_descriptor_req_msg *

validate_get_descriptor_req_msg(char *frame , int framelen)

{

struct get_descriptor_req_msg *m = (struct get_descriptor_req_msg *) frame;

if(m == NULL) return NULL;

if(framelen < 1 + 1 + 1 + 1 + 2 + 2 + 0) return NULL;

if(m->request_type != 128) return NULL;

if(m->request != 6) return NULL;

/* accept m->desc_type as -is */

/* accept m->desc_index as -is */

/* accept m->language_id as -is */

/* accept m->desc_length as -is */

return m;

}

Figure 5.8: Generated verification function for the GET DESCRIPTOR request message. (Constant-folding in
the compiler will optimize away the tacky addition.)

ure 5.5 become uint8 t and uint16 t, which are types supplied by standard system headers. The only

deviation from this pattern is the data member.

For the optional data stage, I have chosen to represent it as a single byte in the structure. Should the

kernel, application, or parser wish to access the contents of the data stage, they need to do so using the

address of the data member. This is potentially fraught with peril as undisciplined pointer operations are a

significant source of security vulnerabilities. Therefore, I have also generated accessor functions (described

in Section 5.2.3) that unify the method of access and therefore reduce the potenitality for misuse.

5.2.2 Generating the Parser/Verifier

The primary purpose of the parser/verifier function is to ensure that the raw bits received over the wire

(metaphorical or otherwise) conform to the protocol specification. It must check both the contents of the

individual fields where applicable as well as aspects of the entire frame—most significantly, its length, so

as to avoid vulnerabilities such as Heartbleed [42]. The generated parser function for the GET DESCRIPTOR

request message is shown in Figure 5.8.

Some things in this function are worthy of note. First, many of the fields are not examined: this is

reasonable because the contents of those fields either do not affect the validity of the message or their

validity is only verifiable given more information about the state of the connection. In short, this function

is concerned with message syntax, not semantics.

For instance, the desc index field of a GET DESCRIPTOR response message should match the desc index
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#define get_get_descriptor_req_msg_desc_type(m) (m->desc_type)

#define get_get_descriptor_req_msg_desc_index(m) (m->desc_index)

#define get_get_descriptor_req_msg_language_id(m) (m->language_id)

#define get_get_descriptor_req_msg_desc_length(m) (m->desc_length)

#define get_get_descriptor_req_msg_GET_DESCRIPTOR_data(m) (&m->data)

Figure 5.9: Generated C accessors for the GET DESCRIPTOR request message. (The duplicate “get” substring
is not a typo: the first a verb, the second is part of the noun.)

field of the initial GET DESCRIPTOR request, but the parser cannot know such things without maintaining

significant application-specific state. Such state is more the purview of a separate component that verifies the

validity of sequence of messages rather than each individual message in the sequence; this work is focussed

solidly on the latter problem. A similar separation exists in the NetFilter architecture, where keeping track

of state is relegated to distinct code such as ConnTrack, which keeps track of stateful protocols such as TCP.

The state tracked may be exact as per protocol specification or, as in the case of TCP, approximated.

5.2.3 Generating Accessor Functions

While the data members of structures generated by the code described in Section 5.2.1 can be used to access

the individual fields of a message, there are advantages to using discrete accessor functions, and compiler

tricks can make them just as efficient as direct access methods. Figure 5.9 shows the accessor functions for

the GET DESCRIPTOR request message.

The usability of these accessor macros could be improved by implementing them as functions instead,

which would allow the compiler to provide more meaningful error messages. The type of the parameter m

would then be specified (whereas in a macro it is not), thus nominally ensuring that only the correct type of

message has its accessed in this way. (One could imagine a case where a different kind of message also has

a field named desc length, but located in a different place within the message. The macros do not protect

against using an instance of the latter in place of the former, whereas a function would.) Such functions

should probably be marked as inline so that the compiler can produce code as efficient as if they were

macros.

Another advantage of using accessor functions (macros) like these is that any endianness modifications

can be incorporated into the functions themselves. While this isn’t an issue in USB, it most certainly is an

issue in traditional networking protocols such as the TCP/IP stack. Using only accessor functions (macros)

that have the endianness conversion incorporated could be a benefit.

Admittedly, these names might be unwieldy. The good news is that, being automagically generated,
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void

print_get_descriptor_req_msg(struct get_descriptor_req_msg *m)

{

log(LOG_INFO , "usb_fw: GET_DESCRIPTOR req , desc_type =%d, desc_index =%d,"

"language_id =%d, desc_length =%d\n", m->desc_type , m->desc_index ,

m->language_id , m->desc_length );

log(LOG_INFO , "usb_fw: data stage=%s\n", bytes_as_hex (&m->data ,

m->desc_length ));

}

Figure 5.10: Generated C function for legibly printing a GET DESCRIPTOR request message.

they can be easily changed. For instance, one could write a function to shorten names and apply it to all

identifiers simultaneously.

5.2.4 Generating the Pretty-Printer Function

We also require the ability to present the details of a message in a user-friendly format. While perhaps not

strictly necessary within the kernel proper, this feature is vital to user-facing tools that inspect protocol

traffic. (For example, a protocol-specific tool analogous to tcpdump for TCP/IP protocols.) Figure 5.10

shows the generated pretty-printing function for the GET DESCRIPTOR request message.

Note that each field is correctly formatted according to its type, the literal fields are elided from the

output, and the data stage is outputted as hex, using the correct length. (NB: the generated function uses

the FreeBSD-specific log function and LOG INFO log-level. The reasons for this are explained in Section 5.5.2.)

5.3 User-Defined Policies

As described in Section 1.2, one of the features we would like in a firewall is the ability to specify a policy

to augment the built-in rules. For instance, imagine a case where a particular USB device driver doesn’t

correctly handle a string descriptor with a length of exactly 42. Instead of entirely disabling support for

that device or waiting for a new driver, a system administrator might want to filter out all USB frames that

contain the offending length value.

To fulfill this need, I devised a simple language to describe policies, a parser for that language, and code

that uses the previously-written protocol definition to produce a loadable kernel module that implements

the policy. Currently, the policy in this kernel module is applied after the frame is validated but before the

connection-tracking logic to be described in Section 5.5. (An improvement to my system would be to allow
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Reject string_descriptor where length = 42

Reject set_address where address > 127

Figure 5.11: Example user policies for the USB firewall.

for more flexible policy-application orderings.) Some example policies are shown in Figure 5.11.

These policies are, admittedly, not especially eloquent. In particular, they do not take into account the

context in which a message is being sent and are therefore something of a blunt instrument. A subtler

and more targeted approach would be to augment a detailed state machine with such rules, but that is

more semantic than syntactic and is beyond the scope of this work. Again, however, NetFilter shows a

possible direction in which modules specified with the policy provide additional predicates for checking state

as needed.

5.4 Protocol: Assemble!

The preceding sections have described the generation of individual chunks of code necessary for each message

of the protocol in question. What remains is to generate all these code chunks for every message, place them

in well-formed source files, and integrate them with the target operating system.

For the USB protocol proof-of-concept, I have defined instances of the Message type for the following

messages (where applicable, related message types are listed together).

• GET STATUS request response

• CLEAR FEATURE and SET FEATURE

• SET ADDRESS

• GET DESCRIPTOR request

• SET DESCRIPTOR

• GET CONFIGURATION request and response

• SET CONFIGURATION

• GET INTERFACE request and response

• SET INTERFACE
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• SYNCH FRAME

I have also defined instances of the Message type for the following descriptors. These descriptors are sent

in the data stage of responses to the GET DESCRIPTOR request message defined above.

• device descriptor

• configuration descriptor

• interface descriptor

• endpoint descriptor

• string descriptor

• hid descriptor

• report descriptor

Taken together, these requests, responses, and descriptors encompass all data that flows between host and

device during the USB enumeration process.

Once generated, the data structure definitions, accessor macros, and function prototypes are put in a

file called usb messages.h. The validation functions and pretty-printing functions are put in a file called

usb messages.c. Both of these source files are intended to integrate with any operating system kernel or

application (though a few idiosyncrasies remain: see Section 5.5.2).

5.5 Operation System Integration

This generated code is all well and good, but it needs to get itself into an operating system to make any

difference. I achieve this by means of a thin translation shim, described below, whose design was guided by

the instrumentation described in Chapter ??.

I chose to integrate with FreeBSD because of its reputation as a widely-deployed, high-performance kernel

with a clean and well-documented design. (After considerable time spent digging through kernel source code,

this reputation is merited.)

Running the Haskell code on the USB protocol specification results in two files, usb messages.h and

usb messages.c, that implement the various constructs described in this chapter. They are intended to be

as operating-system agnostic as possible (exceptions are discussed in Section 5.5.2).
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Filename LOC Description
usb messages.h 403 structure definitions, accessor macros definitions, and function

prototypes (auto-generated)
usb messages.c 367 parser functions and pretty-printing functions (auto-generated)
usb fw fbsd.c 105 FreeBSD-specific code, contains fbsd hook function that invokes

OS-agnostic code
usb fw.h 14 definitions for OS-agnostic functions
usb fw.c 71 rudimentary firewall for USB using the auto-generated parser

primitives

Table 5.1: The files, both automagically and manually generated, that comprise the USB validation proof-
of-concept.

I separately implemented a FreeBSD kernel module that, when loaded, provides a function that the

mainline USB stack can call to verify a set of frames. This function is primarily responsible for extracting the

relevant fields of the structure FreeBSD uses to describe a USB transfer and calling an OS-agnostic function

with the frame and the extracted fields as parameters. The idea is that integrating with a new operating

system will require one to re-implement only this translation shim and leave the rest of the validation code

intact.

This OS-agnostic code is contained in usb fw.h and usb fw.c, which currently implements a simple policy

in which a response is verified to match the request that instigated it. It is intended not to demonstrate a

complicated, stateful firewall for USB but rather how the primitives provided by the automagically-generated

code can be used to do so.

Table 5.1 summarizes the files involved. The primary takeaway from this table is the significant discrep-

ancy between manually-written lines of code and automagically-generated lines of code, the latter of which

are far more likely to be correct. This is not because of some magical fairy dust involved in the autogener-

ation process, but rather because all of the code is produced in a uniform fashion. Bugs need only be fixed

once in the generation code and all the constructs that are generated are positively affected. In contrast,

fixing a single bug in a manually-written parser does not guarantee that same bug doesn’t exist in another

component that performs a similar operation.

Once the kernel module is loaded, a frame is processed thusly:

1. When execution reaches one of three points in the USB stack, call fbsd hook, giving it the FreeBSD-

specific structure that describes the transfer (which may contain multiple, raw USB frames). In

Section 5.5.1, I describe the method I developed to place these hooks.

2. Within fbsd hook, extract transfer metadata—such as bus number, device address, and endpoint

number—from the FreeBSD-specific structure and pass each frame in turn to hook frame along with
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FreeBSD USB Stack

translation shim
(usb fw fbsd.c)

generated validator
(usb fw.c)

Figure 5.12: When a USB frame arrives or is sent, the FreeBSD USB stack calls the shim function, fbsd hook,
which translates the FreeBSD-formatted USB frame metadata to an OS-agnostic format before passing it
along to the generated parser/validator function. The resulting action is cascaded back to the kernel.

the OS-agnosticized metadata.

3. The hook frame function validates the frame, which results in an action (such as accept, drop, or

reject) being passed back to fbsd hook.

4. Finally, fbsd hook returns the action back to the USB stack.

Figure 5.12 shows the path by which a frame is processed by the generated verification framework.

But where are these magical, “appropriate places” whence fbsd hook is called?

5.5.1 Hooks

The method for locating hooks is as follows. Although applied to USB in this chapter, it can be easily

generalizable to other protocols.

In particular, given the fbsd hook function described in the previous section, where in the USB stack

proper does it get invoked? The instrumentation described in Chapter 4 revealed that all frames entering the

kernel over USB did so in the usbd callback wrapper function and that all frames exiting the kernel over

USB did so in either the usbd transfer start cb or usbd pipe start functions. Therefore, it was in those

functions that I placed the hooks to call into the firewall. I will evaluate the effectiveness of these placements

in the next chapter when I discuss whether my system fulfills the requirement of complete mediation as

described in Section 1.4.
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5.5.2 Obstacles to Operating System Independence

This is not to say that the idiosyncrasies introduced by particular operating systems are trivial: much

depends on the coding style of the operating system in question. These idiosyncrasies for FreeBSD are

described in the following.

The vast majority of the generated code described in the preceding sections is operating-system agnostic;

header files are the primary exception. For instance, the uint8 t type is used frequently, but the file in which

it is defined varies. The FreeBSD kernel uses <sys/types.h>, the Linux kernel uses <linux/types.h>, and

both userlands use <stdint.h>. The generated code currently supports only FreeBSD with hard-coded

header-file inclusions, but this could easily be expanded to other operating systems either by generating

#ifdef/#endif clauses for each or by adding an abstraction layer that allows the author to specify differences

between platforms.

The other operating-system specific code, as foreshadowed in Section 5.2.4, are the functions generated

to pretty-print the content of messages. As shown in Figure 5.10, these functions currently use the logging

interface exposed by the FreeBSD kernel. There are a few different ways this could be ported to another

operating system. One is by using an OS-specific abstraction layer as suggested to solve the header-file

problem described in the previous paragraph.

My current preference, however, is to re-implement these functions to instead behave like snprintf:

returning a pointer to a string instead of perforning the actual logging itself. One benefit of this approach is

that such code could be used outside the kernel (e.g., in a program like tcpdump that monitors traffic on a

bus and presents it in a user-friendly format). The difficulty is that allocating memory for such strings inside

the kernel can be a delicate affair, and different kernels prefer different patterns for doing so. Therefore, it

seems like an OS-specific abstraction layer is inevitable, but this merits investigation before committing to

a particular strategy.

5.6 Putting It All Together

This chapter presents the key component of my programme: the automagic generator that turns a protocol

description written in an embedded domain-specific language into the code ready for integration into a

production operating system as well as specific issues related to such integration. I created for the USB

protocol, and my work to integrate this implementation with the FreeBSD kernel. It now remains to evaluate

the resultant system according to the desiderata enumerated in Section 1.2; namely, that the resulting system
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preserves the protocol functionality and adds the ability to filter out malicious traffic. This is the topic of

the next chapter.
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Chapter 6

Evaluation

The USB firewall described in the previous chapter is all well and good, but how do we know it performs as

advertised? That is, how do we know that the generated parser is actually effective? The following questions

examine the various angles of effectiveness of a firewall.

1. Is the firewall stable? Does it handle the USB protocol without crashing? Inserting more code into

the kernel runs the risk of adding points of instability that an attacker could exploit to deny access to

the rest of the machine. We must show that the firewall does not crash in the face of both legitimate

and malformed USB traffic.

2. Does the firewall examine every USB frame received by the computer? If there exist avenues by which

frames can reach the kernel innards without being inspected by the firewall, the firewall is not doing its

job. We must show that all frames pass through the policy. (This is the notion of complete mediation,

described in Chapter 1.)

3. In performing its job, does the firewall incur a reasonable amount of overhead? One of the claims made

in Chapter 1 is that the generated code would be sufficiently performant to justify its inclusion in a

production-quality kernel: we must show that.

4. Finally, and most significantly, does the firewall prevent malformed USB frames from entering the

kernel? That is, does the firewall actually do the job it claims to do?

This chapter will answer these questions in the context of the USB firewall I implemented.
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host (Linux) Facedancer target (FreeBSD)

Figure 6.1: Diagram of testing setup. Software (in this case, umap) running on the “testing host” (left)
causes the Facedancer to emulate a variety of USB devices when connected to the “target” (right).

6.1 Methodology

The primary tool I used to test my USB firewall was umap [20], a USB host security assessment tool designed

to test a broad cross-section of USB devices and, by extension, a broad cross-section of the USB protocol

itself. Written by Andy Davis of NCC Group, it uses the Facedancer hardware described in Chapter 3 to

emulate a wide variety of devices, both well-behaving and otherwise. The umap application itself is built on

top of the software stack I wrote and described in Chapter 3. To the best of my knowledge, umap represents

the state-of-the-art in testing the security of host-side USB implementations.

The umap test suite contains the largest set of known USB vulnerability triggers. All told, I ran nearly its

500 different vulnerability triggers against my USB parser/firewall; a finer breakdown of the tests is shown

in Table 6.1.

Figure 6.1 shows the testing setup. The Facedancer, which umap uses to physically inject its stimuli

onto the USB, has two ports: “host” and “target”. The former is connected to a USB port on the machine

controlling the test and the later is connected to a USB port on the machine being tested. When these

connections are made, the host detects a standard USB serial device whereas the target detects no device at

all. Only when software (e.g., umap) is run on the host that causes the Facedancer to emulate a particular

device does the target actually see a device connect. Once that happens, the software running on the target

controls nearly all aspects of the emulated device’s behavior (exceptions discussed below).

Using this setup, I first identified the drivers supported by both umap and FreeBSD and then I tested

the intersection of those sets.

6.1.1 Identifying testable drivers

The umap software package supports a variety of testing modes. I first ran it in “identification” mode

to determine which devices were supported by the FreeBSD target so that I could focus on these in the

remainder of my testing. Figure 6.2 shows the output of this mode.

First and foremost, this output demonstrates that the kernel on the machine being tested did not ever

crash while being probed by umap—despite umap being a tool explicitly designed to cause such crashes!
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\$ ./umap.py -P /dev/ttyUSB0 -i

01:01:00 - Audio : Audio control : PR Protocol undefined

** SUPPORTED **

01:02:00 - Audio : Audio streaming : PR Protocol undefined

** SUPPORTED **

02:02:01 - CDC Control : Abstract Control Model : AT commands V.250

02:03: ff - CDC Control : Telephone Control Model : Vendor specific

02:06:00 - CDC Control : Ethernet Networking Control Model : No class -spec ...

03:00:00 - Human Interface Device : No subclass : None

network socket=False

** SUPPORTED **

06:01:01 - Image : Still image capture device : Bulk -only protocol

07:01:02 - Printer : Default : Bidirectional interface

** SUPPORTED ???**

08:06:50 - Mass Storage : SCSI : BBB

** SUPPORTED **

09:00:00 - Hub : Default : Default

** SUPPORTED **

0a:00:00 - CDC Data : Default : Default

0b:00:00 - Smart Card : Default : Default

Figure 6.2: Output of umap running in identification mode. (Slightly edited to remove umap banner and
long lines.) Of the device classes testable by umap, five are supported in the FreeBSD target: audio control,
audio stream, mice and keyboards), printers, mass storage (e.g., thumbdrives), and hubs.
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This is a first step to showing that the firewall is stable in the face of real USB traffic. Secondly, the

output tells us that, of the many device classes supported by umap, six are also supported by FreeBSD

and are therefore available to fuzz: audio control, audio streaming, human interface devices (e.g., mice and

keyboards), printers, mass storage (e.g., thumbdrives), and hubs.

6.1.2 Fuzz-testing individual drivers

With these six device classes in hand, I proceeded to test each individually using umap’s fuzz-testing feature.

This feature causes the Facedancer to emulate a particular device and, as part of the USB enumeration phase,

send one frame that pushes the bounds of the specification. For instance, where the kernel might expect to

receive an 8-bit field that contains 0x02, umap would perform one test where it sends 0x00 in this field and

another where it sends 0xFF, the idea being to verify that the kernel safely handles extreme cases.

For each device class, umap supports a large number of such tests: I ran them all. Figure 6.3 shows a

sample of the output from a single fuzz-testing run. Each line represents a single test, the nature of which

is described on the far right.

I ran into an interesting issue when using umap to test human interface devices (HID, class 03:00:00 from

Figure 6.2). The firewall successfully recognizes and rejects umap’s “Configuration bDescriptorType null”

test, in which the emulated device sends a configuration descriptor with the bDescriptorType field set to

0x00. But because this malformed descriptor is silently rejected, FreeBSD continues to wait for a correct

response, eventually timing out. When performed repeatedly, this test causes some state within the FreeBSD

kernel to become sufficiently out of whack that no HID device will be successfully recognized, whether it

conforms to the protocol or not. This suggests there is a bug within the FreeBSD kernel that allows for a

denial-of-service when performing incomplete enumeration of HID devices. Further umap tests of the HID

device class exhibit this behavior as well, therefore I have elided them from the test suite.

Thus, rather than undermining my methodology, this “failure” in fact highlights a potentially significant

flaw in the underlying operating system which relies on rejection by timeout rather than rejection by content.

While developing this behavior into a proof-of-concept exploit is beyond the scope of this thesis, the root

cause is likely non-trivial. The fact remains, however: my system discovered this bug.

Table 6.1 summarizes the results of the fuzzing runs: all tests over all five remaining device classes,

totalling 483 different tests and over 6000 frames sent by umap to the FreeBSD target being tested.

Once again, during all this testing, the firewall stayed stable. This is particularly notable because these

tests are actively probing the dark, dirty corners of device behavior. If the firewall does not crash under these
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\$ ./umap.py -P /dev/ttyUSB0 -f 01:01:00:A

Fuzzing:

01:01:00 - Audio : Audio control : PR Protocol undefined

** SUPPORTED **

Enumeration phase ...

2015/11/21 19:40:27 Enumeration phase: 0000 - Device_bLength_null

2015/11/21 19:40:34 Enumeration phase: 0001 - Device_bLength_lower

2015/11/21 19:40:41 Enumeration phase: 0002 - Device_bLength_higher

2015/11/21 19:40:48 Enumeration phase: 0003 - Device_bLength_max

2015/11/21 19:40:56 Enumeration phase: 0004 - Device_bDescriptorType_null

2015/11/21 19:41:06 Enumeration phase: 0005 - Device_bDescriptorType_invalid

2015/11/21 19:41:17 Enumeration phase: 0006 - Device_bMaxPacketSize0_null

2015/11/21 19:41:25 Enumeration phase: 0007 - Device_bMaxPacketSize0_max

2015/11/21 19:41:32 Enumeration phase: 0008 - String_Manufacturer_overflow

2015/11/21 19:41:39 Enumeration phase: 0009 - String_Product_overflow

...

Figure 6.3: Sample output from umap fuzzing Audio Control devices. The “A” in the final command-line
argument causes umap to run “all” tests. The umap banner has been removed and the output has been
truncated (full output runs 119 lines and is summarized is Table 6.1).

USB identifier device type tests frames sent
01:01:00 Audio control 94 1873
01:02:00 Audio streaming 94 1873
07:01:02 Printer 131 1735
08:06:50 Mass storage 101 1506
09:00:00 Hub 63 898

total 483 6397

Table 6.1: Data sent by umap fuzz-testing.
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test sent received missed frames
Audio control 1873 1961 0
Audio streaming 1873 1961 0
Printer 1735 1860 0
Mass Storage 1506 1760 0
Hub 898 955 0

Table 6.2: Complete mediation test results. For each test, shows number of USB frames sent by umap and
the number of frames processed by the USB firewall of the machine being tested.

circumstances, it is highly unlikely that well-behaved devices will cause it to crash. Therefore, considering

that umap is an industry-standard tool for testing the stability of USB implementations, my testing suggests

the firewall is stable for production use.

This claim of stability might seem unreasonable in the face of the HID behavior described at the beginning

of this section. I contend it is eminently reasonable: the firewall itself did the correct thing under those

circumstances whereas the kernel code being protected failed to do the correct thing upon rejection of the

frame. Note that all frames are rejected using the same procedure: the “error” field of the USB transfer

structure is set to 1. During USB HID device enumeration, the kernel seems to incorrectly handle this return

value; whereas it correctly recovers from all other rejections.

While certainly necessary, this declaration is not sufficient to endorse the firewall entire. It remains to

show that it is effective at protecting against the evils it claims to deter.

6.2 Complete Mediation

The first step in showing that the firewall protects against such evils is to show that it actively examines all

the data that flows over the bus; that is, that it implements complete mediation. To empirically test whether

every single frame sent by umap is evaluated by the USB firewall, I configured umap to print a message

whenever it sends a frame and I instrumented and configured the firewall to print a message whenever it

evaluates a frame. I configured both to also print the raw bytes of the frame being sent or evaluated. Then

I ran the entire fuzz-testing suite described in Section 6.1 and gathered the results shown in Table 6.2.

The first two numerical columns tell a bizarre story: how is the firewall receiving more frames than

are being sent? The answer lies in the MAXUSB controller chip that sits on the Facedancer board itself,

which automatically responds to some USB requests without consulting the software stack. For instance,

the Facedancer automatically responds to the SET ADDRESS request and thus such a request/response pair

shows up in the kernel logs on the FreeBSD target being tested, but the umap log only shows the request
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CPU Intel Core i7-4600U
cores 4
clockspeed 2.1 GHz
memory 12 GB

(a) Linux test host.

CPU Intel Core 2 Duo U7300
cores 2
clockspeed 1.3 GHz
memory 3 GB

(b) FreeBSD test target.

Table 6.3: Specifications of machines used for performance testing (Section 6.3).

test disabled enabled impact
Audio control 681 s 690 s 1.3%
Audio streaming 681 s 690 s 1.3%
Printer 459 s 526 s 14.5%
Mass Storage 649 s 668 s 2.9%
Hub 338 s 477 s 41.1%

Table 6.4: Results of USB firewall performance tests. Columns show measured duration of fuzz-testing suite
for each device class, averaged over three runs, first with the firewall disabled, then with the firewall enabled,
and the measured impact of enabling the firewall as a percentage.

being received.

Since I had logged the raw bytes being sent by umap and received by the firewall, I was able to check

the differences in actual data being sent and received. Every single frame sent by umap was analyzed by the

firewall. No exceptions. Some frames were received that the umap software did not send; those all fell into

the category of automatic responses generated by the MAXUSB chip on the Facedancer board. But not one

frame sent by umap evaded the firewall’s oversight.

In light of this analysis, my testing suggests that the USB firewall I have integrated into FreeBSD satisfies

the complete mediation requirement as laid out at the beginning of this chapter.

6.3 Performance

In addition to being stable and enforcing complete mediation, the firewall must not incur undue performance

penalties. To measure the additional processing time induced by the presence of the firewall, I again used

the umap fuzz-testing feature. I modified umap to produce as little output as possible and I turned off all

logging in the USB firewall. I then ran each test suite three times, rebooting between each test. I used the

time(1) program to measure the duration of each fuzz testing run. The specifications of the machines I used

for this are shown in Table 6.3; the results for each set of test suite runs are shown in Table 6.4.

These numbers tell a very strange story. For audio control, audio streaming, and mass storage devices,

the penalty incurred by activating the firewall is minimal, whereas the effect on printers is moderate and

the effect on hubs is significant. Yet it is curious that the disparities are so unevenly spread among device
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classes; the abysmal performance of the hub class is particularly worrisome.

I investigated this behavior and found that, when the firewall was disabled, FreeBSD noticed the erroneous

value sent by umap and immediately disconnected the device. By contrast, when I enabled the firewall, the

firewall correctly rejected the erroneous frames, but FreeBSD continued to poll the device twice more, with

one second between each attempt, until it gave up and disconnected the device. This mirrors the situation

I discovered with human-interface devices (described in Section 6.1.2).

It is important to note here that the firewall is doing its job! One could argue that, when the firewall

is disabled, FreeBSD is being overzealous in disconnecting the hub immediately on detecting an error.

Alternatively, one could argue that this highlights the need for a more nuanced interface between firewall

and kernel—that the current firewall is too simplistic in its binary choice of either accept or reject. This

work does not attempt to make philosophical judgments along those lines, but further research into the

“correct” abstraction to present seems worthwhile. We note that these abstractions come to the forefront

due to the integration between the firewall and the underlying operating system—which exposes non-trivial

architectural features.

As a final point relative to performance, I should point out that none of the generated code is the least

bit optimized. It could almost certainly be made far more efficient. Acceptable performance is the goal of

this proof-of-concept; exceptional performance can come later.

6.4 Effectiveness

The final criteria by which the effectiveness of the firewall should be judged is whether it successfully prevents

“bad” frames from entering the kernel. But what does “bad” mean in this context? Certainly, we wish to

prevent frames that deviate from the protocol specification, but there are other circumstances to consider as

well. What if the kernel incorrectly handles a frame that is correct according to the specification? Many of

the fuzz tests and known-vulnerability tests performed by umap test precisely this possibility. Furthermore,

what if a system administrator wants to prevent, e.g., thumbdrives from working on a particular machine?

For example, the USB 2.0 specification decrees that device addresses fall within the range 0–127. Since

this is an 8-bit field, a malicious device could conceivably set it to 255 and the kernel should reject it without

blinking an eye (one of the umap tests does so). Detecting this deviation seems outside the realm of the

parser because it deals with the contents of the field rather than its boundaries: the specification says the

address is an 8-bit field and the parser is (or should be) responsible for taking 8 bits and making a number

out of them. Is is not, however, out of the realm of a firewall, nor should it be. In fact, it is precisely the
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purview of the user-policy feature described in Section 5.3. Thus, to enforce the condition that all device

addresses fall within the correct range, one could create and enable a user policy including the rule

Reject SET_ADDRESS where address > 127

This policy is clearly a mitigation, not a fix for the particular underlying vulnerability. A fix would

eliminate the vulnerability by inserting the check into the operating system code proper; replacing the kernel

of a running system, however, has significant operational costs—not to mention the inevitable delay of

vendor patch releases. Thus, a mitigation that prevents an exploit payload from getting to the vulnerable

code has great operational value, even though it does not fix the root problem itself. Firewalls were invented

as precisly such mitigation tools. They were followed by intrustion-prevention systems (IPS) [2], which

continue to evolve to this day.

How, then, can one evaluate the effectiveness of mitigation? While certainly useful, the vulnerability-

trigger-based testing enabled by umap and described earlier in this chapter cannot test every possible code-

path for the absence of bugs. Since no exhaustive description or model of all bugs is possible, we can only

evaluate the effects of a particular mitigation—such as a syntax-based filtering policy—in terms of what we

know about the prevalence of bugs in the wild. A useful mitigation should be able to address non-trivial

classes of these bugs. That is to say, we need some indication of ground truth with respect to bugs in

deployed USB software. For this, we must turn to NIST’s National Vulnerability Database (NVD).

My method is as follows. Taking the CVE database as the ground truth of USB vulnerabilities in the

wild, I surveyed all reports from the past 10 years (January 2005 through December 2015) that contained

the string “usb” and classified them according to their likely relation to errors in parsing syntax. I assume

that such vulnerabilities can be mitigated by a syntax-based parser/firewall policy filter while others are

unlikely to be so mitigated. My analysis shows that the mitigated class is certainly non-trivial and likely

dominant.

Therefore, for each of these 100 vulnerabilities, I reviewed its details and attempted to categorize whether

and how the USB protection framework I created could protect against it. This is, admittedly, an imprecise

exercise: many of the vulnerability disclosures do not provide sufficient detail to conclusively deduce their

cause, which makes it difficult to make substantive claims about them. Even the disclosures relatively devoid

of details provide some hints, however. Table 6.5 summarizes the five vulnerability categories I settled on

and the vulnerabilities I assigned to each.
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Class Count Vulnerabilities
Unrelated 45 CVE-2005-2879 CVE-2005-3055 CVE-2005-4417 CVE-2006-2147

CVE-2006-2936 CVE-2006-6441 CVE-2006-6881 CVE-2007-0734
CVE-2007-0822 CVE-2007-2023 CVE-2007-4785 CVE-2007-5093
CVE-2007-5460 CVE-2008-0708 CVE-2008-0951 CVE-2008-2235
CVE-2008-3150 CVE-2008-3605 CVE-2009-0243 CVE-2009-2834
CVE-2010-0103 CVE-2010-0221 CVE-2010-0222 CVE-2010-0223
CVE-2010-0224 CVE-2010-0225 CVE-2010-0226 CVE-2010-0227
CVE-2010-0228 CVE-2010-0229 CVE-2011-1828 CVE-2012-2693
CVE-2012-6314 CVE-2013-1063 CVE-2013-1774 CVE-2013-3666
CVE-2013-5166 CVE-2014-0860 CVE-2014-2388 CVE-2014-5263
CVE-2014-9596 CVE-2015-1319 CVE-2015-3320 CVE-2015-5960
CVE-2015-6520

Unclear 12 CVE-2005-4788 CVE-2007-3513 CVE-2009-0282 CVE-2010-1140
CVE-2010-3542 CVE-2010-4656 CVE-2011-2295 CVE-2013-0981
CVE-2014-7888 CVE-2014-7893 CVE-2014-7894 CVE-2014-7895

Mitigated by Policy 27 CVE-2005-2388 CVE-2005-4789 CVE-2006-1368 CVE-2007-0728
CVE-2007-6439 CVE-2008-0718 CVE-2009-2807 CVE-2009-2834
CVE-2010-1460 CVE-2010-4530 CVE-2011-0638 CVE-2011-0639
CVE-2011-0640 CVE-2012-4736 CVE-2013-0923 CVE-2013-1860
CVE-2013-2058 CVE-2013-4541 CVE-2013-5192 CVE-2013-5864
CVE-2014-1287 CVE-2014-3185 CVE-2014-3461 CVE-2014-4115
CVE-2015-1769 CVE-2015-5257 CVE-2015-7833

Mitigated by Design Pattern 3 CVE-2010-1083 CVE-2010-3298 CVE-2010-4074
Inherently Averted 14 CVE-2006-2935 CVE-2006-4459 CVE-2006-5972 CVE-2008-4680

CVE-2010-0038 CVE-2010-0297 CVE-2011-0712 CVE-2012-3723
CVE-2012-6053 CVE-2013-1285 CVE-2013-1286 CVE-2013-1287
CVE-2013-3200 CVE-2014-8884

Table 6.5: Summary of USB-related vulnerability classifications.

66



6.5 Categories

As I read through the vulnerablity disclosure reports, I assigned each to a category indicating how the

USB protection framework described in this dissertation would affect it. I began with a “yes” or “no”

classification but, as I proceeded, I was able to produce more nuanced classes, eventually resulting in five

different categorizations: unrelated, unclear, mitigated by policy, mitigated by design pattern, and inherently

averted.

Appendix A contains tables that list all vulnerabilities in all categories, their summaries, and a justifica-

tion for their categorization.

Unrelated Almost half of the vulnerabilities turned up by the search only incidentally touched on USB

or didn’t relate to data flowing over the bus. For example, CVE-2015-5960 describes an attack whereby

a user can bypass Firefox OS permissions and access attached USB mass storage devices. This is not a

failure to correctly handle data on the bus, but rather a permissions issue elsewhere in the kernel. Likewise,

CVE-2014-5263 describes a failure to correctly terminate a linked list that just happened to be in the USB

code. Table A.1 summarizes the vulnerabilities I classified as Unrelated.

Unclear I was unable to categorize about 10% of the USB-related vulnerabilities in my search. CVE-

2013-0981, for instance, allows kernel pointers to be modified from userspace, but the disclosure doesn’t say

whether the userspace application can be affected by traffic from the USB device. And in a shining example

of transparency, Oracle declines to specify any details in their vulnerability “disclosures”, as exemplified by

CVE-2011-2295. Table A.2 summarizes the vulnerabilities I classified as Unclear.

Mitigated by Policy I concluded that nearly one-third of the vulnerabilities could be mitigated by policy.

That is, one could write a policy rule that would prevent the USB traffic that exploits the bug. For instance,

CVE-2015-7833 is tickled “via a nonzero bInterfaceNumber value in a USB device descriptor”; to prevent

such a descriptor from reaching the vulnerable code, one could write a rule that matches device descriptors

with a bInterfaceNumber field of zero and, upon a match, rejects the device. Another vulnerability, CVE-

2013-5192, is triggered when the USB hub controller in OS X is presented with a request containing a

particularly-crafted port number; in this case, one could write a rule that matches and rejects requests with

that port number. Table A.3 summarizes the vulnerabilities I classified as Mitigated by Policy.
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Mitigated by Design Pattern Three vulnerabilities resulted from deviations from sound programming

practices; when sound practices are encoded once in the autogeneration code, such bugs disappear ev-

erywhere. Instances include failure to properly initialize structure members (CVE-2010-3298 and CVE-

2010-4074) and failure to clear transfer buffers before returning to userspace (CVE-2010-1083). Table A.4

summarizes the vulnerabilities I classified as Mitigated by Design Pattern.

Inherently Averted Finally, almost 15% of the vulnerabilities were due to mistakes in interpreting the

structure of the USB messages themselves. Most of these were either buffer overflows that resulted in

arbitrary code execution or memory corruption. In both cases, I assumed (dangerously, I know) that some

field of the USB descriptor indicating a length did not match the actual length of data provided in the

packet. In the generated enforcement code, as long as the original specification of the message is correct,

this cannot happen: if one field specifies the length of another, this is verified. Table A.5 summarizes the

vulnerabilities I classified as Inherently Averted.

6.6 Results

Of all the vulnerabilities I analyzed, the three categories that bear discussion are those that are inherently

averted, those that are mitigated by pattern, and those that are mitigated by policy. I will discuss each in

turn.

The inherently-averted vulnerabilities are the most straightforward: by clearly defining the structure of

messages and dependencies between fields (e.g., that the data stage has a length equal to the value of the

“wLength” field) and automagically generating the code to enforce them, an entire class of vulnerabilities

can be avoided. The autogeneration code only needs to be audited once and all the generated code can be

trusted (especially if it is formally verified), whereas the trustworthiness of manually-written code scattered

throughout the kernel is anybody’s guess. Furthermore, the declarative nature of the protocol specification

language makes auditing much easier than having to dig through procedural code, not least because it more

directly matches the form of the published (prose) specification.

My favorite class is the vulnerabilities mitigated by pattern, because here the autogeneration code en-

shrines good programming practices into the autogeneration framework and thus ensures their proliferation.

By causing the autogenerated code to always clear buffers beforehand (for example) then every time a buffer

is used in this way, we can depend upon it to not contain crufty data that might interfere with the computa-

tion at hand. Additionally, should new, better practices be developed, we need only incorporate them into
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the autogeneration framework, regenerate and recompile the code, and suddenly every applicable instance

that could be improved, has been improved.

Vulnerabilities mitigated by policy are perhaps the trickiest to appreciate. At first blush, it seems they

are not terribly noteworthy: why is being able to write a policy that protects against a vulnerability superior

to just fixing the vulnerability itself? The answer lies in practical issues surrounding patching live systems.

Distributing and activating a single policy rule to enable protection is much less disruptive than shipping a

newly-compiled binary (still less a kernel binary!) containing the fix.

All told, these three classes of vulnerabilities—all of which are addressed, one way or another, by the

autogenerated code presented in this dissertation—make up nearly half of all the USB-related vulnerabil-

ities I found in my search, even accounting for the fact that many of the “unrelated” vulnerabilities only

coincidentally mentioned USB.

6.7 Summary

This chapter described the results of evaluating my generated parser/firewall in terms of stability, perfor-

mance costs, ability to mediate malicious traffic, and potential to mitigate USB bugs in the wild (based on

the available CVE information). My evaluation, conducted with the state-of-the-art USB security testing

suite umap, empirically demonstrates both stability, complete mediation, and reasonable performance for

all vulnerability triggers and trigger classes known to date. Additionally, an analysis of available CVE in-

formation suggests that large non-trivial classes of bugs in the wild can indeed be mitigated with simple

and—importantly—easy to deploy user-defined policies for the firewall. Notably, these mitigations can be

deployed immediately and simply on systems which integrate such a firewall, in stark contrast to vendor

patches which must be written and tested, and generally require a service interruption to deploy.
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Chapter 7

Conclusion

This thesis described the methodology by which I produced a parser/firewall for the USB protocol and

integrated it with the FreeBSD operating system, as well as the support software I wrote and explorations I

performed leading up to the production of the automagically generated parser/firewall system.

I began with a presentation of the software I wrote to drive the Facedancer board that enables the

exploration of USB attack surfaces (Chapter 3). This software mirrors the structure of the USB stack

itself and is therefore easier to adapt to new uses, which is a vital feature for exploring attack surfaces.

Additionally, the software I wrote was used as the basis for umap, the industry-standard test suite for

analyzing the security of USB hosts.

Next, I described the instrumentation framework I applied to the USB subsystem of the FreeBSD kernel

(Chapter 4), which allows for observation of a running system at an unprecedented granularity. I showed

how I used this framework to measure what percentage of basic blocks were traversed under normal system

operation, how I used it to identify where to place enforcement hooks, and how to analyze interactions

between software modules.

Then, I presented the methodology I developed to create the USB parser/firewall (Chapter 5). I began

with a description of the protocol written in Haskell and automagically generated the data structures,

validation functions, printing functions, and accessor functions necessary in a parser for that protocol. I

integrated these all into FreeBSD’s existing USB stack with the help of a thin translation layer—the idea

being that integrating with a different operating system would require only a different translation layer.

I used umap, the comprehensive USB security testing suite, to empirically evaluate the stability, pefor-

mance, and efficacy of my parser/firewall (Chapter 6). I showed that every frame sent by umap was evaluated
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by the firewall, that the firewall never crashed, and that it was able to handle a variety of user-specified

policies. These user policies allow an administrator to respond much more quickly to security issues in the

underlying system than the normal process of waiting for and deploying a vendor patch. I showed that,

through a combination of beneficial design patterns and user policies, it is likely that a large quantity of

known USB bugs are mitigated by my parser/firewall. More importantly, I showed how these features of my

parser/firewall mitigate entire classes of bugs as delineated by industry-standard testing tools and processes.

7.1 Future Work

There are a number of directions this work could take from here.

First and foremost, I would like to apply the full seL4-style formal verification process to the autogenerated

code. Once that is complete, I would like to work towards getting the code accepted by the FreeBSD kernel

maintainers. Additionally, I would like to perform more rigorous testing for complete mediation. (Sadly,

the Saturn project [1] for Linux does not have a FreeBSD analog; perhaps that would make a good research

project.)

While the Facedancer software framework I wrote is clearly useful—as evidenced by umap built on it—I

would like to investigate the feasibility of autogenerating that as well. The basic-block instrumentation I

added to the FreeBSD kernel was tedious and screamed for automation: I would like to build such a feature

as a compiler plug-in that inserts basic-block instrumentation automatically.
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Appendix A

CVE Classifications

This appendix contains the results of my USB-related CVE classification. There is one table for each

classification category: unrelated, unclear, mitigated by policy, mitigated by design pattern, and inherently

averted. Each table lists the CVE identifier, the official summary, and the reason I chose to classify it as I

did.

Rather than provide citations for each individual CVE, the reader is referred to the main portal for the

National Vulnerability Database [55], whence once can search for any CVE.

Table A.1: Vulnerabilities classified as Unrelated.

CVE ID Summary Justification
CVE-2005-2879 Advansysperu Software USB Lock Auto-

Protect (AP) 1.5 uses a weak encryption
scheme to encrypt passwords, which allows lo-
cal users to gain sensitive information and by-
pass USB interface protection.

CVE-2005-3055 Linux kernel 2.6.8 to 2.6.14-rc2 allows lo-
cal users to cause a denial of service (kernel
OOPS) via a userspace process that issues a
USB Request Block (URB) to a USB device
and terminates before the URB is finished,
which leads to a stale pointer reference.

Cont’d
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Table A.1 – Cont’d
CVE ID Summary Justification
CVE-2005-4417 The default configuration of Widcomm Blue-

tooth for Windows (BTW) 4.0.1.1500 and ear-
lier, as installed on Belkin Bluetooth Software
1.4.2 Build 10 and ANYCOM Blue USB-130-
250 Software 4.0.1.1500, and possibly other
devices, sets null Authentication and Autho-
rization values, which allows remote attackers
to send arbitrary audio and possibly eavesdrop
using the microphone via the Hands Free Au-
dio Gateway and Headset profile.

CVE-2006-2147 resmgrd in resmgr for SUSE Linux and other
distributions does not properly handle when
access to a USB device is granted by using
“usb:<bus>,<dev>” notation, which grants
access to all USB devices and allows local users
to bypass intended restrictions. NOTE: this is
a different vulnerability than CVE-2005-4788.

CVE-2006-2936 The ftdi sio driver (usb/serial/ftdi sio.c) in
Linux kernel 2.6.x up to 2.6.17, and possibly
later versions, allows local users to cause a de-
nial of service (memory consumption) by writ-
ing more data to the serial port than the hard-
ware can handle, which causes the data to be
queued.

CVE-2006-6441 Xerox WorkCentre and WorkCentre Pro be-
fore 12.050.03.000, 13.x before 13.050.03.000,
and 14.x before 14.050.03.000 allows local
users to bypass security controls and boot
Alchemy via certain alternate boot media, as
demonstrated by a USB thumb drive.

CVE-2006-6881 Buffer overflow in the Get Wep function in
cofvnet.c for ATMEL Linux PCI PCMCIA
USB Drivers drivers 3.4.1.1 corruption allows
attackers to execute arbitrary code via a long
name argument.

CVE-2007-0822 umount, when running with the Linux 2.6.15
kernel on Slackware Linux 10.2, allows local
users to trigger a NULL dereference and ap-
plication crash by invoking the program with
a pathname for a USB pen drive that was
mounted and then physically removed, which
might allow the users to obtain sensitive infor-
mation, including core file contents.

Cont’d
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Table A.1 – Cont’d
CVE ID Summary Justification
CVE-2007-0734 fsck, as used by the AirPort Disk feature of the

AirPort Extreme Base Station with 802.11n
before Firmware Update 7.1, and by Apple
Mac OS X 10.3.9 through 10.4.9, does not
properly enforce password protection of a USB
hard drive, which allows context-dependent
attackers to list arbitrary directories or ex-
ecute arbitrary code, resulting from memory
corruption.

CVE-2007-2023 USB20.dll in Secustick USB flash drive decou-
ples the authorization and file access routines,
which allows local users to bypass authentica-
tion requirements by altering the return value
of the VerifyPassWord function.

CVE-2007-4785 Sony Micro Vault Fingerprint Access Soft-
ware, as distributed with Sony Micro Vault
USM-F USB flash drives, installs a driver that
hides a directory under %WINDIR%, which
might allow remote attackers to bypass mal-
ware detection by placing files in this direc-
tory.

CVE-2007-5093 The disconnect method in the Philips USB
Webcam (pwc) driver in Linux kernel 2.6.x be-
fore 2.6.22.6 “relies on user space to close the
device,” which allows user-assisted local at-
tackers to cause a denial of service (USB sub-
system hang and CPU consumption in khubd)
by not closing the device after the disconnect
is invoked. NOTE: this rarely crosses privilege
boundaries, unless the attacker can convince
the victim to unplug the affected device.

CVE-2007-5460 Microsoft ActiveSync 4.1, as used in Windows
Mobile 5.0, uses weak encryption (XOR ob-
fuscation with a fixed key) when sending the
user’s PIN/Password over the USB connection
from the host to the device, which might make
it easier for attackers to decode a PIN/Pass-
word obtained by (1) sniffing or (2) spoofing
the docking process.

Cont’d
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Table A.1 – Cont’d
CVE ID Summary Justification
CVE-2008-0951 Microsoft Windows Vista does not properly

enforce the NoDriveTypeAutoRun registry
value, which allows user-assisted remote at-
tackers, and possibly physically proximate at-
tackers, to execute arbitrary code by insert-
ing a (1) CD-ROM device or (2) U3-enabled
USB device containing a filesystem with an
Autorun.inf file, and possibly other vectors re-
lated to (a) AutoRun and (b) AutoPlay ac-
tions.

CVE-2008-0708 HP USB 2.0 Floppy Drive Key product op-
tions (1) 442084-B21 and (2) 442085-B21 for
certain HP ProLiant servers contain the (a)
W32.Fakerecy and (b) W32.SillyFDC worms,
which might be launched if the server does not
have up-to-date detection.

CVE-2008-3150 Directory traversal vulnerability in index.php
in Neutrino Atomic Edition 0.8.4 allows re-
mote attackers to read and modify files, as
demonstrated by manipulating data/sess.php
in (1) usb and (2) del pag actions. NOTE: this
can be leveraged for code execution by per-
forming an upload that bypasses the intended
access restrictions that were implemented in
sess.php.

CVE-2008-2235 OpenSC before 0.11.5 uses weak permissions
(ADMIN file control information of 00) for the
5015 directory on smart cards and USB crypto
tokens running Siemens CardOS M4, which al-
lows physically proximate attackers to change
the PIN.

CVE-2008-3605 Unspecified vulnerability in McAfee En-
crypted USB Manager 3.1.0.0, when the Re-
use Threshold for passwords is nonzero, allows
remote attackers to conduct offline brute force
attacks via unknown vectors.

Cont’d
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Table A.1 – Cont’d
CVE ID Summary Justification
CVE-2009-0243 Microsoft Windows does not properly enforce

the Autorun and NoDriveTypeAutoRun reg-
istry values, which allows physically proximate
attackers to execute arbitrary code by (1) in-
serting CD-ROM media, (2) inserting DVD
media, (3) connecting a USB device, and (4)
connecting a Firewire device; (5) allows user-
assisted remote attackers to execute arbitrary
code by mapping a network drive; and al-
lows user-assisted attackers to execute arbi-
trary code by clicking on (6) an icon under
My Computer\Devices with Removable Stor-
age and (7) an option in an AutoPlay dialog,
related to the Autorun.inf file. NOTE: vec-
tors 1 and 3 on Vista are already covered by
CVE-2008-0951.

CVE-2009-2834 IOKit in Apple Mac OS X before 10.6.2 al-
lows local users to modify the firmware of a
(1) USB or (2) Bluetooth keyboard via un-
specified vectors.

CVE-2010-0221 Kingston DataTraveler BlackBox (DTBB),
DataTraveler Secure Privacy Edition (DTSP),
and DataTraveler Elite Privacy Edition
(DTEP) USB flash drives validate passwords
with a program running on the host computer
rather than the device hardware, which allows
physically proximate attackers to access the
cleartext drive contents via a modified pro-
gram.

CVE-2010-0222 Kingston DataTraveler BlackBox (DTBB),
DataTraveler Secure Privacy Edition (DTSP),
and DataTraveler Elite Privacy Edition
(DTEP) USB flash drives use a fixed 256-bit
key for obtaining access to the cleartext drive
contents, which makes it easier for physically
proximate attackers to read or modify data by
determining and providing this key.

CVE-2010-0223 Kingston DataTraveler BlackBox (DTBB),
DataTraveler Secure Privacy Edition (DTSP),
and DataTraveler Elite Privacy Edition
(DTEP) USB flash drives do not prevent pass-
word replay attacks, which allows physically
proximate attackers to access the cleartext
drive contents by providing a key that was
captured in a USB data stream at an earlier
time.
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Table A.1 – Cont’d
CVE ID Summary Justification
CVE-2010-0224 SanDisk Cruzer Enterprise USB flash drives

validate passwords with a program running
on the host computer rather than the device
hardware, which allows physically proximate
attackers to access the cleartext drive contents
via a modified program.

CVE-2010-0225 SanDisk Cruzer Enterprise USB flash drives
use a fixed 256-bit key for obtaining access
to the cleartext drive contents, which makes
it easier for physically proximate attackers to
read or modify data by determining and pro-
viding this key.

CVE-2010-0226 SanDisk Cruzer Enterprise USB flash drives
do not prevent password replay attacks, which
allows physically proximate attackers to access
the cleartext drive contents by providing a key
that was captured in a USB data stream at an
earlier time.

CVE-2010-0227 Verbatim Corporate Secure and Corporate Se-
cure FIPS Edition USB flash drives validate
passwords with a program running on the host
computer rather than the device hardware,
which allows physically proximate attackers to
access the cleartext drive contents via a mod-
ified program.

CVE-2010-0228 Verbatim Corporate Secure and Corporate Se-
cure FIPS Edition USB flash drives use a fixed
256-bit key for obtaining access to the clear-
text drive contents, which makes it easier for
physically proximate attackers to read or mod-
ify data by determining and providing this key.

CVE-2010-0229 Verbatim Corporate Secure and Corporate Se-
cure FIPS Edition USB flash drives do not
prevent password replay attacks, which allows
physically proximate attackers to access the
cleartext drive contents by providing a key
that was captured in a USB data stream at
an earlier time.

CVE-2010-0103 UsbCharger.dll in the Energizer DUO USB
battery charger software contains a backdoor
that is implemented through the Arucer.dll
file in the %WINDIR%\system32 directory,
which allows remote attackers to download ar-
bitrary programs onto a Windows PC, and ex-
ecute these programs, via a request to TCP
port 7777.

Cont’d
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Table A.1 – Cont’d
CVE ID Summary Justification
CVE-2011-1828 usb-creator-helper in usb-creator before

0.2.28.3 does not enforce intended PolicyKit
restrictions, which allows local users to
perform arbitrary unmount operations via
the UnmountFile method in a dbus-send
command.

CVE-2012-2693 libvirt, possibly before 0.9.12, does not prop-
erly assign USB devices to virtual machines
when multiple devices have the same vendor
and product ID, which might cause the wrong
device to be associated with a guest and might
allow local users to access unintended USB de-
vices.

CVE-2012-6314 Citrix XenDesktop Virtual Desktop Agent
(VDA) 5.6.x before 5.6.200, when making
changes to the server-side policy that control
USB redirection, does not propagate changes
to the VDA, which allows authenticated users
to retain access to the USB device.

CVE-2013-1774 The chase port function in drivers/usb/seri-
al/io ti.c in the Linux kernel before 3.7.4 al-
lows local users to cause a denial of service
(NULL pointer dereference and system crash)
via an attempted /dev/ttyUSB read or write
operation on a disconnected Edgeport USB se-
rial converter.

CVE-2013-3666 The LG Hidden Menu component for Android
on the LG Optimus G E973 allows physically
proximate attackers to execute arbitrary com-
mands by entering USB Debugging mode, us-
ing Android Debug Bridge (adb) to establish
a USB connection, dialing 3845#*973#, mod-
ifying the WLAN Test Wi-Fi Ping Test/User
Command tcpdump command string, and
pressing the CANCEL button.

CVE-2013-1063 usb-creator 0.2.47 before 0.2.47.1, 0.2.40 be-
fore 0.2.40ubuntu2, and 0.2.38 before 0.2.38.2
does not properly use D-Bus for communica-
tion with a polkit authority, which allows local
users to bypass intended access restrictions by
leveraging a PolkitUnixProcess PolkitSubject
race condition via a (1) setuid process or (2)
pkexec process, a related issue to CVE-2013-
4288.

Cont’d

79



Table A.1 – Cont’d
CVE ID Summary Justification
CVE-2013-5166 The Bluetooth USB host controller in Apple

Mac OS X before 10.9 prematurely deletes in-
terfaces, which allows local users to cause a
denial of service (system crash) via a crafted
application.

CVE-2014-0860 The firmware before 3.66E in IBM BladeCen-
ter Advanced Management Module (AMM),
the firmware before 1.43 in IBM Inte-
grated Management Module (IMM), and the
firmware before 4.15 in IBM Integrated Man-
agement Module II (IMM2) contains cleartext
IPMI credentials, which allows attackers to ex-
ecute arbitrary IPMI commands, and conse-
quently establish a blade remote-control ses-
sion, by leveraging access to (1) the chassis
internal network or (2) the Ethernet-over-USB
interface.

CVE-2014-2388 The Storage and Access service in BlackBerry
OS 10.x before 10.2.1.1925 on Q5, Q10, Z10,
and Z30 devices does not enforce the password
requirement for SMB filesystem access, which
allows context-dependent attackers to read ar-
bitrary files via (1) a session over a Wi-Fi net-
work or (2) a session over a USB connection
in Development Mode.

CVE-2014-5263 vmstate xhci event in hw/usb/hcd-xhci.c in
QEMU 1.6.0 does not terminate the list with
the VMSTATE END OF LIST macro, which
allows attackers to cause a denial of service
(out-of-bounds access, infinite loop, and mem-
ory corruption) and possibly gain privileges
via unspecified vectors.

CVE-2014-9596 Panasonic Arbitrator Back-End Server (BES)
MK 2.0 VPU before 9.3.1 build 4.08.003.0,
when USB Wi-Fi or Direct LAN is enabled,
and MK 3.0 VPU before 9.3.1 build 5.06.000.0,
when Embedded Wi-Fi or Direct LAN is en-
abled, does not use encryption, which allows
remote attackers to obtain sensitive informa-
tion by sniffing the network for client-server
traffic, as demonstrated by Active Directory
credential information.

CVE-2015-3320 Lenovo USB Enhanced Performance Key-
board software before 2.0.2.2 includes active
debugging code in SKHOOKS.DLL, which al-
lows local users to obtain keypress information
by accessing debug output.
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Table A.1 – Cont’d
CVE ID Summary Justification
CVE-2015-5960 Mozilla Firefox OS before 2.2 allows physically

proximate attackers to bypass the pass-code
protection mechanism and access USB Mass
Storage (UMS) media volumes by using the
USB interface for a mount operation.

CVE-2015-6520 IPPUSBXD before 1.22 listens on all inter-
faces, which allows remote attackers to obtain
access to USB connected printers via a direct
request.

CVE-2015-1319 The Unity Settings Daemon before
14.04.0+14.04.20150825-0ubuntu2 and
15.04.x before 15.04.1+15.04.20150408-
0ubuntu1.2 does not properly detect if the
screen is locked, which allows physically prox-
imate attackers to mount removable media
while the screen is locked as demonstrated by
inserting a USB thumb drive.

Table A.2: Vulnerabilities classified as Unclear.

CVE ID Summary Justification
CVE-2005-4788 resmgr in SUSE Linux 9.2 and 9.3, and pos-

sibly other distributions, allows local users to
bypass access control rules for USB devices via
“alternate syntax for specifying USB devices.”

not sure if caused by data from
USB device or not

CVE-2007-3513 The lcd write function in drivers/usb/mis-
c/usblcd.c in the Linux kernel before 2.6.22-
rc7 does not limit the amount of memory used
by a caller, which allows local users to cause
a denial of service (memory consumption).

not sure if caused by data from
USB device or not

CVE-2009-0282 Integer overflow in Ralink Technology USB
wireless adapter (RT73) 3.08 for Windows,
and other wireless card drivers including
rt2400, rt2500, rt2570, and rt61, allows re-
mote attackers to cause a denial of service
(crash) and possibly execute arbitrary code
via a Probe Request packet with a long SSID,
possibly related to an integer signedness error.

not sure if caused by data at USB
protocol level or application level

CVE-2010-1140 The USB service in VMware Workstation 7.0
before 7.0.1 build 227600 and VMware Player
3.0 before 3.0.1 build 227600 on Windows
might allow host OS users to gain privileges
by placing a Trojan horse program at an un-
specified location on the host OS disk.

not sure if triggered by USB data
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Table A.2 – Cont’d
CVE ID Summary Justification
CVE-2010-3542 Unspecified vulnerability in Oracle Solaris 8,

9, and 10, and OpenSolaris, allows local users
to affect confidentiality, related to USB.

not enough detail

CVE-2010-4656 The iowarrior write function in drivers/us-
b/misc/iowarrior.c in the Linux kernel be-
fore 2.6.37 does not properly allocate mem-
ory, which might allow local users to trigger a
heap-based buffer overflow, and consequently
cause a denial of service or gain privileges, via
a long report.

CVE-2011-2295 Unspecified vulnerability in Oracle Solaris 8,
9, 10, and 11 Express allows local users to af-
fect availability, related to Driver/USB.

CVE-2013-0981 The IOUSBDeviceFamily driver in the USB
implementation in the kernel in Apple iOS
before 6.1.3 and Apple TV before 5.2.1 ac-
cesses pipe object pointers that originated in
userspace, which allows local users to gain
privileges via crafted code.

CVE-2014-7888 The OLE Point of Sale (OPOS) drivers before
1.13.003 on HP Point of Sale Windows PCs
allow remote attackers to execute arbitrary
code via vectors involving OPOSMICR.ocx for
PUSB Thermal Receipt printers, SerialUSB
Thermal Receipt printers, Hybrid POS print-
ers with MICR, Value PUSB Receipt printers,
and Value Serial/USB Receipt printers, aka
ZDI-CAN-2512.

CVE-2014-7893 The OLE Point of Sale (OPOS) drivers before
1.13.003 on HP Point of Sale Windows PCs
allow remote attackers to execute arbitrary
code via vectors involving OPOSCheckScan-
ner.ocx for PUSB Thermal Receipt printers,
SerialUSB Thermal Receipt printers, Hybrid
POS printers with MICR, Value PUSB Re-
ceipt printers, and Value Serial/USB Receipt
printers, aka ZDI-CAN-2507.

CVE-2014-7894 The OLE Point of Sale (OPOS) drivers before
1.13.003 on HP Point of Sale Windows PCs al-
low remote attackers to execute arbitrary code
via vectors involving OPOSPOSPrinter.ocx
for PUSB Thermal Receipt printers, Seri-
alUSB Thermal Receipt printers, Hybrid POS
printers with MICR, Value PUSB Receipt
printers, and Value Serial/USB Receipt print-
ers, aka ZDI-CAN-2506.
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Table A.2 – Cont’d
CVE ID Summary Justification
CVE-2014-7895 The OLE Point of Sale (OPOS) drivers be-

fore 1.13.003 on HP Point of Sale Windows
PCs allow remote attackers to execute arbi-
trary code via vectors involving OPOSCash-
Drawer.ocx for PUSB Thermal Receipt print-
ers, SerialUSB Thermal Receipt printers, Hy-
brid POS printers with MICR, Value PUSB
Receipt printers, Value Serial/USB Receipt
printers, and USB Standard Duty cash draw-
ers, aka ZDI-CAN-2505.

Table A.3: Vulnerabilities classified as Mitigated By Policy.

CVE ID Summary Justification
CVE-2005-2388 Buffer overflow in a certain USB driver, as

used on Microsoft Windows, allows attackers
to execute arbitrary code.

likely length-related and there-
fore likely prevented by design

CVE-2005-4789 resmgr in SUSE Linux 9.2 and 9.3, and possi-
bly other distributions, does not properly en-
force class-specific exclude rules in some situ-
ations, which allows local users to bypass in-
tended access restrictions for USB devices that
set their class ID at the interface level.

user policy: “Reject inter-
face descriptor where class id =
xyz”

CVE-2006-1368 Buffer overflow in the USB Gadget RNDIS
implementation in the Linux kernel before
2.6.16 allows remote attackers to cause a
denial of service (kmalloc’d memory cor-
ruption) via a remote NDIS response to
OID GEN SUPPORTED LIST, which causes
memory to be allocated for the reply data but
not the reply structure

likely length-related and there-
fore likely prevented by design

CVE-2007-0728 Unspecified vulnerability in Apple Mac OS X
10.3.9 and 10.4 through 10.4.8 creates files
insecurely while initializing a USB printer,
which allows local users to create or overwrite
arbitrary files.

seems descriptor-related

CVE-2007-6439 Wireshark (formerly Ethereal) 0.99.6 allows
remote attackers to cause a denial of service
(infinite or large loop) via the (1) IPv6 or (2)
USB dissector, which can trigger resource con-
sumption or a crash. NOTE: this identifier
originally included Firebird/Interbase, but it
is already covered by CVE-2007-6116. The
DCP ETSI issue is already covered by CVE-
2007-6119.

seems descriptor-related
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CVE-2008-0718 Unspecified vulnerability in the USB Mouse

STREAMS module (usbms) in Sun Solaris 9
and 10, when 64-bit mode is enabled, allows
local users to cause a denial of service (panic)
via unspecified vectors.

CVE-2009-2807 Heap-based buffer overflow in the USB back-
end in CUPS in Apple Mac OS X 10.5.8 allows
local users to gain privileges via unspecified
vectors.

CVE-2009-2834 IOKit in Apple Mac OS X before 10.6.2 al-
lows local users to modify the firmware of a
(1) USB or (2) Bluetooth keyboard via un-
specified vectors.

user policy to prevent offending
outgoing message

CVE-2010-1460 The IBM BladeCenter with Advanced Man-
agement Module (AMM) firmware before
bpet50g does not properly perform interrupt
sharing for USB and iSCSI, which allows re-
mote attackers to cause a denial of service
(management module reboot) via TCP pack-
ets with malformed application data.

user policy probably can’t con-
trol delivery of interrupts

CVE-2010-4530 Signedness error in ccid serial.c in libccid in
the USB Chip/Smart Card Interface Devices
(CCID) driver, as used in pcscd in PCSC-
Lite 1.5.3 and possibly other products, allows
physically proximate attackers to execute ar-
bitrary code via a smart card with a crafted
serial number that causes a negative value to
be used in a memcpy operation, which triggers
a buffer overflow. NOTE: some sources refer
to this issue as an integer overflow.

user policy: “Reject de-
vice descriptor where se-
rial number = xyz”

CVE-2011-0638 Microsoft Windows does not properly warn
the user before enabling additional Human In-
terface Device (HID) functionality over USB,
which allows user-assisted attackers to execute
arbitrary programs via crafted USB data, as
demonstrated by keyboard and mouse data
sent by malware on a smartphone that the user
connected to the computer.

user policy to reject data that
triggers vuln

CVE-2011-0639 Apple Mac OS X does not properly warn the
user before enabling additional Human In-
terface Device (HID) functionality over USB,
which allows user-assisted attackers to execute
arbitrary programs via crafted USB data, as
demonstrated by keyboard and mouse data
sent by malware on a smartphone that the user
connected to the computer.

user policy to reject data that
triggers vuln

Cont’d
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CVE ID Summary Justification
CVE-2011-0640 The default configuration of udev on Linux

does not warn the user before enabling ad-
ditional Human Interface Device (HID) func-
tionality over USB, which allows user-assisted
attackers to execute arbitrary programs via
crafted USB data, as demonstrated by key-
board and mouse data sent by malware on
a smartphone that the user connected to the
computer.

user policy to reject data that
triggers vuln

CVE-2012-4736 The Device Encryption Client component in
Sophos SafeGuard Enterprise 6.0, when a
volume-based encryption policy is enabled in
conjunction with a user-defined key, does not
properly block use of exFAT USB flash drives,
which makes it easier for local users to bypass
intended access restrictions and copy sensitive
information to a drive via multiple removal
and reattach operations.

CVE-2013-1860 Heap-based buffer overflow in
the wdm in callback function in
drivers/usb/class/cdc-wdm.c in the Linux
kernel before 3.8.4 allows physically proxi-
mate attackers to cause a denial of service
(system crash) or possibly execute arbitrary
code via a crafted cdc-wdm USB device.

CVE-2013-0923 The USB Apps API in Google Chrome before
26.0.1410.43 allows remote attackers to cause
a denial of service (memory corruption) via
unspecified vectors.

CVE-2013-5864 Unspecified vulnerability in Oracle Solaris 10
and 11.1 allows local users to affect availability
via vectors related to USB hub driver.

CVE-2013-5192 The USB hub controller in Apple Mac OS X
before 10.9 allows local users to cause a denial
of service (system crash) via a request with a
crafted (1) port or (2) port number.

CVE-2013-2058 The host start function in drivers/usb/chipi-
dea/host.c in the Linux kernel before 3.7.4
does not properly support a certain non-
streaming option, which allows local users
to cause a denial of service (system crash)
by sending a large amount of network traffic
through a USB/Ethernet adapter.

CVE-2014-1287 USB Host in Apple iOS before 7.1 and Ap-
ple TV before 6.1 allows physically proximate
attackers to execute arbitrary code or cause
a denial of service (memory corruption) via
crafted USB messages.
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CVE-2014-3185 Multiple buffer overflows in the com-

mand port read callback function in driver-
s/usb/serial/whiteheat.c in the Whiteheat
USB Serial Driver in the Linux kernel before
3.16.2 allow physically proximate attackers
to execute arbitrary code or cause a denial
of service (memory corruption and system
crash) via a crafted device that provides a
large amount of (1) EHCI or (2) XHCI data
associated with a bulk response.

CVE-2014-4115 fastfat.sys (aka the FASTFAT driver) in the
kernel-mode drivers in Microsoft Windows
Server 2003 SP2, Vista SP2, and Server 2008
SP2 does not properly allocate memory, which
allows physically proximate attackers to exe-
cute arbitrary code or cause a denial of ser-
vice (reserved-memory write) by connecting a
crafted USB device, aka “Microsoft Windows
Disk Partition Driver Elevation of Privilege
Vulnerability.”

CVE-2013-4541 The usb device post load function in hw/us-
b/bus.c in QEMU before 1.7.2 might allow re-
mote attackers to execute arbitrary code via
a crafted savevm image, related to a negative
setup len or setup index value.

CVE-2014-3461 hw/usb/bus.c in QEMU 1.6.2 allows remote
attackers to execute arbitrary code via crafted
savevm data, which triggers a heap-based
buffer overflow, related to “USB post load
checks.”

CVE-2015-1769 Mount Manager in Microsoft Windows Vista
SP2, Windows Server 2008 SP2 and R2 SP1,
Windows 7 SP1, Windows 8, Windows 8.1,
Windows Server 2012 Gold and R2, Windows
RT Gold and 8.1, and Windows 10 mishan-
dles symlinks, which allows physically proxi-
mate attackers to execute arbitrary code by
connecting a crafted USB device, aka “Mount
Manager Elevation of Privilege Vulnerability.”

CVE-2015-7833 The usbvision driver in the Linux kernel
package 3.10.0-123.20.1.el7 through 3.10.0-
229.14.1.el7 in Red Hat Enterprise Linux
(RHEL) 7.1 allows physically proximate at-
tackers to cause a denial of service (panic) via
a nonzero bInterfaceNumber value in a USB
device descriptor.
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CVE-2015-5257 drivers/usb/serial/whiteheat.c in the Linux

kernel before 4.2.4 allows physically proximate
attackers to cause a denial of service (NULL
pointer dereference and OOPS) or possibly
have unspecified other impact via a crafted
USB device.

Table A.4: Vulnerabilities classified as Mitigated By Pattern.

CVE ID Summary Justification
CVE-2010-1083 The processcompl compat function in driver-

s/usb/core/devio.c in Linux kernel 2.6.x
through 2.6.32, and possibly other versions,
does not clear the transfer buffer before re-
turning to userspace when a USB command
fails, which might make it easier for physically
proximate attackers to obtain sensitive infor-
mation (kernel memory).

principled buffer use would be
encoded into autogeneration

CVE-2010-4074 The USB subsystem in the Linux kernel be-
fore 2.6.36-rc5 does not properly initialize cer-
tain structure members, which allows local
users to obtain potentially sensitive informa-
tion from kernel stack memory via vectors re-
lated to TIOCGICOUNT ioctl calls, and the
(1) mos7720 ioctl function in drivers/usb/se-
rial/mos7720.c and (2) mos7840 ioctl function
in drivers/usb/serial/mos7840.c.

principled buffer use would be
encoded into autogeneration

CVE-2010-3298 The hso get count function in drivers/net/us-
b/hso.c in the Linux kernel before 2.6.36-rc5
does not properly initialize a certain structure
member, which allows local users to obtain
potentially sensitive information from kernel
stack memory via a TIOCGICOUNT ioctl
call.

principled buffer use would be
encoded into autogeneration
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Table A.5: Vulnerabilities classified as Inherently Averted.

CVE ID Summary Justification
CVE-2006-2935 The dvd read bca function in the DVD han-

dling code in drivers/cdrom/cdrom.c in Linux
kernel 2.2.16, and later versions, assigns the
wrong value to a length variable, which al-
lows local users to execute arbitrary code via
a crafted USB Storage device that triggers a
buffer overflow.

length variables are encoded as
strictly dependent on other val-
ues

CVE-2006-4459 Integer overflow in AnywhereUSB/5 1.80.00
allows local users to cause a denial of service
(crash) via a 1 byte header size specified in the
USB string descriptor.

format assured by specification
(might be mitigated by policy in-
stead)

CVE-2006-5972 Stack-based buffer overflow in WG111v2.SYS
in NetGear WG111v2 wireless adapter (USB)
allows remote attackers to execute arbitrary
code via a long 802.11 beacon request.

frame lengths automatically en-
forced given frame specification

CVE-2008-4680 packet-usb.c in the USB dissector in Wire-
shark 0.99.7 through 1.0.3 allows remote at-
tackers to cause a denial of service (application
crash or abort) via a malformed USB Request
Block (URB).

malformed data is automatically
rejected

CVE-2010-0038 Recovery Mode in Apple iPhone OS 1.0
through 3.1.2, and iPhone OS for iPod touch
1.1 through 3.1.2, allows physically proximate
attackers to bypass device locking, and read
or modify arbitrary data, via a USB control
message that triggers memory corruption.

likely length-related and there-
fore likely prevented by design

CVE-2010-0297 Buffer overflow in the usb host handle control
function in the USB passthrough handling im-
plementation in usb-linux.c in QEMU before
0.11.1 allows guest OS users to cause a denial
of service (guest OS crash or hang) or possi-
bly execute arbitrary code on the host OS via
a crafted USB packet.

likely length-related and there-
fore likely prevented by design

CVE-2011-0712 Multiple buffer overflows in the caiaq Native
Instruments USB audio functionality in the
Linux kernel before 2.6.38-rc4-next-20110215
might allow attackers to cause a denial of
service or possibly have unspecified other
impact via a long USB device name, re-
lated to (1) the snd usb caiaq audio init func-
tion in sound/usb/caiaq/audio.c and (2) the
snd usb caiaq midi init function in sound/us-
b/caiaq/midi.c.

likely length-related and there-
fore likely prevented by design
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CVE-2012-3723 Apple Mac OS X before 10.7.5 does not prop-

erly handle the bNbrPorts field of a USB hub
descriptor, which allows physically proximate
attackers to execute arbitrary code or cause a
denial of service (memory corruption and sys-
tem crash) by attaching a USB device.

length-related and therefore
likely prevented by design

CVE-2012-6053 epan/dissectors/packet-usb.c in the USB dis-
sector in Wireshark 1.6.x before 1.6.12 and
1.8.x before 1.8.4 relies on a length field to
calculate an offset value, which allows remote
attackers to cause a denial of service (infinite
loop) via a zero value for this field.

format assured by specification
(might be mitigated by policy in-
stead)

CVE-2013-1285 The USB kernel-mode drivers in Microsoft
Windows XP SP2 and SP3, Windows Server
2003 SP2, Windows Vista SP2, Windows
Server 2008 SP2, R2, and R2 SP1, Win-
dows 7 Gold and SP1, Windows 8, and Win-
dows Server 2012 do not properly handle ob-
jects in memory, which allows physically prox-
imate attackers to execute arbitrary code by
connecting a crafted USB device, aka “Win-
dows USB Descriptor Vulnerability,” a dif-
ferent vulnerability than CVE-2013-1286 and
CVE-2013-1287.

likely length-related and there-
fore likely prevented by design

CVE-2013-1286 The USB kernel-mode drivers in Microsoft
Windows XP SP2 and SP3, Windows Server
2003 SP2, Windows Vista SP2, Windows
Server 2008 SP2, R2, and R2 SP1, Win-
dows 7 Gold and SP1, Windows 8, and Win-
dows Server 2012 do not properly handle ob-
jects in memory, which allows physically prox-
imate attackers to execute arbitrary code by
connecting a crafted USB device, aka “Win-
dows USB Descriptor Vulnerability,” a dif-
ferent vulnerability than CVE-2013-1285 and
CVE-2013-1287.

likely length-related and there-
fore likely prevented by design

CVE-2013-1287 The USB kernel-mode drivers in Microsoft
Windows XP SP2 and SP3, Windows Server
2003 SP2, Windows Vista SP2, Windows
Server 2008 SP2, R2, and R2 SP1, Win-
dows 7 Gold and SP1, Windows 8, and Win-
dows Server 2012 do not properly handle ob-
jects in memory, which allows physically prox-
imate attackers to execute arbitrary code by
connecting a crafted USB device, aka “Win-
dows USB Descriptor Vulnerability,” a dif-
ferent vulnerability than CVE-2013-1285 and
CVE-2013-1286.

likely length-related and there-
fore likely prevented by design
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CVE-2013-3200 The USB drivers in the kernel-mode drivers

in Microsoft Windows XP SP2 and SP3, Win-
dows Server 2003 SP2, Windows Vista SP2,
Windows Server 2008 SP2 and R2 SP1, Win-
dows 7 SP1, Windows 8, Windows Server
2012, and Windows RT allow physically prox-
imate attackers to execute arbitrary code by
connecting a crafted USB device, aka “Win-
dows USB Descriptor Vulnerability.”

likely length-related and there-
fore likely prevented by design

CVE-2014-8884 Stack-based buffer overflow in the ttus-
bdecfe dvbs diseqc send master cmd function
in drivers/media/usb/ttusb-dec/ttusbdecfe.c
in the Linux kernel before 3.17.4 allows lo-
cal users to cause a denial of service (system
crash) or possibly gain privileges via a large
message length in an ioctl call.

likely length-related and there-
fore likely prevented by design
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Appendix B

Code

This appendix describes the code I produced for this dissertation. For those keeping track at home, it

amounts to 6410 lines of code (including comments and whitespace), of which 1061 were automagically

generated.

B.1 Injection

As described in Chapter 3, I wrote the software stack that drives the Facedancer USB emulation board,

which has since been used as the basis for industry-leading security-analysis tools such as umap [20].

I wrote both the library and, to demonstrate its use, a number of sample applications. The files comprising

the library are enumerated in Table B.1 and the applications are enumerated in Table B.2. As the filenames

imply, all code is written in Python.

filename LOC description
USBClass.py 25 Defines base class (in the object-oriented sense) for defining classes

(in the USB sense) of devices.
USBConfiguration.py 46 Defines base class for describing USB device configurations.
USBDevice.py 360 Defines base class for describing USB devices (as evidence by its

size, the majority of logic is in this class).
USBEndpoint.py 76 Defines base class for describing USB communication endpoints,

analogous to sockets in network programming.
USBInterface.py 98 Defines base class for describing USB interfaces.
USB.py 53 Defines constants used throughout the rest of the library.
USBVendor.py 24 Defines base class for describing USB vendors.
total 682

Table B.1: Files comprising the library I wrote to enable emulating various USB devices using the Facedancer.
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filename LOC description
USBFtdi.py 201 Emulates a USB FTDI (serial) device.
facedancer-ftdi.py 22 Driver program for USBFtdi.py.
USBKeyboard.py 96 Emulates a USB keyboard.
facedancer-keyboard.py 21 Driver program for USBKeyboard.py.
USBMassStorage.py 356 Emulates a USB mass-storage device (e.g., thumbdrive).
facedancer-umass.py 41 Driver program for USBMassStorage.py.
total 737

Table B.2: Applications I wrote to emulate various devices. All build on the libraries listed in Table B.1.

filename LOC
usb busdma.c 269
usb compat linux.c 9
usb dev.c 18
usb device.c 509
usb dynamic.c 6
usb hub.c 121
usb lookup.c 22
usb msctest.c 55
usb parse.c 56
usb pf.c 28
usb process.c 30
usb request.c 304
usb transfer.c 614
usb util.c 43
total 2083

Table B.3: Extent of modifications made to apply instrumentation framework described in Chapter 4.

All the code is available in the public GoodFET repository on github: https://github.com/travisgoodspeed/

goodfet, under the “client” subdirectory.

B.2 Inspection

The instrumentation described in Chapter 4 touched a number of files in the FreeBSD kernel. Table B.3

shows the extent of the modifications made to each file.

I also wrote a number of scripts to analyze the output of the instrumentation. Those scripts are described

in Table B.4 and are variously Bash, Python, awk, gnuplot, and D (the language used by DTRACE to

manipulate the instrumentation probes).

92



filename LOC description
bb-count.d 12 D script to count number of basic-blocks executed.
bb-lint.py 163 Python script to verify the placement of instrumentation probes

in the files listed in Table B.3.
bb-perc.sh 97 Shell script that calculates the percentage of basic blocks exer-

cised, by file, from a given basic-block trace.
bb-trace.d 50 D script to trace functions called and basic blocks executed while

a device is plugged into a particular USB port.
cam-trace.d 87 D script to trace interactions with FreeBSD’s storage subsystem

while a USB mass storage device is plugged into a particular USB
port.

cloc-code.sh 18 Counts lines of code, used as input to other scripts.
extract-bb.sh 31 Shell script that extracts and format basic-block information out-

put by bb-trace.d.
fbt-count.d 12 D script to count functions called in FreeBSD’s USB stack. This

“function boundary testing” feature of DTRACE on FreeBSD
proved unreliable, which prompted the manual instrumentation
described in Chapter 4.

fbt-trace.d 8 D script to trace functions called. The same caveat on FBT un-
reliability applies.

group-bb-trace.py 54 Python script that groups the basic-block traces according to
module (file).

indent-bb-trace.py 76 Python script that indents a basic-block trace for easier reading
(example output shown in Figure 4.3).

make-graph.py 52 Python script that uses the result of group-bb-trace.py to gener-
ate a graphviz plot of module (file) interactions (example output
shown in Figure 4.5).

mux-trace.d 56 D script to trace execution paths specifically surrounding the in-
vocation of callback functions.

normalize.awk 9 Awk script to cleanly format the output of other scripts, used as
input to still more scripts.

plot.p 12 Gnuplot script to graph per-function basic-block activity as gen-
erated by other scripts.

total 737

Table B.4: Scripts used to interact with the instrumentation framework described in Chapter 4 and to
process its output.
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filename LOC description
makePolicy.hs 10 Driver program to create a loadable policy module from a plain-

text policy description.
msgDriver.hs 10 Driver program to generate the header and source files that com-

prise the USB firewall.
Protocol.hs 238 Library that performs the automagic generation.
USBMessages.hs 279 Contains the USB message definitions.
total 537

Table B.5: Hand-written source files for programs that generate the USB firewall.

filename LOC description
usb messages.h 526 Contains data structure definitions, accessor macros, and function

prototypes.
usb messages.c 535 Contains validator functions and pretty-printing functions.
total 1061

Table B.6: The generated USB firewall source files.

B.3 Generation

The Haskell code I wrote to generated the USB firewall is described in Table B.5. The resulting, generated

code is described in Table B.6. The code I wrote to integrate the generated code with FreeBSD is described

in Table B.7.
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filename LOC description
opt usb.h 6 Stub header file necessary to include other kernel-related header

files.
usb conntrack.c 216 Contains the connection-tracking code.
usb conntrack.h 16 Header file for previous.
usb fw.c 94 Contains the code that implements the basic USB firewall.
usb fw fbsd.c 147 FreeBSD-specific shim that acts as a translation layer between the

structures used by FreeBSD to represent USB transfers and the
OS-agnostic USB firewall.

usb fw.h 19 Header file for the OS-agnostic USB firewall code.
util.c 64 Contains utility functions such as bytes as hex, which gives the

contents of an arbitrary chunk of memory as hex.
util.h 12 Header file for previous.
total 573

Table B.7: Hand-written source files that facilitate integration of the USB firewall with FreeBSD.
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PhD thesis. Örebro University, 2011.

[60] Yan Wang and Verónica Gaspes. “A Domain-Specific Language Approach to Protocol Stack Imple-

mentation”. In: Practical Aspects of Declarative Languages. 2010.

[61] Yan Wang and Verónica Gaspes. “An Embedded Language for Programming Protocol Stacks in Em-

bedded Systems”. In: Proceedings of the 20th ACM SIGPLAN Workshop on Partial Evaluation and

Program Manipulation (PEPM 2011). 2011.

[62] Xiaolan Zhang, Antony Edwards, and Trent Jaeger. “Using CQUAL for Static Analysis of Authoriza-

tion Hook Placement”. In: Proceedings of the 11th USENIX Security Symposium. 2002.

101


