Dartmouth CS258bis:
Advanced Userlands

(Questions preferred — please interrupt and ask)

About this talk

* OS principles
— For doing things the OS wants you to do
— Sound engineering principles in general

e User-land principles
— For breaking the rules
— Sound engineering principles in general

What OS does for you

Locks (spinlocks, mutexes)
PC
Processes/threads/scheduling

Memory allocation
Security
Network stack

What you can do for yourself in
userland, better

Locks (spinlocks, mutexes)
PC
Processes/threads/scheduling

Memory allocation
Security
Network stack

Contrast: spinlocks/mutexes

 What you were taught: better locks

 What you need to know: no locks
— Linux kernel rapidly getting rid of spinlocks

— Replacing with RCU and other lock-free/wait-free
techniques

Most code doesn’t scale past 4 cores

?Z]lm““illlm

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Performance
—_
N
o
X

At Internet scale, code needs to use all
cores

1000%

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

Performance

Reads OR writes are atomic

* Reading an aligned integer from memory is
always an atomic operating

— You'll never get a partial integer
— On any CPU

e Same with writes

Example: network interface stats

~ v x john@bt: ~
File Edit View Terminal Help

john@bt:~$ ifconfig ethl

ethl Link encap:Ethernet HWwaddr 00:0c:29:34:90:e7
inet addr:172.16.134.128 Bcast:172.16.134.255 Mask:255.255.255.0
inet6 addr: fe80::20c:29ff:fe34:90e7/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 -Metric:1

RX packets:201255 errors:0 dropped:® overruns:@ frame:@
TX packets:133251 errors:0 dropped:@ overruns:0 carrier:0
collisions:® txqueuelen:1000

RX bytes:101236165 (101.2 MB) TX bytes:13531654 (13.5 MB)
Interrupt:19 Base address:0x2000

john@bt:~$

Read-Copy-Update

* How it works
— Make a copy of a data structure
— Make all your changes
— Replace the pointer, to your new one vs old one

— Wait until all threads move forward
* Now point to new data structure

— Free old data structure

* Non-blocking
— ...for readers
— ...only one writer/changer at a time

RCU in DNS server

 Pointer to DNS database

* Receive threads do
— Read packet
— Get pointer to database
— Process/send response

* When updating DNS database
— Swap pointer to new database
— Wait for all receive threads to get new packet
— Free old pointer tol old database

Non-blocking algorithms

* “Lock-free”
— At least one thread makes forward progress

e “Wait free”

— All threads make forward progress

— Upper bound to number of steps any thread make
make

Non-blocking algorithms

e Built from primitives
— CAS, CAS2, cmpxchngl6b, LL/SC, lock add
— Intel TSX

e Common data structures
— Queues
— Hash-tables
— Ring-buffers

— Stacks, sets, etc.

Be careful writing your own

* ABA problem

— cmpxchg succeeds, even though a change has
occurred

* Weak-memory consistency on non-x86
processors

— Needs more memory barriers

Performance tradeoffs

* You need to select the lock-free data structure
that fits your needs

— How frequent will contention be?

— How many readers/writers?

— Theoretical wait-free or lock-free?
 Sometimes the traditional spin lock is best

— Especially for things with low contention

Most important synchronization issue

* Avoid more than one CPU changing data at
the same time

* No amount of clever programming saves you
if two CPUs are changing the same cache line
on a frequent basis

Contrast: IPC

* Old school
— Signals
— Pipes
* A hundred thousand messages/second
* New school
— Shared memory

— Lock-free queue
* Millions of messages/second
— Ring-buffer

* Tens of millions of messages/second

Contrast: thread scheduler

* When you want this
— When there are more processes/threads than CPUs

— E.g. Apache with has one process/thread per TCP
connection
* For 10,000 connections

* When you don’t want this

— When you are spreading a single task across many
CPUs

— E.g. Nginx which has one thread per CPU

e For 1-million TCP connections

Q: Why?
A: Scale

Market Share for Top Servers Across the Million Busiest Sites
[LETCRAFT
60% M

Dec 2012
m Apache: 59%
40% ® Microsoft: 13%
0 w Other: 13%
® nginx: 12%
m Google: 2%

—_ —@

'?«QQ% QQQ QQQ '2909 (29\0 (LQ»\Q (LQ\Q rLQ»\‘\ Q\‘\ qp\'\ qp\‘?« (LQ'\'L ‘LQ'\(L
509 3‘3‘\ @6\! geQ ya“ \x\’b“ 50Q 50(\ \‘\6‘; %eQ)’b(\ N\O‘! QOQ

80%

20%

0%

Scalable solutions

Web server developers: Market share of the top million busiest sites

80%

[IETCRAFT

e

60%

40%

20% —

Jan 2017

®m Apache: 42%
B Microsoft: 10%
m Other: 18%

B nginx: 28%
m Google: 2% -

JA

—e

o —a

NP RN R RN PSRN
'Loo@@ NN NN

User-mode threads

* Co-operative multitasking

— Instead fo a blocking read() from network, do a
context switch to another user-mode thread

— No kernel context switch

 Examples
— Coroutines in Lua
— Goroutines in Go

— Java green threads
— Windows ‘fibers’

Asynchronous programing

* API
— Epoll, kqueue, completion-ports
e Examples
— Libuy, libev, libevent
— Nginx
— NodelS
* Bare-metal programming with JavaScript

Case study: Erlang programming
language
* Everything is a user-mode “process”

* No memory sharing...
* ..message passing between processes instead

Case study: go

* Massive use of ‘goroutines’

 Message passing via ‘channels’ between
goroutines

Contrast: dealing with memory

 Old school

— Many processes
— All doing moderate memory

* New school

— One process
— Allocating most all the memory in a system

Different heap

* Get a “lock-free” heap supporting memory
allocation across many threads

— Hoard, SuperAlloc, etc.

 Many straight ‘malloc()’ replacements you can
benchmark for which is best for your software

Garbage collection is bad

 GCis usually “stop-the-world’
— This hurts network apps
— Introduces large amount of jitter

e Continuous GC is slow

e Conclusion

— GC languages like Go suboptimal
— Non-GC Rust better
— Cis always best, of course

CPU

co-locate data

* Don’t: data structures all over memory
connected via pointers

— Each time you follow a pointer it’ll be a cache miss
— [Hash pointer] -> [TCB] -> [Socket] -> [App]

* Do: all the data together in one chunk of
memory
— [TCB | Socket | App]

compress data

* Bit-fields instead of large integers

* Indexes (one, two byte) instead of pointers (8-
bytes)

* Getrid of padding in data structures

“cache efficient” data structures

alblef - |x/yvlgq | HashTable
RN \“\
a-l | erospace m-z| rrow b-b| ike a-a | che b-z | omputer c-z | deskiop
gorithm t clice

“NUMA”

* Doubles the main memory access time

I/O
Controller

I/O
Controller

“huge pages”

* Avoid unnecessary TLB cache misses
* At scale page tables won’t be in cache

— Thus, uncached memory lookups require two memory
lookups

— It’s a big reason why kernel code (no virtual memory)
is faster than user-mode
 That, and no transitions

* Linux auto-hugepage
— Linux now automatically gives huge pages underneath

Contrast

* Old school
— Many users on the same system
* New school
— Appliance dedicated to a single task

— Any security you’ll have to do yourself
— E.g. CloudFlare revealing uninitialized memory

Contrast: network

 Old school

— A network stack for many processes

* New school
— Your own network stack, not shared with others

functions system
layers

kernel/

system interfaces
Inux/syscalls.h system files

copy_from_user

{ o L:u«.c
interfaces “'T S ml_... |

map
Sys_reboot

processing
kemnel/

processes

Sys_execve sys_fork

sys_Viork
sys_clone

module

virtual

Linux kernel map
memory

mmy

memory access

sys_brk
sys_mmap2

storage

files & directories
access

Iprociselfimaps do_path_lookup

memory disk controllers netwo,

© 2007 Constantine Shulyupin www.MakeLinux.net/kernel_map

“ntrollerr

human
interface

HI char devices

user peripherals

Ver 0.6, 1/1/2008

Map driver buffer with userland

Fetchmost
recentData

e All drivers have ring-
bu'ﬁ:ers Add newData

— But Linux pulls packet out,
with indeterminate lifetime

— Lifetime of these packets is
whenever the tail moves
forward

e Near zero overhead

— About 10 CPU instructions
per packet to free up a
packet buffer

Ring Buffer

W

Release okl Data

DMA isn’t

CPU

Where can | get some?

* PF_RING * Netmap * Intel DPDK
— Linux — FreeBSD — Linux
— open-source — open-source — License fees
— Third party
support

e 6WindGate

200 CPU clocks per packet

Intel® Data Plane
Development Kit
(Intel® DPDK)
12.2 Mpps t) Linux User
Native Linux* Space
Stack
64 Byte Throughput
Intel® Xeon® Intel® Xeon® Next generation
Processor E5645 Processor E5645 Intel® Processor
2 Sockets 1 Socket 1 Socket
(6 x 2.4 GHz cores) (6 x 2.4 GHz cores) (8 x 2.0 GHz cores)

http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/
communications-packet-processing-brief.pdf

Old UDP: 500 kpps

Adapter

UDP + receive queues +
SO REUSEPORT =3 mpps

Thread

Adapter Adapter Adapter Adapter

Custom = 30 mpps

4 A A

User-mode network stacks

* PF_RING/DPDK get you raw packets without a
stack

— Great for apps like IDS or root DNS servers
— Sucks for web servers

* For TCP, there are commercial stacks available

— 6windgate is the best known commercial stack,
working well with DPDK

— Also, some research stacks

— Requires change in your software to exploit them,
such as asynchronous

Control plane vs. Data plane

Data Plane

RAM

e L LLLLLL
NIC 19%9

Control Plane

Case study: masscan

What is...

— Ports scans entire Internet
— Like nmap, but more scalable

Transmits 30-million packets/second

— PF_RING user-mode ring-buffer

Pointer to TCB, then TCB

— Receives far fewer packets-per-second than an IDS

Has it’s own IP address
— Even when shared with machine

Case study: robdns

What is..
— DNS server, authoritative only (non-recursive)

— ~10-million queries/second
* Built to withstand DDoS
* BIND9 does 100,000 queries/second

Biggest gains come from custom networking
— User-mode ring-buffer
— Without that, the limit is 1-million queries/second

Other optimizations then become reasonable

BINDO: if you can’t write fast, you should instead write
safe

— Should be written in JavaScript, not C

Case study: BlackICE

What is..

— Intrusion prevent system
— (aka. Inline IDS)

Dual 3GHz Pentium 4
Forwards 2-million packets/second (“line speed”)
10-microsecond latency

Hash directly to TCBs

— Avoids one pointer chase
— Allows prefetching of next TCB

On Windows and Linux

Conclusion

