The cost of things at scale

Robert Graham

@ErrataRob

https://blog.erratasec.com

Concurrent Connections

The cost of things

- How fast can CPUs execute instructions
- How fast can CPUs access-memory
- How fast are kernel system calls
- How fast are synchronization primitives
- How fast are "context-switches"

Code

 https://github.com/robertdavidgraham/ c10mbench

C10M defined

- 10 million concurrent connections
- 1 million connections/second
- 10 gigabits/second
- 10 million packets/second
- 10 microsecond latency
- 10 microsecond jitter
- 10 coherent CPU cores

Classic definition: Context-switch

Process/thread context switches

..but process context switches becoming rare

- NodeJS
- Nginx
- Libevent
- Java user-mode threads
- Lua coroutines

...but context switches becoming rare

Web server developers: Market share of the top million busiest sites

Real definition: Context-switch

- Each TCP connection is a task, with context
 - Whether you assign a thread to it, a closure, or a data structure
- Each incoming packet causes a random context switch
- A lot of small pieces of memory must be touched – sequentially
 - "pointer-chasing"

Tache R cycles cycles Scache 30 cycles **CPU** main memory, 300 cycles

20 gigabyte memory (2k per connection for 10 million connections)

20meg L3 cache

Measured latency: 85ns

Concurrent memory latency

budget

10 million packets/second divided by 10 cores by 100 nanoseconds/miss

~10 cache misses per packet

Now for user-mode

- Apps written in C have few data structures
- Apps written in high-level languages (Java, Ruby, Lua, JavaScript) have bits of memory strewn around

User-mode memory is virtual

- Virtual addresses are translated to physical addresses on every memory access
 - Walk a chain of increasingly smaller page table entries
- But TLB cache makes it go fast
 - But not at scale
 - TLB cache is small
 - Page tables themselves may not fit in the cache

Small Page Diagram for x64 Virtual Memory

(cc) http://erratasec_blogspot.com/

Large Page Diagram for x64 Virtual Memory

(cc) http://erratasec_blogspot.com/

20 gigabyte memory (2k per connection for 10 million connections)

10k hugepage tables

20meg L3 cache

40meg small page tables

User-mode latency

Concurrent memory latency

QED:

 Memory latency becomes a big scalability problem for high-level languages

How to solve

- Hugepages to avoid page translation
- Break the chain
 - Add "void *prefetch[8]" to the start of every TCP control block.
 - Issue prefetch instructions on them as soon as packet arrives
 - Get all the memory at once

Memory access is parallel

CPU

- Each core can track 72 memory reads at the same time
- Entire chip can track ?? reads at the same time

DRAM

- channels X slots X ranks X banks
- My computer: 3 * 2 * 1 * 4 = 24 concurrent accesses
- Measured: 190-million/sec = 15 concurrent accesses

Some reading

- "What every programmer should know about memory" by Ulrich Draper
- http://www.akkadia.org/drepper/ cpumemory.pdf

Multi-core

Multi-threading is not the same as multi-core

Multi-threading

- More than one thread per CPU core
- Spinlock/mutex must therefore stop one thread to allow another to execute
- Each thread a different task (multi-tasking)

Multi-core

- One thread per CPU core
- When two threads/cores access the same data, they can't stop and wait for the other
- All threads part of the same task

Most code doesn't scale past 4 cores

#1 rule of multi-core: don't share memory

 People talk about ideal mutexes/spinlocks, but they still suffer from shared memory

 There is exist data structures, "lock free", that don't require them

Let's measure the problem

 A "locked add" simulates the basic instructions behind spinlocks, futexes, etc.

```
static void
worker_thread(void *parms)
{
    size_t i;
    for (i=0; i<BENCH_ITERATIONS2; i++) {
        pixie_locked_add_u32(&result, 1);
    }
}</pre>
```

Total additions per second

Incrementing a shared memory

Latency per addition per thread

Latency per addition operation per core

Two things to note

- ~5 nanoseconds
 - Cost of an L3 cache operation (~10ns)
 - Minus the out-of-order execution by the CPU (~5ns)
 - ...and I'm still not sure
- ~100 nanoseconds
 - When many thread contending, it becomes as expensive as a main memory operation

Syscalls

- Mutexes often done with system calls
- So what's the price of a such a call?
 - On my machine
 - ~30 nanoseconds is minimum
 - ~60 ns is more typical idealized cases
 - ~400 ns in more practical cases

Solution: lock-free ring-buffers

- No mutex/spinlock
- No syscalls
- Since head and tail are separate, no sharing of cache lines
- Measured on my machine:
 - 100-million msgs/second
 - -~10ns per msg

Shared ring vs. pipes

- Pipes
 - -~400ns per msg
 - 2.5 m-msgs/sec
- Ring
 - ~10ns per msg
 - 100 m-msgs/sec

```
static void
reader(void *parms)
{
    int fd = *(int*)parms;
    size_t i;

    for (i=0; i<BENCH_ITERATIONS; i++) {
        int x;
        char c;

        x = read(fd, &c, 1);
        if (x != 1)
            break;
    }
}</pre>
```

Function call overhead

- ~1.8ns
- Note the jump for "hyperthreading"
 - My machine has 6 hyperthreaded cores
- 6 clock cycles

DMA isn't

Where can I get some?

- PF_RING
 - Linux
 - open-source
- Netmap
 - FreeBSD
 - open-source
- Intel DPDK
 - Linux
 - License fees
 - Third party support
 - 6WindGate

200 CPU clocks per packet

http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/communications-packet-processing-brief.pdf

masscan

Quad-core Sandy Bridge 3.0 GHz

```
root@supermicro1: ~/masscan# bin/masscan 0.0.0.0/0 -p80 --max-rate 30000000 --pfring /etc/masscan/exclude.txt: excluding 3880 ranges from file

Starting masscan 1.0 (http://bit.ly/14GZzcT) at 2013-09-14 22:59:14 GMT -- forced options: -sS -Pn -n --randomize-hosts -v --send-eth Initiating SYN Stealth Scan Scanning 3508758232 hosts [1 port/host] rate:25011.09-kpps, 56.72% done, 0:00:49 remaining, 0-tcbs,
```

Premature optimization is good

- Start with prototype that reaches theoretical max
 - Then work backwards
- Restate the problem so that it can be solved by the best solutions
 - Ring-buffers and RCU (read-copy-update) are the answers, find problems solved by them
- Measure and identify bottlenecks as they occur

Raspberry PI 2

900 MHz quad core ARM w/ GPU

Memory latency

- Didn't test max
 outstanding transactions, but should be high for GPU

Cache Bounce

- Seems strange
- No performance loss for two threads

 Answer: ARM Cortex-A8 comes in 2-cpu modules that share cache

Compared to x86

	ARM	x86	Speedup
Hz	0.900	3.2	3.6
syscall	0.99	2.5	2.6
funcall	59.90	556.4	9.3
pipe	0.17	2.5	14.8
ring	3.90	74.0	19.0

Todo:

- C10mbench work
 - More narrow benchmarks to test things
 - Improve benchmarks
 - Discover exactly why benchmarks have the results they do
 - Benchmark more systems
 - Beyond ARM and x86