
On the Reliability of Wireless Fingerprinting using Clock
Skews ∗

Chrisil Arackaparambil, Sergey Bratus, Anna Shubina, and David Kotz
Dept. of Computer Science, Dartmouth College

{cja, sergey, ashubina, kotz}@cs.dartmouth.edu

ABSTRACT
Determining whether a client station should trust an ac-
cess point is a known problem in wireless security. Tradi-
tional approaches to solving this problem resort to cryptog-
raphy. But cryptographic exchange protocols are complex
and therefore induce potential vulnerabilities in themselves.
We show that measurement of clock skews of access points
in an 802.11 network can be useful in this regard, since it
provides fingerprints of the devices. Such fingerprints can be
used to establish the first point of trust for client stations
wishing to connect to an access point. Fingerprinting can
also be used in the detection of fake access points.

We demonstrate deficiencies of previously studied methods
that measure clock skews in 802.11 networks by means of
an attack that spoofs clock skews. We then provide means
to overcome those deficiencies, thereby improving the reli-
ability of fingerprinting. Finally, we show how to perform
the clock-skew arithmetic that enables network providers to
publish clock skews of their access points for use by clients.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design

General Terms
Wireless, Measurement, Security

1. INTRODUCTION
∗This article results from a research program in the In-
stitute for Security, Technology, and Society (ISTS), sup-
ported by the U.S. Department of Homeland Security under
Grant Award Number 2006-CS-001-000001, and NSF Award
#0916565. The views and conclusions contained in this doc-
ument are those of the authors and should not be inter-
preted as necessarily representing the official policies, either
expressed or implied, of the U.S. Department of Homeland
Security.

Clock skews are the inherent tiny drifts in the clocks of hard-
ware devices due to variations in the manufacturing pro-
cess. The use of clock skews of devices on a network for
the purpose of fingerprinting those devices was first studied
by Kohno, Broido, and Claffy [15]. They showed that it
was possible to remotely measure the microscopic skews of
devices, and that their fingerprinting method could identify
individual devices despite errors inherent in remote measure-
ments. Such fingerprinting has innumerable applications.
For instance it is useful from the point of view of network
forensics for identification purposes. It is also useful in pen-
etration testing to identify network systems to know their
weaknesses (e.g., the method of Kohno et al. can be used to
identify virtual hosts served by the same physical device).

The study of Kohno et al. focused on the measurement
of skews in wide-area networks by observing timestamps in
TCP and ICMP packets. On the wireless side, Jana and
Kasera [14] studied the approach of Kohno et al. at the MAC
layer of 802.11 networks. They observed that, due to the es-
sentially zero latency and the availability of a high frequency
stream of high precision beacon timestamps, the process of
measuring clock skews became more accurate and effective
in these networks. They also showed that the clock skews
of wireless devices remain consistent over time and changing
external factors like temperature, and that the skews vary
across devices.

In the past, research on security of wireless networks cen-
tered around securing access points (APs) from unautho-
rized malicious clients, since APs were deemed vulnerable,
exposed entities. But advances in wireless security using
authentication have mitigated the threat of unauthorized
access. Because APs are managed by the network provider,
their security could be managed centrally, and care can be
taken to ensure known vulnerabilities do not remain. There
has since been a shift in the focus of attention towards pro-
tecting clients in wireless networks. An important threat in
this respect is from faked APs.

The main application considered by Jana and Kasera [14]
was that of detecting fake APs. Today, tools like rglueap

and rfakeap [2] are readily available that make it easy for an
attacker to set-up an AP that fakes a real one. Identifying
fields in 802.11 frames like MAC address, BSSID, and SSID
can be easily set to values desired by the attacker. A client
attempting to associate with the real AP can be diverted to
the fake AP, thus becoming vulnerable to various kinds of

1

attacks. As pointed out before [13, 14], the attacker may
also attempt to avoid detection of the fake AP by either
operating on a channel different from the real AP, or by
providing a higher signal strength to the client.

2. THE ROLE OF FINGERPRINTING IN SE-
CURING WIRELESS INFRASTRUCTURE

Initially, 802.11 link layer security measures concentrated on
preventing access of unauthorized clients to the network’s
APs. The entire concept of 802.11 authentication, associa-
tion, and in particular the design of the 802.11 client state
machine, proceeded from the apparent assumption that the
primary goal of the security mechanisms was to protect the
infrastructure of the network from rogue clients that would
seek to obtain access to the infrastructure. The APs were
apparently thought of as the “perimeter” of the network,
vested with the role of protecting it against rogue clients.

However, subsequent experience showed that the threat model
underlying this design was inherently flawed. Clients (with
their stored representations of trust relationships) turned to
be a much more important piece of the holistic security puz-
zle than previously thought. In fact, they emerged as the
weakest link in the so-called perimeter.

In ISO Layer 3, attacking clients of a network and through
them gaining access to the presumably well-protected inter-
nal network resources (by exploiting existing trust relation-
ships between these resources and the clients) has emerged
as an efficient attack strategy. In fact, exploiting clients by
tricking them into establishing connections to rogue services
became a leading strategy for both exploitation and penetra-
tion testing as evidenced by an entire BlackHat 2009 track
(e.g., [18]) devoted to client exploitation functionality in the
popular Metasploit penetration testing tool [3].

It did not take long till the same attack approach was re-
alized in 802.11 Layer 2: trusted clients were tricked into
interaction with fake access points, pretending to be a part
of the trusted infrastructure. The trend towards exploiting
the clients was amplified by the complex nature of the 802.11
link establishment. Empirically, vulnerabilities are associ-
ated with complexity of processing diversely structured in-
puts. 802.11 link layer driver code is exemplary of just such
complexity. In particular, even beacon and probe response
frames—to be processed by clients before any trust in the
sender can be established—contain many variable-length op-
tional Information Element structures, some of which are
also vendor-specific. It is hardly surprising that crafting
malformed inputs in these fields quickly emerged as an ex-
tremely efficient attack methodology in [9]. This methodol-
ogy yielded such achievements as“hijacking a Macbook in 60
seconds” [8] (by way of a crafted probe response leading to
attack code execution within the ring zero driver kernel con-
text) and the subsequent automation and refinement of this
technique that revealed other 802.11 driver vulnerabilities—
the so-called “Month of kernel bugs” (see, e.g., [7]). As we
explained above, wireless clients became a prominent part
of the network’s attacked perimeter even before they at-
tempted to establish association with a trusted infrastruc-
ture! We remark that potential vulnerabilities in processing
of complex data structures required for cryptographic au-
thentication of the access points by the client are still largely

unexplored and might provide another efficient attack vec-
tor.

In the light of the clients becoming the forefront of network
exploitation, identifying the tools of such exploitation—fake
access points— delivering crafted link layer inputs to the
clients becomes very important. Rogue access points have
long been seen as security threats; for example, non-security-
minded employees may introduce unauthorized access points
into organizations’ networks for convenience and thus create
a weak link in the network perimeter, or attackers may set
up fake (or the so-called “evil-twin”) access points to capture
communications and conduct man-in-the-middle attacks be-
tween the unwitting client and the user. Popular exploita-
tion tools, such as Karma [20], were developed to meet pen-
etration testers’ demand. Such early attacks were described
by wireless security researchers in [13, 19]. However, all of
these traditional fake AP scenarios assume successful estab-
lishment and maintenance of a layer 3 connection, whereas a
new class of attacks is based on compromising the client at a
much earlier point: either during scanning for available net-
works or during authentication or association attempts. As
such, strong cryptographic schemes for authenticating ac-
cess points, such as WPA2-Enterprise, cannot mitigate this
threat. Fake access points thus become a tool of delivering
link layer exploits.

Thus the problem of protecting 802.11 clients at their most
vulnerable— in the early stages of establishing authentica-
tion/association —becomes paramount to the new client-
centric view of network security. We note that at these
stages the clients are most susceptible to deception, because
they must make their decision to join a network based on
easily fakeable data, such as the AP’s MAC address, ESSID,
and various Information Elements in the beacon and probe
response frames, as well as physical layer characteristics,
such as signal strength. (Creating superior signal strength
is generally not a hard problem for an attacker.) Detect-
ing such deceptions thus becomes important for both clients
(where it needs to be easily and quickly accomplished as
a pre-authentication step) and wireless intrusion detection
systems (WIDS).

As we have seen, establishing trust for an AP can be a tricky
issue for a client attempting to associate with it. Traditional
approaches to such trust-relationship problems most often
find solutions in cryptographic exchange protocols. With
respect to wireless security, the 802.11i RSNA (Robust Se-
curity Network Association) provides such a functionality.
Importantly however, such protocols that are dependent on
cryptography are complex and therefore induce potential
vulnerabilities in themselves. These protocols must be im-
plemented with great care. Before involving in complex
cryptographic exchange protocols with an untrusted entity,
we propose using clock-skew fingerprinting as a means of
providing a first point of trust for clients. Once the fin-
gerprint of the AP is verified, the clients can proceed with
such protocols to reaffirm their trust. As such, we propose
our methods as a complement to the existing authentication
methods.

Unlike Jana and Kasera’s proposal [14], where the fake AP
detection procedure was meant to be implemented in a WIDS

2

node, in our work we even enable the measurements to be
done on wireless clients themselves. To allow for this, we
need to make use of clock skew arithmetic as described in
Section 6.

Our contributions
In this work we show how previous methods for measuring
clock skews are inadequate for fingerprinting and provide
a means to overcome the problems that arise. Our work
provides new insights into the implementation of the 802.11
standard in commodity hardware. In particular, we present

• a new method to measure clock skew, rather, a more
precise clock to measure it against;

• an attack that spoofs the clock skew of a fake AP to
mimic that of a real one, thereby rendering the two
indistinguishable by the methods proposed previously;

• additional parameters to measure the authenticity of
the skew, enabling the detection and mitigation of
spoofing attempts;

• clock skew arithmetic, that enables a network provider
to publish skews of APs in the network independent of
client stations.

In the following sections we describe these contributions in
detail.

The remainder of the paper is organized as follows. In Sec-
tion 3 we outline the synchronization methods specified by
the 802.11 protocol standard, and also some details on how
these methods are implemented by commodity hardware and
device drivers. We also present our methodology for mea-
suring clock skews of APs in this section. Then, in Section 4
we present our attack that spoofs the clock skew of APs. We
then present the two methods to detect attempts at clock
skew spoofing in Section 5. In Section 6 we show how to
do arithmetic with clock skews. Finally, we discuss related
work in Section 7, and conclude in Section 8.

3. MEASUREMENT OF CLOCK SKEWS
We first give an overview of the timing and synchroniza-
tion processes in wireless networks as specified in the IEEE
802.11 standard [1]. These processes provide the timing in-
formation required to compute the clock skews of APs.

In an 802.11 network operating in infrastructure mode, ev-
ery station maintains a timer. This timer is synchronized
with the timer in the AP the station is associated with via
a Timer Synchronization Function (TSF). The synchroniza-
tion is achieved through the beacon frames transmitted by
the AP at periodic intervals. The most common setting
for the beacon interval is 100 milliseconds, so that beacons
are commonly transmitted at the rate of 10 beacons/second.
The beacon frames contain the TSF timer timestamp of the
AP “at the time that the data symbol of the first bit of the
timestamp is transmitted to the wireless medium,” adjust-
ing for hardware transmission delays. The timer is of mi-
crosecond resolution and is maintained as a 64-bit counter.
Client stations set their local TSF timers to the values ob-
served from beacon frames, again, adjusting for hardware

delays. This means that the beacon timestamps provide a
high-precision mechanism to measure the skew in the TSF
timer of APs.

Clock skews
We now define the notion of clock skew as given by Moon,
Skelly, and Towsley [17], and later used by Kohno et al. [15]
and Jana and Kasera [14]. To measure the clock skew of an
AP, we passively monitor the wireless interface of the mea-
suring device for beacon frames from the AP. For beacon
frame i we record the time ti when it was received and the
timestamp Ti in the beacon frame. In this manner we obtain
a set of n measurements (ti, Ti), 1 ≤ i ≤ n. The parameter
n provides a tradeoff between the quality of measuring the
skew and the time required to measure the skew. We found
that sampling n = 100 beacons was sufficient in our exper-
iments (as was also observed in [14]). This corresponds to
an overhead of 10 seconds for measuring the clock skew with
the common beacon interval of 100 milliseconds. We denote
by xi the elapsed time since the first beacon was observed,
i.e., xi = ti − t1. Similarly, if we let wi = Ti − T1, then the
quantity yi = wi − xi is called the clock offset of the ith
measurement. In this way we get a set of n points (xi, yi)
representing the clock offsets. Ideally, there should be no
relative skew between the measurer’s clock and the beacon
timestamps representing the AP’s clock. In this case we
would have that wi = xi for all measurements so that all
points would lie on the X-axis. In reality we observe that
the clock offset points lie on an approximately linear pattern
that has some non-zero slope. By approximating the slope
of this linear pattern, we obtain the clock skew of the AP.
Skews observed in practice are tiny, but consistent, and are
reported in parts per million (ppm).

There are two methods used in practice to approximate the
slope of the clock offset points, and both involve fitting a line
y = s · x + c to the points and reporting the resulting slope
s as the clock skew. The first one is the Linear Program-
ming Method (LPM) [17, 15, 14]. This method produces a
line that upper-bounds the set of clock offset points, while
minimizing the sum of the distances of the points from the
line. In other words, we have the optimization problem with
constraints

s · xi + c ≥ yi, 1 ≤ i ≤ n,

and objective function

n
X

i=1

(s · xi + c − yi)

that needs to be minimized. This method chooses an upper
bound that captures the effects of outliers due to network
delays. This linear programming problem can be solved by
standard LP-solvers, but the special 2-variable version we
consider has a linear time solution [10, 16].

LPM is useful when the set of clock offset points contains
many outliers, as is the case when the available measure-
ments are not very accurate (e.g., when network delays play
a role in the measurements). However, it was shown by Jana
and Kasera [14] that since measurements of clock skews from
beacon timestamps are very precise and do not suffer from
these effects, a simple linear least square fit (LSF) suffices.

3

LSF is a simple statistical regression method that fits a line
y = s · x + c to the set of clock offset points (yi, xi) by
minimizing the least square error

n
X

i=1

(yi − (s · xi + c))2.

LSF was successfully applied in measuring clock skews from
beacon timestamps [14]. The researchers also point out that
for the specific application of measuring clock skews, the use
of LPM may actually be undesirable because the attacker
may be able to affect the outcome of the measurements, and
spoof the clock skew of the real AP, by injecting a small
number of beacons with carefully chosen timestamps that
would appear as outliers. LSF also has the advantage that
it can be implemented with low overhead—all that is re-
quired to fit the line are the sums

P

xi,
P

x2
i ,

P

yi, and
P

xiyi, all of which can be computed in an online fashion
with about 7 arithmetic operations per beacon. So it may
even be feasible to implement clock-skew fingerprinting with
LSF in hardware.

Monitor mode synchronization
The timestamps in the beacon frames form one half of the
required information for estimating clock skews. The mea-
surement of the arrival time of the beacon frame is an im-
portant problem, since its accuracy impacts the accuracy
of estimation. There were several clocks considered in [14]
to report the beacon arrival time. It was observed that the
timestamps reported by the pcap packet capture library were
not accurate enough for measurement. Another clock con-
sidered was the jiffies counter maintained in the Linux
kernel and reported in the Prism header of the frames. But
this counter had a low (a few millisecond) resolution that was
not sufficient. The researchers considered using the times-
tamp reported in the Radiotap header in the pcap field ra-

diotap.mactime. This timestamp is reported by the driver
from the TSF timer maintained by the wireless hardware.
But the approach was abandoned since the timer values were
updated from the incoming beacon timestamps and hence
did not serve as a stable clock. The approach finally found
to work was to use the time reported by the Linux kernel
via the function do_gettimeofday().

However, this method too suffers from some drawbacks. The
do_gettimeofday function is implemented using timer inter-
rupts, and is adjusted in the kernel for anticipated delays.
So it could be expected to shift in accuracy, and is only as
accurate as the underlying interrupt mechanism. Also, since
the skew of the clock represented by the function depends
on the implementation of the function and underlying rou-
tines, we expect this skew to vary with the updates to the
system. This would require clients to recalibrate their skew
measurements before fingerprinting APs again. We have
observed significant changes in the implementation of the
do_gettimeofday function between kernel releases.

We present a new method of measuring the arrival time of
beacons that is more accurate than using do_gettimeofday.
Since this measurement is critical to estimating the clock
skew, our method leads to more accurate measurements.
Further the clock used in our method is implemented in the

Figure 1: Clock offsets with and without the mea-
suring station syncing its TSF timer with Linksys 2.

wireless hardware, and hence its skew does not change with
software updates. Our method depends on the synchroniza-
tion behavior of the Atheros chipset based cards that we use.
We explain this behavior now. In the course of our discus-
sion we state some observations and verify them empirically.
These observations turn out to be crucial to our techniques
described in later sections.

For the experiments in the rest of the paper we use two
laptops as measurement stations. These laptops run the
Ubuntu 9.04 GNU/Linux distribution (with kernel 2.6.28-
15) and are each equipped with wireless card based on the
Atheros 5212 chipset. Our choice of this chipset is dictated
by the availability of the open-source Madwifi driver. The
Madwifi driver ath_pci is used with these cards for the mea-
surements. In our experiments we also use two Linksys APs,
henceforth referenced as Linksys 1 and Linksys 2 respec-
tively.

The monitoring typically performed to capture the beacon
frames is done in the so-called monitor-mode of the wire-
less interface. The TSF timer maintained in the wireless
hardware is a high-accuracy microsecond resolution timer,
and it would serve best for our measurements of beacon ar-
rival time, since its value is provided directly to the driver
by the hardware and is not affected by other processes in
the system. However, this timer was deemed as unusable
in [14] because the timer was kept synchronized to the in-
coming beacon timestamps even in monitor mode. We now
give a method to use this timer. It should be noted that in
monitor mode, it is not necessary to synchronize the TSF
timer with the incoming beacon timestamps, since the card
is completely passive in this mode. However, cards with
the Atheros chipset continue to synchronize with the bea-
con frames observed from the AP that the card was last
associated with.

This leads to an interesting possibility: what happens when
the AP that the card was last associated with becomes inac-
tive and stops broadcasting beacon frames? In this case the
timer on the card, not being able to synchronize with the

4

Clock Skew
Linksys 1, when synced with Linksys 2 14.37
Linksys 2, when synced with Linksys 2 -0.01

Linksys 1, when not synced 6.68
Linksys 2, when not synced -7.85

Table 1: Clock skew measurements with sample
sizes of 100 beacon timestamps, with and without
synchronization with Linksys 2. Figures rounded to
the nearest hundredth.

beacon timestamps, should begin to drift with its own skew.
And indeed, this is confirmed empirically with our experi-
ments. We measured the skew of Linksys 1 and Linksys 2
in monitor mode, by first associating the measuring laptop
with Linksys 2 and then switching the laptop to monitor
mode. We then turned Linksys 2 off and again measured the
skew of Linksys 1. Figure 1 shows the clock offsets points
measured in the different cases, and Table 1 reports the
measured clock skews. Observe that the estimated skew of
Linksys 1 varied significantly before and after Linksys 2 was
turned off. Also, the estimated skew of Linksys 2 was negli-
gible. Note that to similarly measure the skew of Linksys 2
when the associated AP was turned off, we had to first as-
sociate with Linksys 1 and repeat the process. This leads us
to the following observations.

Observation 1. Given a wireless card in Station mode
and associated with an AP A, when the card is switched to
Monitor mode, it continues to update its TSF timer register
with the beacon timestamps from AP A.

Observation 2. Given a wireless card in Station mode
and associated with an AP A, when the card is switched to
Monitor mode, if AP A ceases to transmit beacons, then the
TSF timer maintained in the wireless card begins to drift
with its own, actual skew.

The next two observations follow as a consequence of Ob-
servation 1.

Observation 3. Given a wireless card in Station mode
and associated with an AP A, when the card is switched to
Monitor mode, the clock skew of AP A as measured by the
card is zero (imperceptible).

Observation 3 suggests that the skew of the measuring card
becomes equal to the skew of the AP it is synchronized with.
From Table 1 it may further be observed that the skew of
Linksys 1 when measured by the card synchronized with
Linksys 2 is approximately equal to the difference of the
skews of Linksys 1 and Linksys 2 when there is no synchro-
nization. We have observed this behavior consistently with
different APs; we omit the data for the sake of brevity. This
indicates that it is possible to compute the skew of a wire-
less device as measured by another, by passively measuring
the skews of the two devices. This brings us to our next
observation.

Mean Variance
TSF Timer 6.7011 0.0001245

do_gettimeofday -28.1347 0.0659

Table 2: Mean and variance of 10 clock skew mea-
surements (ppm) using LSF with the two clocks.
Beacon timestamp sample size is 100.

Figure 2: Variance in clock skew measurements us-
ing LSF as a function of the beacon timestamp sam-
ple size.

Observation 4. Given a wireless card in Station mode
and associated with an AP A, when the card is switched to
Monitor mode, the clock skew of another AP B as measured
by the card is equal the skew of AP B as would be measured
by AP A.

The issue of performing arithmetic to determine the skew
between a pair of wireless devices is covered in more detail
in Section 6.

Our measurement technique
The observations listed earlier give us a new method of mea-
suring beacon arrival times—using the TSF timer to do it.
For the experiments in the rest of the paper that use the
TSF timer, we use the timer by first associating with an
AP and then switching off power to the AP. On a client
station the same effect can be achieved by either removing
and re-inserting the wireless card, or even entirely through
software by removing and reloading the driver modules. It
may even be possible to power-cycle the card and flush the
state through the driver interface, but we have not verified
this.

Our next experiments show that using the TSF timer yields
much higher accuracy than using do_gettimeofday. To
compare the two methods we collected 10 sets of beacon
traces with each method. As in [14] we disable NTP to avoid
its effect on the do_gettimeofday method. For each set of
traces we measured the clock skew of Linksys 1 using sample
sizes ranging from 100 beacons to 600 beacons. Note that

5

#beacons tsf-Mean tsf-Var gtod-Mean gtod-Var
100 6.70 4.62e-04 -36.70 1000
200 6.70 1.92e-04 -27.22 249.41
300 6.70 7.92e-05 -28.07 6.24
400 6.70 7.04e-05 -26.01 3.18
500 6.70 7.10e-05 -27.88 0.35
600 6.70 5.74e-05 -28.05 0.19

Table 3: Mean and variance of 10 clock skew mea-
surements using LPM with the two clocks, for dif-
ferent timestamp sample sizes. do_gettimeofday is
abbreviated as gtod.

at the standard beacon interval of 100ms, it takes 1 minute
to observe 600 beacons. Then for each set of traces, and
each sample size we computed the mean clock skew and the
variance of the clock skew. Our observations are presented
in Table 2 and Figure 2 (using LSF), and in Table 3 (using
LPM). Observe that the variance of the clock skew when us-
ing the TSF timer is consistently several orders of magnitude
smaller that the variance when using the do_gettimeofday

function to report the beacon arrival times. This points to
the superior stability and accuracy of the TSF timer method.

4. VULNERABILITY OF PREVIOUS MEA-
SUREMENT METHODS

In this section we present a spoofing attack that is able to
fool the method of [14] that relied only on the clock skew
measurement to detect spoofing. Our technique finds its
basis in two key points:

1. Observations 3 and 4 show that a measurement device
measures different clock skews depending on whether
its TSF timer is synchronized with the beacon times-
tamps from an AP, because that timer, being synchro-
nized, acquires the skew of the AP.

2. The Madwifi driver allows the multiple creation of
virtual interfaces (VAPs) for a single physical device.
These virtual interfaces may be in different modes—
station, master, or monitor—and in particular, one
station VAP is allowed to exist along with several AP
VAPs. These virtual interfaces can then be brought
“up” to begin operation.

These points suggest that we might be able to have an AP
VAP and a station VAP, with the station VAP associated
with the real AP, and the AP VAP configured as the fake
AP. Since the two interfaces would share the same hardware
TSF timer, the timer would acquire the skew of the real AP
due to the station VAP associating with it. This skew would
be reflected in the timestamps in the beacons emitted by the
AP VAP, thereby spoofing the clock skew of the real AP.

However, carrying out the above attack required some mod-
ification of the Madwifi driver. The hardware device can be
put into only one of the operating modes at a time—either
station or AP—and in the case when a station VAP and an
AP VAP are created, the driver puts the card into AP mode

Real skew Real intercept Fake skew Fake intercept
16.79 0.53 16.78 -2.13
16.82 0.51 16.69 1.43
16.80 -0.02 16.74 -1.34
16.81 0.17 16.78 -1.10

Table 4: Clock skews and line intercepts from real
and fake AP, rounded to the nearest hundredth.

Figure 3: Clock offsets with 100 beacon timestamps
from the real AP and the fake AP.

and simulates the operation of the station VAP in software.
Since the updating of the hardware TSF timer upon receipt
of beacons is done by the hardware logic, the station VAP
does not update that timer when the card is in AP operating
mode.

The interface provided to the driver does not allow for set-
ting of the TSF timer directly. However, it does allow for
getting the timer value. The code for getting the timer re-
veals the address of the hardware register maintaining the
TSF timer. We modify the driver to write the beacon times-
tamp to that register whenever the station VAP receives a
beacon frame from the real AP. This leads to another prob-
lem: the timers in the beacon scheduling queue for the AP
VAP are disrupted by our register updates and the AP VAP
stops broadcasting beacons. To continue to transmit bea-
cons we use the ath_send_beacon() function in the driver
that is used to send out beacon frames. We force beacon
transmission each time we update the hardware timer regis-
ter by calling this function. We then find that beacons are
transmitted as required, and we compare the clock skews of
the real AP and the fake AP. Table 4 shows the skews from
four measurements. It can be seen that it is not possible to
detect the fake AP by comparing the clock skew alone, with
a reasonable degree of certainty. Figure 3 shows the clock
offset points from the two APs. The synchronization behav-
ior produces periodic dips in the plot. In Section 5 we show
how to capture this behavior to measure of the reliability of
the clock skew.

6

frequency
22 MHz

Chan. 10 Chan. 11Chan. 9

Figure 4: Overlapping channels in 802.11bg net-
works.

The authors of [14] present several arguments showing why
the skews of APs cannot be fabricated. We briefly discuss
the reasons why their arguments do not hold in our case.
The failing assumption made in their arguments is that the
attacker, on knowing the clock skew of the the real AP,
would need to perform arithmetic with his local timer val-
ues to compensate for his own skew. In our attack this is not
the case. We do not measure the skew of the real AP in ad-
vance and try to compensate for it. Rather we continuously
use the timestamps in the beacon frames from the real AP
to update the TSF timer. The first argument in [14] shows
the failure of trying to compensate for the attacker’s local
skew when injecting beacons frames using the raw packet
injection mode allowed by the driver. This is not the ap-
proach we take so we do not suffer from the transmission
delays that affect the ability to spoof the clock skew. The
other approach considered was that of setting the wireless
hardware timer directly through software. The authors ar-
gue that such an attempt at spoofing might be detected by
measuring the medium contention time for the AP. Since the
attacker would need to perform floating point operations in
the wireless hardware to select the right offset and mimic
the clock skew of the real AP, the overhead would have an
observable effect on the medium contention time. As we
note above, we use the beacons timestamps from the real
AP continuously and do not need to do any arithmetic, so
we avoid this problem altogether.

Extending the scope of the attack
We now show how the scope of the attack can be extended
by using a “bridge” AP. The function of the bridge AP is
to allow the attacker to move the fake AP to cover a wider
range (perhaps in order to be out of range of the real AP),
or to operate in a different channel, all while still spoofing
its clock skew. The bridge AP synchronizes its TSF timer
with that of the real AP as described earlier, and the fake
AP synchronizes its timer with that of the bridge AP. To
operate on a different channel we take advantage of the fact
that frequency ranges of adjacent channels as prescribed by
the 802.11 standards overlap (see Figure 4).

In our experiment we have the real AP operating on channel
11, the bridge AP on channel 10, and the fake AP on channel
9. Our results from four traces are shown in Table 5 and
Figure 5. As it may be expected, the quality of spoofing
degrades due to the bridging, but the clock skew of the fake
AP is still fairly close to that of the real AP.

Real skew Real intercept Fake skew Fake intercept
17.35 -0.78 16.29 71.49
17.29 0.70 17.58 -10.63
17.26 -0.46 17.54 -10.49
17.25 -0.19 16.49 -19.53

Table 5: Clock skews and line intercepts from the
real and bridged fake AP, rounded to the nearest
hundredth.

Figure 5: Clock offsets with 100 beacon timestamps
from the real AP and the bridged fake AP.

5. IMPROVING THE RELIABILITY OF FIN-
GERPRINTING

We now present techniques to mitigate the risks of attacks
like those presented in the last section, by gauging the reli-
ability of the measured clock skews.

5.1 Line-fitting error
The most straightforward approach is to measure the er-
ror in line fitting. We observed that the spoofing attack in
the previous section introduced an artifact—the dips in the
plots of clock offset points in Figures 3 and 5. There are
several ways to measure these fluctuations. We could mea-
sure the (least square) error of line fitting, i.e., the sum of
the distance of the clock offset points from the line fitted
to them. However, this approach requires first fitting the
line using LSF and then using the clock offset points again
to compute the fitting error. Since that would involve more
computational overhead, and also require storing the clock
offset points, we avoid the approach. Instead we use two
metrics that do not require this overhead.

First, we consider the x-intercept c of the fitted line y = s ·
x+c. Since we assume that, in the ideal case, the line passes
through the origin, the absolute value of the intercept serves
as one parameter to measure the fitting error. Tables 4–
5 show the values of the parameter c with our proposed
attacks. The absolute value of c is higher for the fake AP
when compared to that of the real AP.

7

Figure 7: Variation in parameters c and γ with dif-
ferent values of the beacon interval.

We also consider the jitter of the beacon timestamps as a
means to measure reliability of the clock skew. Given a set
of clock offset points, the jitter γ is computed as

γ =
1

n − 1

n−1
X

i=1

|yi+1 − yi|

and provides a measure of the temporal variations in the
beacon timestamps. We defer the measurements of jitter in
our attacks to the next section, where we analyze the effect
of the beacon interval on our attacks.

5.2 Analysis of beacon-interval on skew mea-
surements

The value of the beacon interval of the AP affects the abil-
ity of the attacker to spoof its clock skew with our attack.
When the beacon interval is set to smaller values, the at-
tacker needs to present a finer-grained clock via the beacon
timestamps. At lower beacon intervals the fluctuations in
the synchronized clock of the attacker become more promi-
nent since the various processing delays play a relatively
larger role. As the beacon interval is increased, the behavior
of the fake AP tends towards presenting a beacon timestamp
from the real AP in the beacon timestamp of the fake AP
with minimal effect of those delays.

To validate this hypothesis we perform our attack with dif-
ferent settings of the beacon interval parameter, and mea-
sure the parameters c and γ described earlier for testing
the reliability of clock skew measurements. The clock off-
set points for this experiment are shown in Figure 6 (note
the out-of-order numbering). We observe that the dips in
the plots increase in magnitude as the beacon interval is re-
duced. To be sure that this is not an artifact of the different
scale in the plots, in Table 6 and Figure 7 we show the varia-
tion of the parameters c and γ in terms of the relative change
of their average values over four measurements. We observe
that the changing magnitude of the dips seen in Figure 6 is
captured very well by the jitter parameter γ, and to a good
extent also by the intercept c.

Figure 8: Measuring skews between a pair of access
points using skew arithmetic.

Thus, to avoid clock skew spoofing attempts it is advisable
to use a beacon interval that is as small as permissible, and
use the parameters c and γ to gauge the reliability of clock
skew measurements.

6. SKEW ARITHMETIC
In this section we show how to perform arithmetic with clock
skews. For example, if we know the clock skew sAB of AP B
as would be measured by AP A, then we can compute the
skew sBA, i.e., the clock skew of AP A as would be mea-
sured by AP B. While measuring clock skews, we assume
that the clock offsets lie on a line passing through the ori-
gin. If ∆A and ∆B denote the time elapsed since the start
of an experiment as reported by the clocks of AP A and
AP B respectively, then the clock offset (x, y) is given by
x = ∆A, y = ∆B − ∆A. By our assumption we have that
y = sABx, so that ∆B = (1 + sAB)∆A. By a symmetric
argument we get that ∆A = (1 + sBA)∆B . Solving these
two equations for sBA we find that

sBA = −sAB/(1 + sAB). (1)

We can also compute the clock skew sBC of AP C as mea-
sured by AP B, when given the clock skews sAB and sAC

(see Figure 8).

Using notation as before, we have,

∆B = (1 + sAB) · ∆A,

∆C = (1 + sAC) · ∆A, and

∆C = (1 + sBC) · ∆B.

Solving these for sBC , we get

sBC = (sAC − sAB)/(1 + sAB). (2)

In Equations 1 and 2, the term in the denominator is of
the form (1 + s), where s is a clock skew. Since s ≪ 1
(of the order of parts per million), we can safely ignore the
denominator so long as we are not performing several such
arithmetic operations that affect each other. Then we get
that,

sBA = −sAB , and (3)

sBC = sAC − sAB. (4)

We present empirical results to validate the above equations.
In our experiment we use Linksys 1 as AP C, and the two
laptops as AP A and AP B. Switching AP B into monitor
mode allows us to estimate the clock skew sBC . We take four

8

Beacon interval c-Real c-Fake % change γ-Real γ-Fake % change
25 0.20 2.13 965 0.50 3.1 520
50 0.58 1.23 112 0.84 3.34 298
100 0.31 1.50 384 1.71 3.11 82
200 0.40 1.68 320 3.43 3.88 13

Table 6: Variation in parameters c and γ with different values of the beacon interval.

(a) Beacon interval = 25ms (b) Beacon interval = 50ms

(c) Beacon interval = 100ms (d) Beacon interval = 200ms

Figure 6: Clock offsets of the real AP and fake AP at different beacon intervals

9

sets of measurements to determine each skew and take the
mean. The mean skews sBC , sAC , and sAB are observed as
6.3767, 16.7719, and 10.4801. The skew sBC when estimated
using Equation 2 is 6.29173 resulting in an error of 1.332%
when compared with the value estimated directly. When
using Equation 4 the skew is estimated as 6.2918 resulting
in 1.331% error. Thus we see that the approximation in
Equation 4 does not affect the result of the arithmetic.

The ability to perform this kind of skew arithmetic is essen-
tial to our goal of allowing clients to fingerprint APs. To de-
termine whether to trust an AP by measuring its clock skew,
the client must know the skew of the real AP beforehand.
Since the clock used by the client has a skew of its own, it
would be necessary for the client to have measured the skew
of the real AP using its own clock beforehand. However, the
ability to perform skew arithmetic eliminates this require-
ment. Network providers can publish the skews of the APs
in their network as measured against a high-precision clock
of negligible skew. Then to measure the skew of an AP us-
ing skew arithmetic, the client only needs to know the skew
of its own clock against a similar high-precision clock. The
process is simplified further if network card vendors measure
and publish the skews of the cards they produce at the time
of testing.

7. RELATED WORK
Existing methods of passive L2 fingerprinting of 802.11 client
stations aimed to improve client identification for defensive
or forensic purposes by verifying facts about the client. In
particular, Franklin et al. [12] fingerprinted clients based on
the clients’ driver-specific probing behavior, and in the tour
de force [11] Ellch fingerprinted clients based solely on sta-
tistical distributions of the 2-byte NAV field in established
client connections (e.g., by watching several minutes worth
of web traffic).

A passive method that a client could use for detecting the
presence of fake APs was presented by Bahl et al. [4]. In
particular, they used the anomaly in successive sequence
numbers seen in beacon frames from the real and fake APs
to detect the fake AP. Because of mixing of frames from the
two sources, the sequence numbers do not form an increasing
sequence. Their method is effective only when both APs are
active at the same time. For the case when this does not
hold, location-based detection was suggested. Still, it was
observed [14] that even such methods are not very reliable,
and fail to work if the attacker is able to position his AP
carefully.

Bratus et al. pointed out [5] the importance of protecting
clients from access points in the early stages of connection
before cryptography-based trust in the AP could be estab-
lished, and proposed an active fingerprinting scheme that
tested certain properties of the AP before accepting any
complex data from it. The related BlackHat 2008 talk [6]
also mentioned results in fingerprinting access points by the
skew of their timestamps transmitted in their beacon frames,
and pointed out that such fingerprinting might serve the
same purpose of client protection.

8. SUMMARY

In this work we consider the reliability of previously pro-
posed approaches to measure clock skews of wireless devices.
By means of a spoofing attack that mimics the clock skew
of an AP, we demonstrate the fallibility of those methods,
when used in isolation. We provide a method that uses a
more accurate clock to measure clock skews. Further, we
propose new parameters—the fitted line intercept, c, and
the jitter γ—to gauge the reliability of measured skews. We
show that spoofing attempts might be detected by check-
ing the values of these parameters. Our work also provides
new insights into the implementation of wireless standards
by commodity hardware.

Fingerprinting using clock skews is useful in establishing
trust for an AP by a client. We provide methods to per-
form clock-skew arithmetic that allow a client to verify the
clock skew of an AP without itself having to measure the
real clock skew in advance.

9. REFERENCES
[1] Wireless LAN medium access control (MAC) and

physical layer (PHY) specification. IEEE Std 802.11,
2007.

[2] Raw wireless tools homepage.
http://rfakeap.tuxfamily.org/.

[3] The Metasploit project. http://www.metasploit.com.

[4] Paramvir Bahl, Ranveer Chandra, Jitendra Padhye,
Lenin Ravindranath, Manpreet Singh, Alec Wolman,
and Brian Zill. Enhancing the security of corporate
wi-fi networks using dair. In MobiSys ’06: Proceedings
of the 4th international conference on Mobile systems,
applications and services, pages 1–14, New York, NY,
USA, 2006. ACM.

[5] Sergey Bratus, Cory Cornelius, David Kotz, and
Daniel Peebles. Active behavioral fingerprinting of
wireless devices. In WiSec ’08: Proceedings of the first
ACM conference on Wireless network security, pages
56–61. ACM, 2008.

[6] Sergey Bratus, Cory Cornelius, Daniel Peebles, and
Axel Hansen. Active 802.11 fingerpinting: a ”secret
handshake” to know your APs. Black Hat USA 2008,
http://baffle.cs.dartmouth.edu/.

[7] Laurent Butti. Wi-Fi advanced fuzzing. Black Hat
Europe, February 2007.

[8] Johnny Cache and David Maynor. Hijacking a
MacBook in 60 seconds. Black Hat, August 2006.

[9] Johnny Cache, H D Moore, and skape. Exploiting
802.11 wireless driver vulnerabilities on Windows.
Uninformed.org, 6, January 2007.

[10] M. E. Dyer. Linear time algorithms for two- and
three-variable linear programs. SIAM Journal on
Computing, 13(1):31–45, 1984.

[11] J.P. Ellch. Fingerprinting 802.11 devices. Master’s
thesis, U.S. Naval Postgraduate School, September
2006.

[12] Jason Franklin, Damon McCoy, Parisa Tabriz,
Vicentiu Neagoe, Jamie Van Randwyk, and Douglas
Sicker. Passive data link layer 802.11 wireless device
driver fingerprinting. In Proceedings of 15th USENIX
Security Symposium, pages 167–178. USENIX, August
2006.

[13] The Shmoo group. 802.11 bait, the tackle for wireless

10

phishing. Toorcon, October 2005.

[14] Suman Jana and Sneha Kumar Kasera. On fast and
accurate detection of unauthorized wireless access
points using clock skews. In MobiCom ’08:
Proceedings of the 14th ACM international conference
on Mobile computing and networking, pages 104–115.
ACM, 2008.

[15] Tadayoshi Kohno, Andre Broido, and K. C. Claffy.
Remote physical device fingerprinting. IEEE
Transactions on Dependable and Secure Computing,
2(2):93–108, 2005.

[16] Nimrod Megiddo. Linear-time algorithms for linear
programming in r3 and related problems. SIAM
Journal on Computing, 12(4):759–776, 1983.

[17] S.B. Moon, P. Skelly, and D. Towsley. Estimation and
removal of clock skew from network delay
measurements. In IEEE INFOCOM ’99, volume 1,
pages 227–234, March 1999.

[18] H D Moore. Mastering the Metasploit framework.
http://www.blackhat.com/html/bh-usa-09/train-bh-
usa-09-hdm-meta.html, July
2009.

[19] Simple Nomad. Hacking the friendly skies. Shmoocon,
January 2006.

[20] Dino A. Dai Zovi and Shane ”K2” Macaulay. Karma.
http://trailofbits.wordpress.com/karma/.

11

