The cost of things at scale

Robert Graham
@ErrataRob
https://blog.erratasec.com

200%
180%
160%

=
N D
o O
X X

100%
80%
60%
40%
20%

0%

Requests/second

)

Performance

Scalability —

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Concurrent Connections

The cost of things

ow fast can CPUs execute instructions
ow fast can CPUs access-memory

ow fast are kernel system calls

ow fast are synchronization primitives
ow fast are “context-switches”

Code

* https://github.com/robertdavidgraham/
c10mbench

C10M defined

10 million concurrent connections
1 million connections/second

10 gigabits/second

10 million packets/second

10 microsecond latency

10 microsecond jitter

10 coherent CPU cores

Classic definition: Context-switch

* Process/thread context switches

..but process context switches
becoming rare

NodelS

Nginx

Libevent

Java user-mode threads

_ua coroutines

...but context switches becoming rare

Web server developers: Market share of the top million busiest sites

80% I=| E T C M F T B Apache

B Microsoft
60% Other

B nginx

B Google
40%

0%
SR 0 0P 0 40O 00 AW G0V G oW g 0V g9 o\ gV o
ge® ¢ WM et Tz T O T\ T e T o™ T gt 0t T et TR Mg T g e

Real definition: Context-switch

e Each TCP connection is a task, with context

— Whether you assign a thread to it, a closure, or a
data structure

* Each incoming packet causes a random
context switch

* A lot of small pieces of memory must be
touched — sequentially
— “pointer-chasing”

files_sttuct

count

clese_on_exec

open_fs

£d[0]

fd[1]

file

f_mode

f_pcs

£d[255]

f_flags

f_count

f_ownet

f_op

f_inode

f_versioh

BSD Socket
P File Operations
lseek
read
write
) select
ihade ioctl
close
fasync
socket
type SOCK_S TREAM
ops _— g Address Family
data socket operations
sock
type SOCK_STREAM
protocol

socket

O
20meg L3 cache

nanoseconds

Yo}
o

00
o

~N
o

(o2}
o

w1
o

IS
o

w
o

N
o

[uny
o

o

Measured latency: 85ns

Concurrent memory latency

/

11

12

budget

10 million packets/second
divided by 10 cores
by 100 nanoseconds/miss

~10 cache misses per packet

Now for user-mode

* Apps written in C have few data structures

* Apps written in high-level languages (Java,
Ruby, Lua, JavaScript) have bits of memory
strewn around

User-mode memory is virtual

* Virtual addresses are translated to physical
addresses on every memory access

— Walk a chain of increasingly smaller page table
entries

* But TLB cache makes it go fast
— But not at scale
— TLB cache is small
— Page tables themselves may not fit in the cache

64

Small Page Diagram for x64 Virtual Memory

48 39 30 21 12 0
CELL eyttt ep et rrird
- Y I /\ Y = Y = Y 7
Page
Page Directory
e valk(adds Map Pointer Page Page Memory
chj - CSRS‘.) A Level 4 Table Directory Table Page
L3 = L4[(addr>>39)s0x1FF];
L2 = L3[(addr>>30) s0x1FF];
if (L2[(addr>>21)s0x1FF] & 1) {
page = L2[(addr>>21)&0x1FF] ~ 1;
return page | addr & Ox1FFFFF;
} else {
L1 = L2[(addr>>21) s0x1FF];
page = L1[(addr>>12)s0x1FF]; 0
return page | addr &« OxFFF;
}
}
CSR3
S~ S~ S~ 4096
L4 L3 L2 L1

(cc) hitp-//erratasec blogspot com/

64

Large Page Diagram for x64 Virtual Memory

48 39 30 21 0
CLOEL ettt bbbttt
- Y A\ /- Y A\ Y 7
Page
Page Directory

nege walk(adds) t Map Pointer Page Memory
Sl Level 4 Table Directory Page

L3 = L4[(addr>>39)s0x1FF];

L2 = L3[(addr>>30) s0x1FF];

if (L2[(addr>>21)&0x1FF] & 1) {

page = L2[(addr>>21)&0x1FF] ~ 1; ’{:::::]

return page | addr & Ox1FFFFF;

} else {

L1 = L2[(addr>>21) &0x1FF];

page = L1[(addr>>12)s0x1FF]; 1

return page | addr &« OxFFF;

}
}

CSR3
> > \ » 2-megabytes
L4 L3 L2

(cc) hitp-//erratasec blogspot com/

10k hugepage tables

O
20meg L3 cache

40meg small page tables

User-mode latency

Concurrent memory latency

180

160

140 /_/\

[uny
N
o

=
o
o

am=wmkernel

ey s

nanoseconds

0o
o

60

40

20

QED:

* Memory latency becomes a big scalability
problem for high-level languages

How to solve

* Hugepages to avoid page translation

e Break the chain

— Add “void *prefetch[8]” to the start of every TCP
control block.

— Issue prefetch instructions on them as soon as
packet arrives

— Get all the memory at once

Memory access is parallel

 CPU

— Each core can track 72 memory reads at the same
time
— Entire chip can track ?? reads at the same time
* DRAM

— channels X slots X ranks X banks
— My computer: 3 *2 * 1 * 4 = 24 concurrent accesses
— Measured: 190-million/sec = 15 concurrent accesses

Some reading

* “What every programmer should know about
memory” by Ulrich Draper

e http://www.akkadia.org/drepper/
cpumemory.pdf

Multi-core

Multi-threading is not the same as
multi-core

 Multi-threading
— More than one thread per CPU core

— Spinlock/mutex must therefore stop one thread to
allow another to execute

— Each thread a different task (multi-tasking)

e Multi-core

— One thread per CPU core

— When two threads/cores access the same data, they
can’t stop and wait for the other

— All threads part of the same task

Most code doesn’t scale past 4 cores

?Z]lm““illlm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Performance
—_
N
o
X

#1 rule of multi-core:
don’t share memory

* People talk about ideal mutexes/spinlocks,
but they still suffer from shared memory

 There is exist data structures, “lock free”, that
don’t require them

Let’s measure the problem

A “locked add” simulates the basic
instructions behind spinlocks, futexes, etc.

static void
worker_thread(void *parms)
{
size t 1;
for (i=0; i<BENCH ITERATIONS2; i++) {
pixie locked add u32(&result, 1);
}

<]
E

©
Y
o

millions

200

180

160

140

120

100

80

60

40

20

Total additions per second

Incrementing a shared memory

10

11

12

Latency per addition per thread

Latency per addition operation per core

80

(=]
(5]
2 60

Two things to note

* ~5 nanoseconds
— Cost of an L3 cache operation (~10ns)
— Minus the out-of-order execution by the CPU
(~5ns)
— ...and I'm still not sure
* ~100 nanoseconds

— When many thread contending, it becomes as
expensive as a main memory operation

Syscalls

* Mutexes often done with system calls

* So what’s the price of a such a call?
— On my machine
— ~30 nanoseconds is minimum

— ~60 ns is more typical idealized cases
— ~400 ns in more practical cases

Solution: lock-free ring-buffers

Fetchmost
recentData

No mutex/spinlock

Add newData

No syscalls
Ring Buffer

W

Release okl Data

Since head and tail
are separate, no sharing
of cache lines

Measured on my machine:
— 100-million msgs/second
— ~10ns per msg

Shared ring vs. pipes

static void
reader(void *parms)

* Pipes {
int fd = *(intx)parms;
— ~400ns per msg size_t 1;
for (i=0; i<BENCH ITERATIONS; i++) {
— 2.5 m-msgs/sec int x;
char c;
¢ F(ir1§; x = read(fd, &c, 1);
if (x !'= 1)
— ~10ns per msg) break;
}

— 100 m-msgs/sec

Function call overhead

° ~1.8n5 Function pointer latency

3

 Note the jump for =

“hyperthreading” :..
— My machine has 6
hyperthreaded :

cores

1 2 3 4 5 6 7 8 9 10 11 12

* 6 clock cycles

DMA isn’t

CPU

functions
layers lnMsystem wgurocesslng
system interfaces processes
Bnux/syscalls.h system files sys._fork
user space [et T e o rk
interfaces oTv:-,»- MJM
MVM module

Linux kernel map

memory storage
mmy
memory access files & directories
e access
sys_mmap2 sys_open ~3

memory disk controllers

© 2007 Constantine Shulyupin www.Makelinux.net/kernel_map

human
interface

HI char devices

N

netwo,* ~ntroller

user peripherals

Ver 0.6, 1/1/2008

Where can | get some?

* PF_RING * Netmap * Intel DPDK
— Linux — FreeBSD — Linux
— open-source — open-source — License fees
— Third party
support

e 6WindGate

200 CPU clocks per packet

Intel® Data Plane
Development Kit
(Intel® DPDK)

Linux User
Native Linux* Space
Stack

64 Byte Throughput
Intel® Xeon® Intel® Xeon® Next generation
Processor E5645 Processor E5645 Intel® Processor
2 Sockets 1 Socket 1 Socket
(6 x 2.4 GHz cores) (6 x 2.4 GHz cores) (8 x 2.0 GHz cores)

http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/
communications-packet-processing-brief.pdf

MassSCan

* Quad-core Sandy Bridge 3.0 GHz

£ root@supermicrol: ~/masscan W A - =

| root@supermicrol:~/masscan# bin/masscan 0.0.0.0/0 -p80 --max-rate 30000000 --pfring B
Jetc/masscan/exclude.txt: excluding 3880 ranges from file '

Starting masscan 1.0 (http://bit.1ly/14GZzcT) at 2013-09-14 22:59:14 CMT
-- forced options: -sS -Pn -n --randomize-hosts -v --send-eth

Initiating SYN Stealth Scan

Scanning 3508758232 hosts [1 port/host]

ffate:25011.09-kpps, 56.72% done, 0:00:49 remaining, O-tcbs,

Premature optimization is good

e Start with prototype that reaches theoretical
max

— Then work backwards

* Restate the problem so that it can be solved
by the best solutions

— Ring-buffers and RCU (read-copy-update) are the
answers, find problems solved by them

* Measure and identify bottlenecks as they
occur

Raspberry Pl 2

900 MHz quad core ARM w/ GPU

Memory latency

RasPi2 memory latency

* High latency
Probably due to
limited TLB
resources
* Didn’t test max e , : \

outstanding transactions, but should be high
for GPU

Cache Bounce

Cache bounce on RasPi2

* Seems strange ,

* No performance
loss for two threads

s 10

millions of additi
o N b O

* Answer: ARM Cortex-A8 comes in 2-cpu
modules that share cache

Compared to x86

ARM x86 Speedup
Hz 0.900 3.2 3.6
syscall 0.99 2.5 2.6
funcall 59.90 556.4 9.3
pipe 0.17 2.5 14.8

ring 3.90 74.0 19.0

Todo:

e C10mbench work

— More narrow benchmarks to test things
— Improve benchmarks

— Discover exactly why benchmarks have the results
they do

— Benchmark more systems
* Beyond ARM and x86

