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We hypothesize that behavioral patterns of people are reflected in how they
interact with their mobile devices and that continuous sensor data passively
collected from their phones and wearables can infer their job performance.
Specifically, we study day-today job performance (improvement, no change,
decline) of N=298 information workers using mobile sensing data and offer data-
driven insights into what data patterns may lead to a high-performing day. Through
analyzing workers’mobile sensing data, we predict their performance on a handful
of job performance questionnaires with an F-1 score of 75%. In addition, through
numerical analysis of the model, we get insights into how individuals must change
their behavior so that the model predicts improvements in their job performance.
For instance, one worker may benefit if they put their phone down and reduce their
screen time, while another worker may benefit from getting more sleep.

The recent development of mobile computing
technology with various built-in sensors has
made it possible to sense human behavior con-

tinuously at a low cost. In the context of ubiquitous
computing and human–computer interaction, mobile
sensing data collected from individuals are often com-
bined with different machine learning algorithms to
build models that understand and predict behavioral
patterns. These predictive models can be embedded
in mobile devices and support people in every aspect
of life. In this article, we focus on mobile sensing in the

workplace, where people spend much of their time to
make a living. We discuss methods to predict workers’
day-to-day job performance using passive sensing
data from phones and wearables.

We use a number of psychologically validated job-
related surveys as a proxy for workers’ job perfor-
mance. Each of these surveys capture somewhat dif-
ferent aspects of the workers’ job performance:
1) individual task proficiency (ITP)1: measures the profi-
ciency of a worker with respect to their performing
core activities related to their job; 2) in-role behavior
(IRB)1: measures the behavior required of a worker
to accomplish the duties assigned in the organization;
3) organizational citizenship behavior (OCB)2: measures
worker’s behavior that are toward the organizational cul-
ture; and 4) counterproductive work behavior (CWB)2:
measures behaviors demonstrated by a worker that
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negatively affects the well-being of the organization. Our
model, using mobile sensing, predicts the performance
of theworkers on each of these surveys.

Wrangling each worker’s sensing data to under-
stand their job performance represents a very chal-
lenging task requiring deep knowledge across a wide
variety of domains and occupations (e.g., specific
tasks, working conditions). Therefore, there is a need
for scalable approaches capable to automatically cap-
ture behaviors associated with job performance
across a spectrum of different workplace environ-
ments. Alternatively, hand-crafted features used in
previous machine learning approaches require expert
knowledge about the ins and outs of specific domains
(e.g., software engineers in a specific sector) to be
able to create high-level features that capture the key
dimensions of the problem/occupation under study
and therefore do not scale well. With neural network
based representation learning, the costs of resources
and the development time of high-level feature engi-
neering is reduced as data analysts no longer have to
rely on hand-crafted features by domain experts. We
use an unsupervised autoencoder to automatically
augment the feature-set for predictions. Specifically,
we predict day-to-day job performance (improvement,
no change, and decline) of information workers across
a number of different domains (e.g., tech, consultancy)
using mobile sensing. We then perform gradient analy-
sis on the prediction model to get insights into how
individuals must change their behavior so that the
model predicts improvements in their job perfor-
mance. For example, one worker may benefit if they
put their phone down and reduce their screen time,
while another worker may benefit from more sleep.

METHODOLOGY
Dataset
The dataset for this article contains four months of
data from 298 workers, employed at various industries
across the United States, who had enrolled to partici-
pate in the Tesserae study.3 Each worker was given a
wristband and an Android/iOS application to install on
their phones. The mobile sensing app collected data
from different sensors on the phone as well as
streams from the wearable device, which was con-
nected to the phone via Bluetooth. While we discuss
important and relevant information from the Tesserae
project as it relates to job performance, refer to the
works of Mattingly et al.3 and Martinez et al.4 for com-
plete details of the study. Regarding the demographic
information of the participants in our study: there are
four distinct types of organizations in our analysis,

which we label as A (44%), B (13%), C (17%), and D
(26%)—percentages indicate the distribution of how
the participants are spread into each organization.
Group A consists of workers from a big technology
company, B includes workers from a well-known con-
sultancy company, C refers to workforce across a uni-
versity setting, and Group D is made up of workers
from different small organizations spread throughout
the United States. There are considerable differences
in the style of working conditions of these different
groups. We believe the groups represent a challenging
set of different types of work and therefore represent
different demands on workers in terms of job perfor-
mance. Gender-wise, 48% of participants are women
and the rest are men. Age-wise, 82% of participants
are under 40. The occupations of the participants also
vary within as well as across the organizations. The
distribution of occupations is as follows: 38% adminis-
trative, 13% business, 27% math and computer, 10%
engineering, and 12% others.

Workers completed a set of self-reports relevant to
job performance three days a week within the first two
months of the study. There were four job performance
metrics self-reported by participants used as the supervi-
sion, i.e., ITP,1 IRB,1 OCB,2 and CWB,2 capturing different
aspects of workers’ job performance. These metrics
were presented to workers in the format of daily ques-
tionnaires, which measure their job performance. There
are three questions about work proficiency for the ITP
metric with five possible answers: selecting one assigns
a number from 1 (very little) to 5 (a great deal) as a score
to each question. So the total ITP sum score is in the
range of 3–15. Similarly, there are seven questions for the
IRB metric asking the level of agreement about work
behaviors, with seven possible answers to each question
scored from 1 (strongly disagree) to 7 (strongly agree).
The total IRB sum score ranges from 7 to 49. Each of the
OCB and CWB metrics contains eight questions about
contextual job performance, with binary answers (yes or
no) to each question with a score of 1 or 0, respectively.
So the total sum score for both the OCB and CWB sur-
veys is a number from 0 to 8. Details about questions of
each metric are discussed in Table 2 of Mirjafari et al.’s
work.5 Note that a higher score of ITP, IRB, and OCB
along with a lower score of CWB are associated with an
improvedwork performance.

Supervision
To predict job performance, we must label the data
with respect to the original scores of each metric to
identify whether a worker performs above, under, or at
the level of their ability. To be able to do this, we first
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normalize the scores for each worker, separately,
using z-score transformation for each of ITP, IRB, OCB,
and CWB scores—this transforms the original scores
to new scores with a mean of 0 and a standard devia-
tion of 1. We then label all these normalized scores
for each worker based on the interval a score falls
within. If the normalized score is within �1 to 1 (i.e.,
�1 < yi < 1), we label that day for the worker as “no
change” in job performance. If the score is less than or
equal to �1 (i.e., yi � �1), or greater than or equal to 1
(i.e., 1 � yi), we label the corresponding day as a
“decline” or “improvement,” respectively, for each of
ITP, IRB, and OCB scores as they are positively associ-
ated with job performance. However, for CWB, we
swap “decline” and “improvement” labels as CWB is
negatively associated with job performance. This way
of categorization based on the standard deviation is a
standard approach that has also been used in prior
work. For example, Mehrotra and Musolesi6 catego-
rized depressive states using a similar approach.
Table 1, shows the distributions of the labels for every
job performance metric.

Lower Level Features
We consider several passive and continuous sensing
streams from workers’ phones and wearables over a
four month period. These streams were collected
using different duty cycles that tradeoff signal for
energy taxation on the devices. We aggregate these
time series for each worker per day. We call these fea-
tures “lower level features” representing close to raw
and simple aggregations including duration, mean,
median, and standard deviation of stream values. The
lower level features from different streams are listed
as follows.

Physical activity: duration of being active, dura-
tion of being highly active, sedentary duration, and
number of steps;

Mobility: number of unique locations visited and
total distance traveled;

Phone usage: unlock duration and number of lock/
unlock;

Heart rate: mean, median, and standard deviation
of heart rate/inter-beat intervals;

Stress: mean, median, and standard deviation of
stress level and duration of feeling stressed (high/
moderate/low);

Sleep quality: bedtime/wake-up time, duration of
sleep, duration of light/deep sleep, and duration of
wake-ups during sleep hours;

Weather: sunrise/sunset time, length of daylight,
cloudiness, humidity, feels-like, and precipitation.

Autoencoder-Based Features (Higher
Level)
Hand-crafting higher level features relevant to job per-
formance requires specific knowledge about different
workers’ circumstances (e.g., industrial settings, work
flexibility, and occupation) and expertise in the domain
of organizational behavior. In addition, it is also possi-
ble that the data collected by mobile devices are noisy
due to reasons, such as users’ wearing behaviors and
movements. Therefore, there is no guarantee that
even hand-crafted features lead models to achieving
higher performance. It is also time-consuming and
challenging to handcraft predictive features. However,
in our analysis we avoid these challenges by automati-
cally augmenting the feature set using an unsuper-
vised autoencoder.7

In our use of autoencoder, we consider the output
of the encoder as higher level features. We use these
features for two reasons: 1) Having more discrimina-
tive features instead of hand-crafting features leads
to higher performance of prediction model. Later, we
see that these higher level features play an important
role in improving prediction performance. 2) Reducing
noise in the lower level features to achieve a reliable
model.

PREDICTION
Before training an autoencoder, we first perform two
things: 1) normalizing the lower level features per

worker (
xi
j
�mi

ximax�xi
min

for the jth element in the ith fea-

ture), and 2) creating a prediction dataset from those
days of interest that job performance surveys are self-
reported on. We hold the prediction set out of the
autoencoder training process for the final supervised
prediction task. The purpose of Step 1 (within-worker
normalization) is to cancel out the possible effect of
workers’ baselines on biasing the network. Different
workers may have different baseline patterns of

TABLE 1. Distributions of the labels for each of job performance

metrics.

Metric Decline No change Improvement

ITP 19% 70% 11%

IRB 18% 73% 9%

OCB 21% 66% 13%

CWB 20% 68% 12%
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physical activity, heart rate, or phone usage. There-
fore, these differences may bias the network toward
high or low baselines.

To train the autoencoder, we split each worker’s
data with no reported ground truth into 80% and 20%
chunks for training and validations, respectively. We
thus train the autoencoder on the training set and
fine-tune parameters on the validation set. The
autoencoder is trained using different network archi-
tectures (e.g., various activation functions, different
numbers of layers, and neurons). The loss function is
mean squared error (MSE). Finally, the best architec-
ture which gives us the lowest MSE on the validation
set is selected. After the autoencoder is trained, we
feed the data of the prediction set (days of interest)
into the network to extract the higher level feature
values from the middle layer (a.k.a. compressed layer)
for the final prediction task of job performance.
Figure 1 illustrates the entire modeling pipeline.

For the final stage of the job performance predic-
tion task, we split the prediction dataset with aug-
mented feature set into the training and test sets. The
data of each worker are randomly split into 80% for
training and 20% for test. We ultimately train an
XGBoost8 model on the training set and evaluate the
its performance on the test set. The final stage of

training is repeated five times with different random
seeds. We later report the average performance in the
following section.

EXPERIMENTAL ANALYSIS
Predictive Power
Weevaluate themodel performance on the test data of
workers for each worker and each job performance
metric. The performance measures are distributions
across all workers (i.e., means and standard deviations
of weighted precision, recall and F1 scores). Figure 2
shows the performance measures of the XGBoost
models trained on different feature sets when predict-
ing the job performancemetrics. The performances are
calculated on the test data of each worker separately.
We compare the prediction accuracy once when only
the original features are used, and again when both
original features and higher level autoencoder features
are used. As shown in the figure, for each job perfor-
mance metric, the higher level features are given by
the encoderwith activation function that helps the pre-
diction model obtain the highest F1 score. To identify
whether the improvements in F1 scores are statistically
significant, we perform Wilcoxon signed-rank paired
test. The p-value of the test in all the comparisons for

FIGURE 1. Modeling pipeline. (1) In total, there are 120 days ofmobile sensing data per worker, 24 days with ground truth (i.e., job perfor-

mance scores are self-reported) within the first 60 days. (2) An autoencoder is trained on the lower level features of 96 days with no job

performanceground truth. (3) Lower level features of the dayswith ground truth are fed into the trainedencoder to generate higher level

features. (4) Finally, higher level feature values are extracted from the compressed layer for the final prediction task of job performance.
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each job performance metric is less than 0.05 indicat-
ing that the improvements are significant. Also, given
that the distribution of the test labels is imbalanced,
we set a baseline model that always returns the cate-
gory with the highest occurrence (“No change”) for pre-
diction regardless of the test example. We calculate
the weighted F1 score of such a model on the test set
as a performance baseline to compare with the
reported F1 score in Figure 2. The baseline F1 scores for
ITP, IRB, OCB, and CWB are 56%, 58%, 53%, and 56%,
respectively.

Gradient Analysis
We run an “ablation” of the study on the trained model
to learn what is the required change in the sample
input for the model to predict a different category
from its corresponding one. In the context of deep
neural networks, ablation describes a procedure
where certain parts of the network are changed or
removed to gain a better understanding of the net-
work’s behavior. Ablation is therefore a simple way to
look into causality. Understanding causality in the

network is the most straightforward way to generate
reliable knowledge. This kind of analysis and gradient
computation is popular in computer vision domain.9

Liu et al.10 used the gradient analysis of the network
to generate face images with different facial expres-
sions from the original images. Inspired by this litera-
ture, we perform gradient analysis on the prediction
model to get insights into how one individual may
change their behavior so that the model predicts
improvements in their job performance. To the best of
our knowledge, this is the first time that the gradient
analysis technique is applied to behavioral change
suggestions using mobile sensing. Future work should
investigate the broad capability of this approach while
studying various mobile sensing problems.

Let us describe how we obtain knowledge from the
numerical gradient analysis of the model. Let F(x) be
the function of the model that given an input feature
vector x, it outputs the probability of x belonging to
the relative high-performance category. By looking at
@F ðxÞ
@x at a particular point x, we see the direction and

the magnitude of the gradient that overall each input
feature vector must be moved so that the model

FIGURE 2.Model performance measures (weighted F1 score, precision, and recall) when predicting job performance metric using

the best set of features, i.e., a combination of original features and those extracted from autoencoder with specific activation

function (ReLU, tanh, or linear) that helps the model obtain the highest performance. The performances are calculated on the

test data of each worker separately. So each value in the bar plots represents the performance of model when predicting job

performance of N = 1 individual worker. The dashed line at 33.3% is the chance performance.
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would predict a higher F(x). That is, a higher probability
score for the higher performance category.

Each data point in our model is a feature vector
representing a (worker, day) pair. By performing the
gradient analysis on each test data point, we learn
what features for that (person, day) pair would need
to be modified so that the probability of higher perfor-
mance prediction increases. We can accumulate this
gradient information across all days of a worker to
gain aggregated insight on what are some feature val-
ues that a worker could increase/decrease to get
higher performance overall. We can also accumulate
over all days and all participants to gain insights into
how feature values could be increased/decreased to
get the overall participants to show improvements in
their job performance. Also, since @ðfþgÞ

@x ¼ @f
@x þ @g

@x , sum-
ming the per (person, day) pair gradients is equivalent
to calculating gradients across all participants in the
dataset. Figure 3 shows some sensing features, their
change direction, and the relative magnitude by which
each feature should be linearly increased or decreased
so that the model predicts higher probability score for
improvement in job performance.

RELATEDWORK
Mobile technologies offer the advantage of passively
collected context based in situ data, which can be used
to make a variety of inferences about the individuals’
behaviors. Schaule et al.11 showed that physiological
data obtained from wearables can be used to detect

office workers’ cognitive load. Olguin et al.12 used wear-
able sensing technology to assess human behavior in
organizational settings. Using passively sensed heart
rate and sleep data from wearable, Saha et al.13 showed
that greater role ambiguity is related to greater heart
rate, greater stressful arousal, and decreased work
hours and sleep. Robles-Granda et al.14 proposed a
framework that can extract meaningful predictors from
noisy and incomplete data derived from wearable,
mobile, and social media sensors to predict constructs
of physical and physiological behavior, psychological
states and traits, and job performance. Das Swain et al.
,15 studied how a feature set of activities complements
effects of personality to explain a worker’s performance.
In our prior work,16 we attempt to predict subjective per-
formance measures from objective data that intend to
find what objective data are related to individual suc-
cess in organizations, i.e., getting promoted. Similarly, in
our another work,5 we find correlation of high and low
workplace performance with several hand-crafted fea-
tures obtained from mobile and wearable sensing. In
this article, we advance our work by predicting the “day-
to-day workplace performance” based on an approach
potentially applicable to a wide variety of different jobs.

Much of the prior work uses hand-crafted features
for modeling. However, there is an increasing number of
studies using deep learning for predictive models. The
advantage being that the deep models do not need
hand-crafted features and can learn to find patterns
from the raw data. Yao et al.17 proposed DeepSense, a
deep learning framework for processing time-series data

FIGURE 3. Sensing features that if linearly changed (increasing or decreasing) in a sample input, the model would predict the

sample as belongs to the high-performance category for each job performance metric. The x-axis of each figure represents the

amount of required change that the corresponding feature item should take so that the model predicts improvement in the job

performance metric. For example, as shown for improvement in individual task performance (ITP), the low stress duration should

increase by 12.3 minutes, and correspondingly the duration of high stressed feeling should decrease by 8.5 minutes. Similarly, the

phone should be less used as the number of phone unlocks is decreased by 6. The change units are indicated next to each fea-

ture name. The results are aggregated over all workers.
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collected from mobile sensing. Mehrotra et al.6 used an
autoencoder to automatically generate features from
GPS-based mobility traces to predict depressive states
of the participants. They state that potentially hidden sig-
nificant and informative emerging patterns of human
behavior in the data might not be characterized by engi-
neered features, which are typically the result of a time-
consuming trial-and-error process to generate. There-
fore, such approach, if implemented in relation to work-
place performance, in workplace performance would
mean that we would not need to generate hand-crafted
features for workers taking into account their different
circumstances.

DISCUSSION AND FUTUREWORK
Through numerical analysis of the model gradients, we
show how participants could change their behavioral
patterns so that the prediction model would predict a
higher performing day for them. This approach can be
used for futuremobile sensing and intervention systems
that could be personalized in a way that provides work-
ers with insightful individualized tips to improve their
workplace performance. Figure 4 shows how a full-time
worker in a technology company could change their
behavior to improve their task performance at work as
suggested by themodel. As shown, theworkers seem to
perceive themselves as performing better on dayswhen
increased periods of lower stress are detected. Also, it
would be better for them to increase their sleep dura-
tion and wake up earlier. In addition, these people may
benefit from increasing step counts—perhaps their
work related tasks keep them at their desk for long peri-
ods. However, note that these example suggestions
derived fromourmodel are not validated in empirical tri-
als. Futurework could investigate how such suggestions
can affect a person’s job performance by getting feed-
back and personal opinions from the participant. This
will allow us to validate the efficacy of such suggestions

with respect to each person’s work behavior, flexibility,
and preferences before our proof-of-concept could be
used as a workplace application.

As mentioned in Section “Prediction,” for personal-
ized modeling purposes, the data of each person in
our study are split into both the train and test sets.
We also train the model using the leave-N-subjects-
out approaches. However, the results are not as good
as the ones reported in this article. We argue that the
assessment of job performance using mobile sensing
is a challenging task and is not simply generalizable
from one person to another.

Future of work research is rapidly gainingmomentum
but we have little guidance with respect to the privacy
and ethical aspects of it. While any form of sensing-
based studies could be seen as potentially invasive,
workplace sensing specifically needs to be considered
with utmost importance. We believe that workers would
be interested in participating in such studies if they feel
that they have control over their data and importantly
gain some utility fromaworkplace app, such as feedback
to help improve their performance. However, such data
could also be used by employers. This begs the question
of how worker’s data are going to be secured and pro-
tected against misuse. This demands deeper discussion
regarding the guidelines of how the future of work tech-
nology is deployed and used. There is a clear need for
workers to manage who accesses their data and who
does not. A clear protocol needs to be established
around the governance and ownership of behavioral
data in theworkplace for the future of work technologies
to be adoptedwidely in theworkforce.

Given the rapid trajectory of phone–computer archi-
tecture andML support, we are convinced that the type
of models presented in our work which are trained and
run offline are capable of being trained and run online.
Therefore, every part of the inference process presented
in this article (i.e., collecting the streams, computing the
lower level features, generating higher level features,
and final prediction tasks) can be implemented and run
locally on an individual’s smartphone for personalized
inferences. Such an evolution of implementing the com-
plete ML pipeline on the phone will limit the exposure of
the user’s data and bettermaintain their privacy.

CONCLUSION
We envision that future mobile sensing systems will be
capable of predicting workplace performance for
workers across a wide variety of industries. These
machines will be capable of adapting to a wide variety
of tasks within a field and across different occupa-
tional domains, and be personalized to specific

FIGURE 4. Features that can be modified as behavioral pat-

terns of an information worker in a tech company to achieve a

boost in task performance at work derived from our modeling.

These suggestions can be given to theworker as personal tips.
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workers’ environments. We advanced our understand-
ing of the scaling and interpretability challenges by
first applying an autoencoder to automatically aug-
ment our feature set and successively performing a
numerical gradient analysis of the trained models to
understand how an individual worker should change
their behavioral patterns to improve their perfor-
mance at work. By analyzing information workers’
(N = 298) mobile sensing data, we predicted their job
performance with an F1 score of 75%.
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