
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

THEME ARTICLE: FUTURE OFWORK

Assessing the Impact of Commuting on
Workplace Performance Using Mobile
Sensing
Subigya Nepal , Department of Computer Science, Dartmouth College, Hanover, NH, 03755, USA

Gonzalo J. Martinez, Department of Computer Science and Engineering, University of Notre Dame, Notre Dame,
IN, 46556, USA

Shayan Mirjafari , Department of Computer Science, Dartmouth College, Hanover, NH, 03755, USA

Stephen Mattingly, Department of Computer Science and Engineering, University of Notre Dame, Notre Dame,
IN, 46556, USA

Vedant Das Swain, Department of Computer Science, Georgia Institute of Technology, Atlanta, GA, 30332, USA

Aaron Striegel , Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN,
46556, USA

Pino G. Audia, Tuck School of Business, Dartmouth College, Hanover, NH, 03755, USA

Andrew T. Campbell, Department of Computer Science, Dartmouth College, Hanover, NH, 03755, USA

Commuting to and from work presents daily stressors for most workers. It is
typically demanding in terms of time and cost, and can impact people’s mental
health, job performance, and, broadly speaking, personal life. We use mobile phones
and wearable sensing to capture location-related context, physiology, and
behavioral patterns of N=275 information workers while they commute, mainly by
driving, between home and work locations spread across the United States for a
one-year period. We assess the impact of commuting on participant’s workplace
performance, showing that we can predict self-reported workplace performance
metrics based on passively collected mobile-sensing features captured during
commute periods.

COMMUTING is a daily routine for workers
around the globe. Not only is it costly, time-
consuming, and stressful to many workers,

but it can also negatively impact their physical and
mental health. A multitude of factors associated with
commuting, such as frequent stops, delays, congested
traffic, and work and schedule demands can lead to
frustration, social isolation, and boredom that in turn
can contribute to increased anxiety and stress for
workers. Furthermore, the after-burn of commuting
may roll over into the work or home environment,

having more residual impact than just time spent en-
route. Prior studies show that the direct stress from
commuting (e.g., physical discomfort, such as noise
and pollution) or indirect stress (e.g., from reducing
time available to address other demands in life) may
lead to tardiness, increase in counterproductive work
behavior (CWB), and decreased productivity at work.1,2

In addition, researchers find that commuting is an
important factor in play for employee turnover, job
satisfaction, and cognitive failure at work.3–5

Despite its importance in everyday life, there are very
few studies that explore commuting objectively. Most of
these studies use specialized headmounts and electro-
des, which we believe provide better cognitive data dur-
ing driving but limit large-scale studies because of cost
and their intrusive nature. Therefore, we propose a first-
of-its-kind study to assess the workplace performance1536-1268� 2021 IEEE
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of N=275 commuters across one year using surveys to
capture job performance along with mobile-sensing
data from workers’ phones and wearables. Using
mobile-sensing technology, we can passively infer user’s
behavior or context not only for pre–post commute but
importantly during commuting. We use location data
passively collected from subjects’ mobile phones to
identify daily commute trips and weather. We passively
collect continuous objective physiological data (e.g.,
heart rate, stress, etc.) from a wrist-worn wearable dur-
ing commuting to infer worker’s reaction to the com-
muting experience. The use of such off-the-shelf
wearables and passive sensing could be useful on a fun-
damental level, primarily to promote further in-the-wild
studies related to commuting, which is currently lacking.
This is one of the aims of our study: to explore whether
cheap off-the-shelf passive sensing devices are useful to
drawobjective insights into commuting.

Prior work on commuting indicates that stress,
anxiety, and frustration, which result from negative
commuting experiences, can lead to a less efficient
workforce, decreased productivity, increased CWB,
and reduced organizational citizenship behavior
(OCB).1,2 In this article, we hypothesize that objective
data captured from passive sensors during commute
periods can be used to assess the impact of commut-
ing on workplace performance. We show that across
the entirety of a worker’s day, commuting periods are
detectable using mobile phones and wearable sensors
and that these commuting sensor data are informa-
tive of workplace behavior and performance.

RELATEDWORK
Commuting induces stress and poor mood that results
in a spillover effect on work performance and family
relationships.6 Studies show that postcommute per-
formance can be significantly influenced by a negative
commute experience.1 Hennessy et al.6 found in a
study of N=114 participants that driver stress is related
to subsequent acts of workplace aggression. This find-
ing is in line with work that reports negative commute
experiences, such as impedance and congestion, are
associated with decreased task motivation, height-
ened negative emotions, including feelings of anxiety,
frustration, irritation, and general annoyance.3,4 Stud-
ies show that such behavioral stress reactions may
lower performance efficiency of the employees when
they arrive at the workplace.7

Researchers use the Conservation of Resources
theory8 to explain the relationship between commut-
ing stress and job performance. As per this theory,
people need to invest their resources to protect

themselves from loss of resources, to recover from
existing losses, and to gain new resources.8 If an
impedance (for example, traffic congestion) results in
a loss of resource (in the form of time or energy), then
people need to use their existing resources to rebal-
ance their resource distributions. An exhausting com-
muting experience may require continuous loss of
resources to cope with it. This leads to poor perfor-
mance on the job because resources that were initially
assigned to cope with the job and to do well on the
task are now spent on dealing with the negative com-
muting experience.8 Ma and Ye5 reported that com-
muting distance is positively related to absenteeism
and negatively related to job performance. There is
strong evidence in the literature1,6,7 regarding the
influence of commuting on workplace behavior and
job performance of employees.

Commuting has previously been studied in terms of
physiological reactions. Researchers,9 in a study con-
ducted over multiple days, collect electrocardiogram,
electromyogram, skin conductance, and respiration
continuously while drivers (N=24) follow a set route. The
authors show that these physiological signals provide a
metric for measuring drivers’ stress level. However, in
this study, physiologicalmonitoring is performed by spe-
cial devices and electrodes connected to the power
supply in the vehicle, not off-the-shelf mobile phones
and wearables, as in our study. Vivoli et al.10 reported
that the highest mean levels of heart rate during driving
are observed in heavy traffic and inclement weather.
White et al.11 found that commuting can lead to
increased pulse rate and a higher systolic blood pres-
sure, a biomarker of stress. Taken together, it is clear
that commuting can elicit a physiologically measurable
response in streams, such as heart rate.

Mobile phones and wearable sensing have been
used widely for passive and in situ assessment of indi-
viduals across different contexts.12 There is also a
growing interest in the use of mobile sensing and
machine learning to study workplace behavior, partic-
ularly with respect to the future of work and how pas-
sive forms of sensing can play a role in promoting
wellbeing and efficiency of the workforce.13,14 For
example, researchers14 use mobile phones, wearables,
and Bluetooth beacons to predict job performance.
Although there is an interest in workplace sensing to
help more objectively characterize workers’ behaviors,
work-based tasks, and more broadly the workplace
itself, there is a lack of research that studies commut-
ing and workplace behavior or performance using pas-
sive sensing. We believe that passive sensing could
help promote further research in commuting, particu-
larly if we can establish that passive sensors are
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capable of assessing participants’ physiological reac-
tion to commuting. We aim to investigate that through
this study.

METHODOLOGY
In the following section, we discuss our study design,
ground-truth, mobile-sensing system, and feature
extraction process.

Study Design
We use the Tesserae study15 dataset for our work. The
study recruited 757 information workers across differ-
ent companies in the United States for one year,
where participants respond to several surveys. Partici-
pants are given a Garmin vivoSmart 3 wearable and a
continuous sensing app is installed on their phone.
The study protocol is approved by the Institutional

Review Board. Please refer to the Tesserae study15 for
full details of the study design, participants, and data
collection. Participants are instructed to maintain a
data compliance level of 80% to warrant eligibility for
monetary remuneration. Commute data are available
from 60 to 300 days across a one-year period for par-
ticipants in our commute dataset. In this article, we
only include N=275 participants for whom we could
identify the work and home locations via GPS with a
high confidence level.

Demographic Descriptors
In our study, 34% of workers are identified as female
and 66% as male. A bulk of the workers (N=121) belong
to a single tech company in the mid-west and the rest
come from other companies and organizations spread
throughout the United States. A total of 94% of the
participants report that they usually drive themselves
to work, 4% report that they use public transportation,
and the remaining 2% report carpooling and/or biking
to work. The majority of the workers are in their 20s
and 30s; in fact, 34% of participants are in their 20s,
whereas only 10% are in their 50s.

Ground Truth
We assess the workers on two criteria of job perfor-
mance with the help of self-reports: CWB and OCB.
The distribution of the responses to these surveys is
presented in Figure 1.

CWBs are actions that deliberately harm the orga-
nization or individuals at the organization. We use
Bennett and Robinson’s interpersonal and organiza-
tional deviance (IOD) scale16 to measure CWB. The
IOD contains 19 items, which the participant respond
to using a seven-point frequency scale ranging from 1
(never) to 7 (daily). The Interpersonal Deviance score
has a possible range from 7 to 49, and the Organiza-
tional Deviance score has a range from 12 to 84. Prior
studies show that different subsets of CWBs such as
tardiness, absenteeism, and workplace aggression
can stem from negative commuting experience.5,6

OCBs are individual behaviors that are beneficial
to the organization but are not directly recognized by
the formal reward system of the organization. As
such, these behaviors are discretionary and are
responsible for creating better culture and climate in
the workplace. We use Fox et al.’s Organizational Citi-
zenship Behavior Checklist17 to assess OCB of the par-
ticipants. It includes 20 items and participants
respond to it based on the frequency in which they
engage in each behavior, using a scale ranging from 1
(never) to 5 (every day). It has a possible score range

FIGURE 1. Self-reported responses to job performance ques-

tionnaires. The above figures show the distribution of the

responses for various job performance metrics that we col-

lect. (a) Interpersonal deviance. (b) Organizational deviance.

(c) Organizational citizenship behavior.
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from 20 to 100. Existing literature show that commut-
ing experience is related to OCB.1,2 Therefore, we
believe that sensing commute experiences can help
us to better predict the OCB score of participants.

Mobile-Sensing System
Our passive sensing app is installed on workers’
phones, which syncs to the Garmin wearable. It tracks
commuters’ physical activity, location, phone usage
(i.e., lock/unlock), Bluetooth interactions, and ambient
light levels. The phone application runs in the back-
ground and uploads the data to our secure server’s
backend periodically.

Features
We generate numerous aggregated sensing features for
a 30-minute period prior to commute (i.e., precommute),
across the complete commute period (i.e., commute),
and during a 30-minute period after the commute (i.e.,
postcommute). In an empirical study, Friman et al.18

used a window of 30 minutes to capture residual mood
effects of traveling. We adopt the same window in our
work. The 30-minute window gives us a “peek” into the
precommute and postcommute physiology of a per-
son—for example, their “state” as inferred from behav-
ioral sensing datawhile readying to commute at the end
of their working day and just after they get home. We
believe that learning how sedentary or active or
stressed a person usually is before commuting or
observing their heart rate before commuting, and how
the commute changes these states could be a signal to
identify a person’s response to their commute experi-
ence. In addition, this lets us capture stress responses
that occur in anticipation, during, or in recovery from a
stressor—for example, commuting—or manifestations
of anxiety precommute and postcommute. We there-
fore study the postcommute period to assess the after-
math of the commuting event in our analysis. The
features that we generate are as follows:

› Activity: duration, distance of active and inactive
periods, energy expenditure, calories burnt, met-
abolic equivalent of task, walking intensity, and
motion intensity;

› Phone usage: duration, count of phone usage,
and data usage via cellular and Wi-Fi;

› Heart rate: heart rate (HR), heart rate variability
(HRV)—time, frequency, and nonlinearmeasures;

› Stress: real-time stress and level of stress;
› Weather: sunrise, temperature, pressure, visibility,
snow, sunset, precipitation, humidity, windchill, wind
speed,wind gust, cloud cover, heat, and pressure;

› Commute duration: commute duration to home
and work;

› Commute variability: variability in commute dura-
tion, arrival/departure time variability, variability
in number of stops, and number of streets taken.

Features are generated for each commuting period
(precommute, during, and postcommute of both home
and work commute) of each day, separately. The sens-
ing features that we use capture changes in move-
ment, intensity, heart rate, energy expenditure, and
phone usage. Real-time stress is inferred directly by
the Garmin wearable based on heart rate variability,
which is considered strongly associated with stress.
We also compute several time domain, frequency
domain as well as nonlinear measures of heart rate
variability (HRV) features. We generate additional fea-
tures known to be objective stressors during commut-
ing such as the weather (e.g., snow storm, rain, poor
visibility), which impacts commute anxiety. Research
in commuting stress shows that the central determi-
nants associated with commuting stress are predict-
ability/reliability (i.e., the person knows how long it
typically takes to reach their destination), control (i.e.,
the person has control over their commute time and
distance), and finally, impedance (i.e., restricting
movement because of traffic congestion, accidents,
etc.). Kluger et al.19 showed that commute variability
is strongly correlated with commute-related stress.
Uncertainty is low for a commute with low variability
across days. As a result, commuting is more predict-
able, allowing commuters to maintain more sense of
control. This is in line with findings in human physiol-
ogy, in which decreased control and predictability of
tasks (i.e., higher variability of commuting in our case)
increases stress. Therefore, we also compute several
commute-related variability metrics.

The formula used to quantify variability is

siX ¼ 1

Di � 1

XDi

j¼1

Xij �Xi

�� ��; Xi > 0

where
siX = variability for metric X over D days of com-

mute data available for person i;
X = {commute duration, arrival time, departure

time, number of stops, number of streets
taken };

Xij = value for metricX on day j for person i;
Xi = average value for metric X over D days of

commute data available for person i;
Di = number of days for which commute data is

available for a person i.
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Our mobile-sensing system logs GPS data from the
users’ smartphone every 2–10 minutes. We pass the
sampled GPS coordinates through the density-based
spatial clustering of applications with noise, which
groups the points that are close to each other and
computes the center of clusters. This allows us to
understand user’s mobility, i.e., the places that a per-
son visits and their associated dwell time. We use this
approach to identify home and work locations of the
participants and their commute duration.

ANALYSIS AND RESULTS
In what follows, we present results from our commute
study and discuss commute behavior and job
performance.

Commute Behavior
We obtain a mean commute duration of 62 minutes
and a standard deviation of 32 minutes on commute
toward home. Whereas for commute toward work, we
obtain a mean duration of 40 minutes and a standard
deviation of 16 minutes. The results show that people
spend more time commuting home from work (called
home commute) than they do commuting to work

from home (called work commute). Table 1 reports the
distribution of the different commuting behavior vari-
ability that we compute. The variability metrics are sig-
nificantly different between home and work commute
(p-value < 0.10; Mann-Whitney U test). We observe
that the home commute is more variable than the
work commute in almost all metrics.

High and Low Job Performer
Differences
Next, we analyze the differences in the commute-
based sensing features of high and low performers. For
this, we divide the participants into a high-performing
group or a low-performing group, as defined in Mirjafari
et al.’s work.14 In summary, we run K-means clustering
on the participant’s OCB and CWB scores, setting the
K=2. After running K-means five times, we divide the
participants into two groups based on which cluster
they most often fall into. Because CWB is a negative
work behavior and OCB a positive behavior, the cluster
with the higher OCB score but lower CWB score is con-
sidered to be representative of high performers,
whereas the remaining cluster with lower OCB and
higher CWB is designated as low performers. After clus-
tering, 110 participants are grouped as low performers
and 165 participants as high performers. We report the
significantly different features (p-value < 0.10; Mann-
Whitney U test) between the two groups in Table 2.

Predictive Modeling of Job
Performance
Numerous existing studies claim that a negative com-
muting experience can and does deteriorate job per-
formance, mostly via commuter stress.1,3,6 If we can
objectively assess that stress along with the physio-
logical reaction to the commuting experience as a
whole, it is reasonable that job performance would be
predictable from objectively sensed commute data.

Table 3 shows the performance of different
machine learning models trained on the commuting-

TABLE 1. Comparing mean variability in commuting pattern.

Different commute variability metrics we compute are listed,

alongwith how they differ between home andwork commute.

Variability Home
commute

Work
commute

Total Duration
(minutes)

42.52 20.85

Arrival time (minutes) 72.23 40.69

Departure time
(minutes)

67.27 35.27

Number of streets (n) 2.89 1.75

Number of stops (n) 0.94 0.64

TABLE 2. Differences in commute-based sensing features. The statistically significant differences in the commute features of

high performers and low performers in the workplace are reported.

Group Differences in commute features

High Performers Phone usage count during work commute is lower. Prework commute mean NN50 (HRV) is higher.
Mean RMSSD, BBI, MRRI, HF (HRV) during work commute is higher. Work departure variability is
lower. Work arrival variability is also lower. During work commute stress is lower.

Low Performers Mean HR during both work and home commute is higher. Mean RMSSD, BBI, MRRI, HF (HRV)
during home commute is lower. Prework commute steps is lower. Phone usage count during home
commute is higher. Prehome commute stress is higher. Posthome commute stress is also higher.
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based sensing features to predict workers’ workplace
performance scores. To control for the differences in
commute features that could be caused by having
stopped at a location (e.g., shop, sport facility for a
long time), we narrow down our dataset to two-way
commutes where stops do not consist of more than
15 minutes. Despite this restriction, every commuter
still has at least 52 days’ worth of the two-way com-
mute data. For predictive modeling, we use the aver-
age of each individual’s commute features as the
input to the model. This means that every participant
has one set of features for their commuting period
(i.e., precommute, during, and postcommute features
for both home and work commute, separately), repre-
senting their entire commute experience in aggregate.
We try four different machine learning models: Extra-
Trees, NuSVR, Adaboost, and an ensemble model con-
sisting of stacked models. In our implementation of
stacking, each of the models outputs a prediction of
their own for a given example. A final NuSVR model,
also called metaregressor in stacking, then combines
all the prior predictions (the outputs of the prior
machine learning models), and trains on it to come up
with a final output.

We normalize all our data before training machine
learning models on it. We find that stacking generally
outperforms other models when predicting job perfor-
mance using commute-generated sensing features.
We train the machine learning models using the leave
one subject out cross validation approach. The final
performance reported is the mean absolute error
(MAE) of all the individual predictions and the true val-
ues. Along with that, we report the baseline score,
which is the MAE we would obtain if we just used the
mean score of the job performance metrics in the
training set as the prediction each time.

In addition, for the best-performing model, we
report the Pearson correlation coefficient between its
predictions and true performance scores. We also run
a t-test between predicted values of the stacked
model and baseline values, finding that they are signif-
icantly different. We perform feature selection using
the sequential forward selection (SFS) method. In this
approach, the most relevant subset of features is
picked by the algorithm. We report some of the most
frequently selected features in Table 4, along with
their importance score. The feature importance is cal-
culated based on the normalized count of feature
occurrences in the selection made by SFS.

DISCUSSION
We find several significant differences in the commut-
ing patterns of high and low performers. High perform-
ers tend to a have higher HRV than low performers
during commute. A higher HRV is generally considered
to be good for health—people with a higher HRV are
considered to be more fit and more resilient to stress.
High performers’ work departure and arrival variability
is also lower, indicating consistency in the time they
arrive and leave work. Low performers have a lower
HRV during commute and as a result, a higher heart
rate. Their real-time stress is higher during work com-
mute. Interestingly, the stress level is higher for pre-
work, prehome, and posthome commute states for
low performers. In addition, low performers use their
phone more during their commute in comparison to
high performers. The physiological data (i.e., the heart
rate, HRV, stress) seem to indicate that low per-
formers are either more stressed or have a more nega-
tive experience during their commute than their
counterparts. This motivates us to perform predictive

TABLE 3. Prediction result. Results of different machine learning models when performing predictions on the job performance

metrics are listed. We use MAE and Pearson correlation coefficient as the evaluation metric. Statistical significance is reported

after t-test between best-performing model’s predictions and baseline (*** p < . 01, **. 01 � p < . 05, *. 05 � p < . 10).

Job performance metrics Baseline
MAE

Machine Learning Models

ExtraTrees
MAE

NuSVR
MAE

Adaboost
MAE

Stacked Model MAE (std) /
Pearson r

Counterproductive work behavior
(7–84)

7.95 8.03 7.77 7.88 7.34*** (3.18) / 0.53

Interpersonal deviance (7–49) 3.94 3.87 3.82 3.91 3.58*** (1.77) / 0.54

Organizational deviance (12–84) 5.44 6.12 5.35 5.41 5.29*** (1.35) / 0.52

Organizational citizenship behavior
(20–100)

8.43 8.54 8.30 8.38 8.01* (3.71) / 0.54
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modeling using the commute data. In this respect, we
find that the stacked model achieves a better MAE
than the baseline prediction. We also obtain a moder-
ate-to-strong correlation between its predictions and
the true values. In addition, the t-test result between
the baseline and predicted values of the stacked
model shows that they are significantly different.
These results indicate that the stacked model per-
forms better than naive baseline averages. We show
that the models’ error (MAE) is less than 10% of the
different ground truths, which leads us to conclude
that commuting state presents a marker that provides
us insight into work behavior and performance. We
report some of the features selected by the SFS
approach in Table 4. We run the entire pipeline 10
times and report the feature importance based on
how often the same set of features are selected
across each run.

The selected features capture several different
aspects of commute that are explainable. Physical
activity-related features such as walking distance and
steps are related to active commuting. Studies show
that commuters who are involved in active forms of
commuting typically experience increased productiv-
ity at work.5 Similarly, variability in commute duration
may add to anxiety by affecting predictability, reliabil-
ity, and control of the commute. Heart rate and HRV-
related metrics are important features in our model.
This is expected as they are indicators of physiological
stress or stress response. We also see that the real-
time stress metric (which is based on HRV) is present
among the selected features. Negative commuting
experience can add to stress, anxiety, and heighten
frustration and irritation. Studies argue that feelings
of stress caused by commute may lower the ability of
employees to organize themselves leading to reduced
effectiveness.20 In addition, the behavioral reaction to
such negative commutes, for example, in the forms of
frustration can reduce the efficiency of the employees
when they arrive at the workplace.7 To cope with such

stress and feelings of frustration and irritation, com-
muters may use their phone to try and improve their
commute experience, such as using Google maps to
help divert them away from congestion routes, or by
listening to podcasts or music, or talking to someone
on the phone—as a result providing a certain level of
distraction and thereby alleviating stressors.

Finally, we believe that future work aimed at study-
ing commuting that employs more complex modeling
techniques such as deep learning could potentially
obtain better results. The work here presents a proof-
of-concept study about the use of passive sensing as
a means to explore the relationship between commut-
ing and workplace performance. The insight that
focusing on the commuting period, something that is
detectable with the help of sensors in a worker’s life,
could help us better understand workplace perfor-
mance, is an important area of research for future of
work. We envision a future where ubiquitous sensing
technology can detect stress of individuals while they
are commuting and offer interventions tailored to
them such as music, podcasts, connecting them to
friends and family, or offering tips for short stops (e.g.,
quick coffee stop).

Limitations
Our commute study has a number of limitations. First,
we do not assess environmental factors along with
job-related characteristics. Nor do we understand the
contextual information of stress and anxiety related
to noncommute issues that might contribute to what
we measure making interpreting results difficult.
Mediators such as job stress, work-related rumina-
tions, and work satisfactions might have an impact on
how a person experiences their commute. Our study
is mostly related to tracking behavioral or physiologi-
cal changes in the person during commuting. We do
not look into subjective feelings about the commute.
Another limitation is the lack of samples and diversity.

TABLE 4. Features selected. Some of themost frequently selected features by the sequential forward selection approach are shown.
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In addition, since the ground truth are self-reported,
they could be subjectively biased. It is also worth not-
ing that in this work, we focus on the between-person
differences in the commute experience of individuals
and its impact on work performance. As a result, we
average the entire data of each individual during the
analysis. Although not a limitation in and of itself,
future researchers might want to explore the within-
person fluctuations in performance as a result of dif-
fering commute experiences. Such a study of com-
mute dynamics will help further our understanding of
commuting and its impact on workplace behavior.

CONCLUSION
In this article, we used commute data of (N= 275)
information workers collected using passive sensing
devices to better understand commute behavior. We
present results from the study and discuss commute
behavior and job performance, specifically, how it
relates to lower and higher performers. Our study
represents a proof of concept using mobile-sensing
technology to measure an individual’s commuting
experience and its impact on their job performance.
We envision a future where mobile ubiquitous sensing
technology better understands commuters’ mental
wellbeing and offers up interventions that help the
commute experience, promote employee satisfaction,
and increase workplace performance.
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