
Katana: Towards Patching as a Runtime part of the
Compiler-Linker-Loader Toolchain

Sergey Bratus, James Oakley, Ashwin Ramaswamy, Sean W. Smith1
Computer Science Dept.

Dartmouth College
Hanover, New Hampshire

Michael E. Locasto2
Computer Science Dept.

George Mason University
Arlington, Virginia

ABSTRACT
Despite advances in modularity, security, and reliability of software, offline patching

remains the predominant form of updating or protecting commodity software.
Unfortunately, the mechanics of hot patching (the process of upgrading a program while
it executes) remain understudied, even though such a capability offers practical benefits
for both consumer and mission-critical systems. A reliable hot patching procedure would
serve particularly well by reducing the downtime necessary for critical functionality or
security upgrades. Yet, hot patching also carries the risk – real or perceived – of leaving
the system in an inconsistent state, which leads many owners to forgo its benefits as too
risky; for systems where availability is critical, this decision may result in leaving
systems unpatched and hence vulnerable. In this paper, we present a novel method for
hot patching ELF binaries that supports (a) synchronized global data and code updates
and (b) reasoning about the results of applying the hot patch. We develop a format, which
we call a Patch Object, for encoding patches as a special type of ELF relocatable object
file. We then build a tool, Katana, that automatically creates these patch objects as a by-
product of the standard source build process. Katana also allows an end-user to apply the
Patch Objects to a running process. In essence, our method can be viewed as an
extension of the Application Binary Interface (ABI), and we argue for its inclusion in
future ABI standards.
Keywords: hotpatch, patch, ELF, DWARF, reliability, toolchain

1 Supported in part by the National Science Foundation, under grant CNS-
0524695. The views and conclusions do not necessarily represent those of the
sponsors.

2 Supported in part by grant 2006-CS-001-000001 from the U.S. Department of
Homeland Security under the auspices of the I3P research program. The I3P is
managed by Dartmouth College. The opinions expressed in this paper should not be
taken as the view of the authors’ institutions, the DHS, or the I3P.

I INTRODUCTION

It is somewhat ironic that users and organizatations hesitate to apply patches — whose
stated purpose is to support availability or reliability — precisely because the process of
doing so can lead to downtime (both from the patching process itself as well as
unanticipated issues with the patch). Periodic reboots in desktop systems — irrespective
of the vendor — are at best annoying. Reboots in enterprise environments (e.g., trading,
e-commerce, core network systems), even for a few minutes, imply large revenue loss —
or require an extensive backup and failover infrastructure with rolling updates to mitigate
such loss.

We question whether this de facto acceptance of significant downtime and redundant
infrastructure should not be abandoned in favor of a reliable hot patching process.

Software, the product of an inherently human process, remains a flawed and
incomplete artifact. This reality leads to the uncomfortable inevitability of future fixes,
upgrades, and enhancements. Given the way such fixes are currently applied (i.e., patch
and reboot), developers accept downtime as a foregone conclusion even as the software is
released — and deployers who resist downtime resist the patches.

While patches themselves are a necessity, we believe that the process of applying
them remains rather crude. First, the target process is terminated; the new binary and
corresponding libraries (if any) are then written over the older versions; the system is
restarted if necessary; and finally the upgraded application begins execution. Besides the
appreciable loss in uptime, all context held by the application is also lost, unless the
application had saved its state to persistent storage (Candea and Fox, 2003, Brown and
Patterson, 2002) and later restored it (which is expensive to design for, implement, and
execute). In the case of mission-critical services, even after a major flaw is unveiled and a
patch subsequently created, administrators must choose between security (applying a
patch) and availability. This conundrum serves as our motivation for hot patching,
without restarting the program and losing state and time. We focus on systems, such as
those found in the cyber infrastructure for the power grid, which require high availability
and which store significant state (that would be lost on a restart).

Challenges of Patching.
Requiring and encouraging the adoption of the latest security patches is a matter of

common wisdom and prudent policy. It appears, however, that this wisdom is routinely
ignored in practice. This disconnect suggests that we should look for the reasons
underlying users’ hesitancy to apply patches, as these reasons might be due to
fundamental technical challenges that are not yet recognized as such. We believe that the
current mechanics of applying patches prove to be just such a stumbling block, and we
contend that the underlying challenges need to and can be addressed in a fundamental
manner by extending the core elements of the ABI and the executable file format.

Mission-critical systems seem hardest to patch. They can ill afford downtime, and the
owner may be reluctant to patch due to the real or perceived risk of the patch breaking
essential functionality. For example, patching a component of a distributed system might
lead to a loss or corruption of state for the entire system. An administrator might also
suspect that the patch is incompatible with some legacy parts of the system. Even so, the
patch may target a latent vulnerability in a software feature that is not now in active use,
but also cannot be easily made unreachable via configuration or module unloading. The
administrator is forced to accept a particularly thorny choice: inaction holds as much risk
as a proactive “responsible” approach. Since the risks of patching must be weighed

against those of staying unpatched, we seek to shift the balance of this decision toward
hot patching by making it not only possible, but also less risky in a broad range of
circumstances. We contend that this can only be done through good engineering and
making patching a part of the standard toolchain.

Our key observation is that current binary patches, whether “hot” or static, are almost
entirely opaque and do not support any form of reasoning about the impact of the patch
(short of reverse engineering both the patch and the targeted binary). In particular, it is
hard for the software owner to find out whether and how a patch would affect any
particular subsystem in any other way than applying the patch on a test system and trying
it out, somehow finding a way to faithfully replicate the conditions of the production
environment.

Given these circumstances, our tool Katana and our Patch Object format not only
seek to make possible the mechanics of hot patching, but also enable administrators to
reduce the risk of applying a particular fix by providing them with enough information to
support examination of the patch structure, to reason1 about its interaction with the rest of
the system, and to understand the tradeoffs involved in applying it.

Patching In The Toolchain.
Hot patching should not be thought of as a bizarre operation, done crudely and

infrequently. We argue that it is one of the fundamental transformations in the life cycle
of any program, along with compilation, linking, dynamic linking, and (in unfortunate
cases) dumping core. We note that each of these fundamental operations has its own type
of ELF object devoted to it (relocatable objects, executables, dynamic libraries, core
dumps respectively) and a corresponding tool in the toolchain for performing each
transformation or working with its output. We contend that patching is very much like
linking or dynamic linking. Like those operations, it combines (or replaces) parts of
programs and must generate, modify, and apply relocation information. The section types
defined for the ELF format contain nearly all of the information necessary to describe a
patch. Once we take the position that patching is like linking, it follows that a patch needs
to store the same type of symbol and relocation information as does any relocatable ELF
object.

What the base ELF specification lacks is a way to describe types. Symbol information
gives us only a location and a length, but there is no way to describe the internal layout of
a piece of data. The DWARF format, 3 already heavily used with ELF for debugging and
exception-handling purposes, provides exactly what is needed here as it provides a means
to recursively describe types and variables, as well as a set of instructions originally
designed for restoring register states and examining the call stack but rich in possible
applications.

Through the use of formats already employed in the binary tool chain, we hope to
promote easy examination of patches, interoperability, and to show that patching fits
comfortably into the rest of the toolchain. We therefore propose that the standard
software life cycle now be as shown in Figure 1. Before hot patching, only the
Development and Runtime stages of the figure were generally accepted.

 <figure1.tiff GOES HERE>

Figure 1: Revised software life cycle. Before hot patching, only the Development and Runtime
portions existed

Why Not Just Employ Redundancy?
Redundant infrastructure, containing replicas of nodes and service paths, often helps

an organization bridge the service disruption stemming from patches. We believe,
however, that redundancy isn’t always the best approach for ensuring availability during
an upgrade or security-critical patching process. Rather than an established best practice,
we invite the reader to see redundancy as an extreme measure that needlessly duplicates
hardware, networking, and software of the original system. We suggest that redundancy
is:

1. expensive - In medium-sized enterprises, the cost of a single server, gateway, or
switch is high enough to outweigh the benefits of redundancy.

2. wasteful - Redundant systems are typically passive bystanders, lying in wait for an
active machine to initiate a failover.

3. dependent upon complicated logic - Transferring application state (even across
multiple homogenous systems) is non-trivial, especially when the state transfer
occurs within hardware (such as for call trunks).

4. specialized - The process of building system redundancy is not easily generalizable
across heterogenous systems and requires full knowledge of the underlying
protocol and application state in order to provide faithful failover and failback.

It should be noted that the last two items apply even for virtualized redundant systems,
which often do not have the traditional overhead of redundant hardware. We do not claim
that redundancy does not have its place, but redundancy does not provide the easy,
ubiquitous solution to high-availability stateful applications that we hope to provide
through patching.

2 KATANA DESIGN

In our prototype, a patch is may be generated as follows. The source directory
corresponding to the target to be patched is replicated, and the source code is patched to
the version desired. The modified source tree is then built and compared with the original
source tree at the object (.o) level. Those object files that have changed between the
modified and original source trees are added to the list of objects that must be examined
for type and code transformations. (Future work will include use of the inotify mechanism
to avoid potentially expensive recursive directory comparison and provide more precise
notification of changed files.)

 <figure2.tiff GOES HERE>

Figure 2: An Example Code Base. From the top: each source file creates a corresponding object
file; multiple object files are combined into intermediate compilation units (CU); and multiple
CUs are merged to form the executable. All shaded blocks indicate modified files.

To dynamically update the running application, Katana needs to patch both the code and

the data within the process. It first creates a patch object (PO): an ELF file with sections
that indicate the type of patch (code or data), the patch offsets and lengths within the
process address space, patch data, function and data names, etc. The patch object may
then be applied to the target at any time.

3 AUTOMATED PATCHING

In this section, we describe our data and code patching methods. We note that, compared
to previous work, our PO data structures allow reasoning about the scope, extent, and
impact of the patch (e.g., whether it affects particular subsystems within the process).

Code Patching
This process involves several stages:

 (i) Code Identification: Katana first needs to identify the section(s) of text that need
to be modified within the running process. To do this, we consider the list of all modified
object files from our tracking step and identify all functions (both static and global)
within these files from their symbol table. Functions that differ between the original and
modified versions of an object file are copied into the PO and marked as code.
 (ii) Symbol Resolution: After identifying all functions that require a patch, we need to
resolve outstanding symbol references within each function. Typically, symbol resolution
for an application happens at both the linking stage (called static linking when the symbol
is present within another object file or archive), and the execution stage (or dynamic
linking, when the symbol is present within a shared library). All code relocations are
identified in the ELF sections .rel.text and .rela.text, within the object files
and the final executable. Each relocation entry contains, among other information, the
code offset that requires relocation and the outstanding symbol that provides this fix-up.

For each relocation entry, Katana copies the corresponding symbol into the PO. The
actual value of the symbol is not necessary in the PO unless the target to be patched will
be stripped, as the value of the symbol can be retrieved from the running target while
performing the patching. This is key in allowing executables that have already been
patched to be patched again. If the symbol was dynamic (i.e., present in a shared library
such as libc), then the fixup value is the address of a corresponding entry in the
procedure linkage table (PLT) of the executable. The PLT is essentially a jump table with
entries for each symbol that needs to be resolved at runtime by the dynamic linker. When
the process begins execution, the dynamic linker maps the required shared libraries into
the address space of the process and updates each PLT entry.

For dynamic symbols, Katana traverses the PLT entries of the executable and
compares the symbol name of each entry with the symbol name that requires relocation.
Once a match is found, the symbol value can be determined. Our current prototype
cannot add calls to previously unused functions in shared libraries, but support for this
will be added using the “ALTPLT” technique described in Embedded Elf Debugging :
The Middle Head of Cerberus (The ELF shell crew, 2005).

Finally, if the outstanding symbol’s definition was not found within the replicated
executable (either within the symbol table or within the PLT), then it was newly added by
the patch; it is marked as such and added to the PO.
 (iii) Patch Application: Applying a code patch is simple enough and has been
researched in other systems (Ikebe and Kawarasaki, 2006, Ukai, 2004, Arnold and
Kaashoek, 2009, Yamato and Abe, 2009). We map the new function in memory and
insert a trampoline jmp instruction at the beginning of the old function within the process

memory image. This interposition allows the caller to execute our new function instead of
the previous one at the cost of an extra jump. It is possible to avoid the overhead (from
branch mis-prediction) of the jmp instruction by adding into the old function code that
traces up the stack and modifies the caller’s call instruction operand to point to the new
address instead of the old one. Although this optimization would ensure that all
subsequent calls from the same caller would execute the new patched function without
stepping into the old one, it does makes the process of rolling back a patch non-trivial. A
simpler method to avoid the overhead would be to relocate all calls to the function to
point to its new definition (although the trampoline would still be desirable, to catch calls
from function pointers or anything of similar nature). The current prototype uses only the
trampoline method.

Data Patching.
Patching data within a running process is significantly harder than patching

application code. The primary challenge here is to synchronize the code and the data
structures it acts on.

Tracking down previously allocated data is nontrivial (one of the reasons why
garbage collectors are interwoven with the language implementation). Even after
identifying the allocated chunks of memory, in the absence of some kind of type
specification, the internal structure of memory remains opaque. We also need a method
for extracting only the modified data variables from the patch and a means to discover the
actual modifications that were performed. Our system solves both of these problems.

We first note that any code that acts on patch-modified data is already taken care of
by Katana’s code patching process because we rely on make to build the object files that
correspond to all modified sources. We resolve the previously identified problems
towards patching data by leveraging DWARF debugging information within the
application executable. This requires the object files to be compiled with debugging
support, but we do not see this as a limitation. Since we need DWARF information only
while building the PO, all debugging symbols could be stripped from the executable
during application deployment, if desired (this would require storing symbol values in the
PO, however).

We now recall the representation of types in the DWARF format and then detail the
various steps in Katana’s data patching process.

DWARF type information. The DWARF structure is laid out as a tree of DIEs
(Debugging Information Entries) within the executable file. Each DIE has an associated
tag and a set of attributes. The DIE that defines type information has the tag as one of
DW_TAG_base_type, DW_TAG_structure_type or DW_TAG_union_type.
Typedefs and other type modifiers (such as const, volatile, pointer etc.) are
referenced by the DIE that defines the type. In case of structures or unions, each member
is contained as a separate DIE within the parent DIE that identifies the struct/union. It is
important to note that DWARF annotates types of all visibilities from the program
sources - local, global and static.

Katana’s data patching process contains a number of steps:
 (i) Type Discovery: We set out to discover all newly created or modified data types –
those that are primarily user-defined (such as structures and unions in C). Katana
traverses the type information (as identified by the above DWARF tags) from the newly
created executable, and for each encountered type, it searches for the corresponding type-
name within the replicated executable (from before the patch). If so found, the full types
(i.e. the number, type and position of all member variables contained within) are

compared to determine if they are identical. If not identical, a transformation between the
old and new versions is generated, along with DWARF information identifying the type
to insert into the PO as soon as a variable is found making use of the altered type. Else, if
the type name itself was not found within the replicated executable, then the current type
was created by the patch, and is added as such to the PO.
 (ii) Data Traversal: The next step is to traverse all variables defined within the new
application, and for each one encountered, we first determine its lexical scope. If the
scope is local, then we ensure that the corresponding function (the one that defines this
variable) does not have an activation frame on the program stack while applying the
patch. Else, the variable has been defined as either global or static. We first check
whether the replicated executable defines the same variable. If not, then this variable has
been created by the patch and we need not worry about it and may leave the symbol
resolution up to the compiler (as only new code can use this variable). Otherwise, we
verify whether the variable’s type is one of the modified types identified during type
discovery. If it is, then we add the variable along with its original address from the
replicated executable, its new address from the patch, and its type information to the PO.
At the end of this stage, Katana would have identified all newly created or modified
variables from the patch.
 (iii) Patch Application: Applying a data patch consists of first tracking down the
relevant symbols in program memory. Katana reads in the PO, and for each data variable
encountered, it checks whether the variable is a pointer or not. If it is, then the current
validity of the pointer is verified (by bounds-checking the pointer value to within heap
boundaries). If the pointer is found to be invalid, no further action is taken. If the pointer
is valid, then memory for the new type(s) is allocated, the older structure is copied into
the new one taking into account the difference in structure definition, the old memory is
then freed, and the pointer is modified to point to the new segment (in case of structures
such as lists, trees, since we have the type specification, we can repeat this process
recursively for each node on the list or tree). Else if the variable is not a pointer, then
Katana modifies all its references in the program text to the updated memory location
from the patch. Katana supports default values in the sense that if the variable has an
initializer in the new version of the program text, that initializer will be used for any
member variables within structures or array elements that did not previously exist in the
executing target. Initializers from the new version are used for all const global
variables. Eventually Katana it will support default values and programmer-written
custom initializers.

Challenges.
Data patching, as described above, is not an easy task, even with DWARF type

information. C, as well as many other directly compiled languages, does not have a
strong type system, and is not designed to allow reflection. Structures are relatively
straightforward to patch, because they contain a detailed specification. Unions and arrays,
on the other hand, are generally quite opaque. If substantial changes have been made to
one of the types in a union, Katana cannot do anything automatically, as there is no
automatic way to determine which unioned type to act on. If an array changes size,
Katana will assume that it is growing or shrinking at the end and will copy old data
accordingly, but it will also issue a warning that this may not be the desired behavior.
Pointers are handled, of course, but with some limitations currently. Unfortunately for
our purposes, memory management is not part of the ABI. Further, there is no standard
way to determine what block a given pointer is part of. Our current implementation

correctly handles only memory management with malloc and only pointers to the
beginning of blocks. Improvement of this is a major area of future work. Multiple
pointers to the same address are handled by keeping track of which addresses have been
relocated. void* also poses a problem, as there is generally no way to determine the
“real” type of the pointer. The general solution to all of these type problems is to ask the
programmer for routines which perform the application-specific work. Minimizing
programmer work is of foremost importance, because greater human interaction adds
greater possibility for human error, thus possibly decreasing the reliability of the patch,
but it is not avoidable in all situations.

Hot patching still faces a number of other challenges, including dealing with
multithreaded programs and address space randomization (which slight changes to the
OS loader can help us overcome). There is nothing inherent in our design which will not
work with multithreading, but dealing with it through ptrace takes considerable work
which we have not yet done. More importantly, deadlock avoidance work — required to
ensure that we do at some point pause all threads but that we never pause a thread that
another thread may be waiting on in order to reach a safe state (see below) — is
nontrivial. We plan to address this in the future.

4 DISCUSSION

WHEN TO APPLY THE PATCH.

Dynamically updating a running application requires diligence and patience. One cannot
update the target application without any knowledge of the program’s execution state, by
which we mean the program stack, processor registers, etc. Even after possessing this
information, the application has to be in what we call a “safe state” for Katana to apply
the patch. We characterize a program state as a safe state if the following two conditions
hold:

• All activation frames in the program stack belong to functions that do not get
updated during code patching. It is easy to verify this by comparing each function
on the stack with the list of upgradeable functions contained within the PO.

• All activation frames in the program stack belong to functions that do not access
any global/static symbols identified during Data Traversal and that do not define
any local variables of the modified types identified during Type Discovery. Again,
since we maintain type and variable definitions within the PO, verifying this
condition is easy.

Given the patch object, Katana uses Linux’s ptrace interface to temporarily halt the
execution of the target process, query the current execution stack, and determine whether
the application is currently in a safe state. If so, then Katana applies the code patch
followed by the data patch. We note that it is not possible to apply the code and data
patches at different times since new code likely uses the new data, and hence postponing
data patching to when only the second condition is satisfied is impractical and unsafe.

Let A denote the current activation frame on the program stack, and the notation (X:Y)
define all frames from X to Y (on a time scale, X precedes Y) on the stack; so (1:A)
defines the current stack. [ARE X AND Y FRAMES? AND WHAT IS “1”?] Now, in
case we determine (1:A) to be an unsafe state, we could repeatedly keep querying the
stack until the application reaches some safe state. However, this is highly inefficient and
cumbersome.

Instead, when we determine the program to be in an unsafe state, we traverse up the
stack from A, and for each preceding frame (say A'), we determine if (1:A') is a safe state.
This takes into consideration only A' and all other frames preceding it. If (1:A') is a safe
state, then we insert a breakpoint on the return instruction pointer (EIP) pointed to by the
successive frame: (A'+1). What this guarantees us is that when this breakpoint is hit, the
state of the program stack will be (1:A'). Since we just determined this to be a safe state,
we can reliably conduct the patching procedure. If however, no such frames preceding A
satisfy a safe state, then it means that the application cannot be patched successfully in its
current execution since there will always be a function that violates our safety condition.

Finally we note that even after inserting a breakpoint, the problem of determining
when the breakpoint will be hit is essentially a hard one, and so in such cases, Katana can
provide no time-bounding guarantees. Still, this is a cleaner and more efficient approach
than just naïvely retrying the full update procedure, which is both an expensive and an
incomplete solution. In cases where the timely (or even eventual) application of a patch
seems unlikely, it would be possible to add support for programmers to manually specify
safe places for patching to occur. For programs built around a central loop (the vast
majority of long-running programs), the likelihood of safe patching can be expedited by
isolating the main loop into a simple routine unlikely ever to need patching. While safety
determination is implemented in our prototype, we do not yet have enough real data
about the likelihood of applications’ failing to reach a safe state.

Address Space Randomization.
Load-time address randomization has become a stable and popular way of raising the

bar for attackers, and so we must discuss how it interacts with our patching scheme. The
gist of randomization schemes is invalidating various default assumptions regarding the
locations of code and data elements that might facilitate exploitation. In particular, the
virtual addresses of loadable segments are displaced by random4 offsets by the loader,
which relocates them (using their accompanying relocation sections).

Patching relocated code with our PO files requires knowledge of the displacements
introduced at loading-and-relocation time. While there is no common ABI standard for
saving this information, conceptually it is no different from saving virtual addresses of
other files’ loaded symbols in the Global Offset Table (GOT). We note that the names of
the constituent object files themselves are customarily included in the symbol tables and
that the symbol table entry format can be easily adopted for storing virtual addresses of
the relocated objects.

Thus, at the cost of small modifications to the OS loader and the dynamic linker, we
can make the information on the layout of the “randomly” relocated executable and
libraries available to our patching process driven by our POs.5

Future Work.
Katana is a work in progress. We have demonstrated code patching (including

dynamically linked functions), the use of our patch object format (discussed in detail in
Section 5 below), and data patching including complex structures and variable addition.
The remainder of the system is still under development. In the future we must address
several important engineering issues, such as the interaction of patched code with
dynamically loaded libraries (including the dlopen mechanism) and assuring that
accumulation of administered patches does not lead to unacceptable performance
degradation. We must also address the broader issue of describing and detecting software

designs not amenable to runtime patching, and we must steer programmers to avoid them
if possible.

5 PATCH OBJECT FORMAT

Reasons and Needs.

We have developed a Patch Object format for which the following holds:
• A PO is a valid ELF file.

• A PO utilizes DWARF information to describe types, variables, and functions
requiring patching.

• A PO allows type transformations to be specified using a language defined by the
DWARF standard.

Through the use of existing standards and well-structured ELF files utilizing a simple
expression language for data patching, we aim to create patches that are easily examined
(or modified) with existing tools. This easy compatibility with the existing binary tools
and standards brings us to a very good point: why should patching not be a part of the
ABI and of the standard toolchain? This does not necessarily have to be the precise
format we use for Katana. Any such format that would become a standard, whether an
actual standard or a de facto standard, should be well vetted by the community, but we
argue that something like this should be included in the standard object types, along with
relocatable objects, executable objects, shared libraries, and core dumps. Consider the
situation. Relocatable objects containing new code and data which may be inserted at
runtime are nothing new. This is the entire premise of the dynamic library. User-written
functions which may have to run upon this code injection (in the case of patching data
where the desired actions cannot be determined automatically) already exist as the
.init and .fini sections. Because of this similarity between some of the functionality
needed by patching and the functionality offered by dynamic libraries, some previous
systems have performed patching by creating patches as dynamic libraries that contain
not only the code and data to be patched but also the mechanism to perform the patching
(Neamtiu et al., 2006) (Chen et al., 2007). We argue that this is an unnecessary mixing
of data and logic and, further, that a patch that contains merely the information necessary
to fix a running process and not the code to do so is more desirable. The code to apply the
patch should live in one place on any given system, as most other executable content
does. We do not embed Emacs within our text files, after all. Dynamic libraries and other
relocatable, linkable objects do not contain code and data intended to overwrite data in an
existing executable or process. Consider, however, that redefining certain symbols is only
a slight twist on ordinary linker behaviour. Ordinary linker behaviour for global symbols
is to fail if a symbol is defined more than once. Ordinary behaviour for weak symbols is
to use a global definition if available or the weak symbol otherwise. When performing
dynamic linking, generally the first appropriate symbol encountered in the chain of
symbol tables is used. It is not a far difference to define the linkage rule that the symbol
definition from the most recent patch takes precedence. Therefore, applying a patch
consists of the following steps

1. Injecting appropriate sections of the patch into memory. This includes putting their
contents into memory and performing relocations on these sections (but not on the
rest of the in-memory process) so that they fit into their environment

2. Copying existing data to the appropriate regions of the newly mapped-in patch

3. Performing relocation on the entire in-memory process such that the symbols
defined by the patch take precedence.

These steps are all such fundamental operations that they should become universally
supported by the ABI and the toolchain.

On the other hand, note that the specification of a general patch format does not
completely prescribe the patch application. From a standard patch format, a patcher is
still free to make decisions such as when to patch safely and whether to patch functions
by inserting trampolines in the old versions of the functions or by relocating all
references to the function (we currently do the former in Katana, but may later transition
to doing the latter).

Our Patch Object Format.
Our Patch Object (PO) format is an ELF-based format. Figure 3 shows the sections

contained in a simple patch. .text.new and .rodata.new are of course the new
code and supporting

 Section Headers:
 [Nr] Name Type
 [0] NULL
 [1] .strtab STRTAB
 [2] .symtab SYMTAB
 [3] .text.new PROGBITS
 [4] .unsafe_functions LOUSER+1
 [5] .rodata.new PROGBITS
 [6] .rela.text.new RELA
 [7] .debug_info PROGBITS
 [8] .debug_abbrev PROGBITS
 [9] .debug_frame PROGBITS
 [10] .rel.debug_info REL
 [11] .rel.debug_frame REL

Figure 3: Headers for the PO

constants to inject. .rela.text.new allows .text.new to be properly relocated
after it is adjusted. While System V based systems use only relocation sections of type
SHT_REL, we chose to use SHT_RELA in our patch objects because they make addends
much easier to keep track of as we relocate from patched binary to patch object to
patched process in memory. This is all really nothing new; storing ELF sections to be
injected in-memory has been done before in other systems (Vanegue et al., 2009). What
is new in our patch object is the inclusion of DWARF sections. The .debug_info
section in an ordinary executable program contains a tree of DIEs (Debugging
Information Entities) with information about every type, variable, and procedure in each
compilation unit in the program. In a patch object, we store information only about the
procedures and variables which have changed. This of course includes storing the type

information for changed variables. An example of the DWARF DIE information
contained in a patch can be seen in Figure 4.

Note that we store considerably less information about each entity than is typically
contained. This is so because we read most of the information from the DWARF and
symbol table information of the executing process (unless it will have been stripped; then
more information must be stored in the patch). This allows the patch to be more flexible
as it does not require that all variables and procedures be located at exactly the addresses
they were expected to be at when the patch was generated. This flexibility allows a single
patch between versions va and vb to patch both an executable that was originally
compiled to va and an executable that was patched from earlier versions to be equivalent
to va. Ksplice, one of the few other patchers that operate solely at the binary level, does
not have this capability (Arnold and Kaashoek, 2009). We will provide a mechanism for
composing patches such that a patch from version va to vb may be composed with a patch
from vb to vc to produce a patch from va to vb. Note that patch versioning is currently a
work in progress and not fully implemented.

 .debug_info

 COMPILE_UNIT<header overall offset = 0>:
 <0>< 11> DW_TAG_compile_unit
 DW_AT_name main.c

 LOCAL_SYMBOLS:
 <1>< 19> DW_TAG_subprogram
 DW_AT_name printThings
 DW_AT_low_pc 0x0
 DW_AT_high_pc 0x70
 <1>< 40> DW_TAG_structure_type
 DW_AT_name _Foo
 DW_AT_byte_size 16
 DW_AT_MIPS_fde 16
 DW_AT_sibling <93>
 <2>< 55> DW_TAG_member
 DW_AT_name field1
 <2>< 63> DW_TAG_member
 DW_AT_name field_extra
 <2>< 76> DW_TAG_member
 DW_AT_name field2
 <2>< 84> DW_TAG_member
 DW_AT_name field3
 <1>< 93> DW_TAG_base_type
 DW_AT_name int
 DW_AT_byte_size 4
 <1>< 99> DW_TAG_variable
 DW_AT_name bar
 DW_AT_type <40>

Figure 4: DWARF DIEs in the PO

Most of the information in the DIE tree is concerned only with names or how to locate
code within the patch object (high and low pc). Of special interest, however, is the fde
attribute of the DW_TAG_structure_type. This attribute specifies an offset in the
.debug_frame section of an FDE (Frame Description Entity). DWARF FDEs are
designed for use in transforming one call frame into the previous call frame, and thereby
walking up a call stack for either debugging purposes or exception-handling purposes
(using the .eh_frame section). Transforming one call frame to another, however, is not
such a different operation from transforming one structure to another version of the same
structure. We have aided this use with an implementation of the DWARF virtual machine
that defines several special register types (exploiting the fact that for the purposes of
generality, DWARF registers are specified as LEB128 numbers, giving an unlimited
number of registers). The DWARF register instructions contained in the FDE referenced
in Figure 4 for copying field1, field2, and field3 from the original version of a
structure _Foo to a new version of _Foo that has gained the extra member
field_extra in the middle of the existing fields would be represented as in Figure 5.

DW_CFA_register {CURR_TARG_NEW,0x4 bytes,0x0 off}
{CURR_TARG_OLD,0x4 bytes,0x0 off}
DW_CFA_register {CURR_TARG_NEW,0x4 bytes,0x8 off}
{CURR_TARG_OLD,0x4 bytes,0x4 off}
DW_CFA_register {CURR_TARG_NEW,0x4 bytes,0xc off}
{CURR_TARG_OLD,0x4 bytes,0x8 off}

Figure 5: FDE instructions for data patching
CURR_TARG_NEW and CURR_TARG_OLD are special symbolic values defined by the
virtual machine. If we are patching the variable bar, then the CURR_TARG_OLD will be
the old address of bar (its value in the symbol table), and CURR_TARG_NEW will be the
new address bar is being relocated to. Our registers take advantage of the LEB128
encoding to hold a considerable amount of information in the register identifier. In the
case seen above, the first byte identifies the class of the register (CURR_TARG_NEW or
CURR_TARG_OLD in this example), the following word specifies the size of the storage
addressed (this is included so that register assignments may copy an arbitrary number of
bytes), and the final word specifies an offset from the address referred to by
CURR_TARG_(NEW—OLD).

6 RELATED WORK

There are several hot-patching systems preceding Katana. One of the most well-known is
probably Ginseng (Neamtiu et al., 2006). Ginseng — and systems drawing inspiration
from it such as Polus (Chen et al., 2007) — have successfully demonstrated patching of
such important software as apache and sshd. These systems perform analysis of the
differences between the original and the patched versions at the source code level. This
introduces considerable (and we argue unnecessary) complexity and inability to deal well
with some optimizations such as inlining and hand-written assembly. The complexity of
analyzing the source code ties these systems to generally a single language (C in the case
of both Ginseng and Polus). By contrast, Katana is language agnostic as it works at the
level of the binary ABI, and although we have not yet demonstrated its doing so, it should

eventually be able to patch binaries compiled from any language, providing that the
necessary symbol and relocation information is supplied. Ginseng also requires
significant programmer interaction in annotating the code (Neamtiu, 2009) and requires
compiling the code to use type-wrappers, allowing the patching of data types but at the
cost of indirect access to them. The more programmer effort involved in generating a
patch, the more likely the patch is to be incomplete or incorrect.

Motivated by many of the points in the above paragraph, the successful Ksplice
system (Arnold and Kaashoek, 2009) patches at the binary level, as we do. We claim the
following differences from and improvements over Ksplice.

• Ksplice operates on the kernel. As their paper states, most of their technique is not
specific to the kernel, but there is no evidence that it has been implemented to
function on userland programs. Katana operates on userland.

• Ksplice makes no attempt to patch data, relying entirely on programmer-written
transformation functions when data types do change

• Ksplice patches are created as kernel modules. Ksplice does not provide a
mechanism to perform operations, such as composition, on these patches.

To the best of our knowledge, Katana is the first system to utilize DWARF type
information in patching.

Maintaining continuous availability, even in the absence of disruptive events like
patches, is both a challenging technical exercise and the driving need for research on
dependability, reliability, and fault tolereance (Zhou et al., 2007). Our work follows
work focusing on enabling a software application to continue providing service or survive
significant events like errors, exploits, and patches. This body of work includes research
on dynamic kernel updates, software survivability, and software self-healing. However,
other research areas also addressed the challenge of enabling software to adapt at
runtime, e.g., the area of software evolution (e.g., (Stefano et al., 2004)).

The concept of crash-only software (Candea and Fox, 2003) advocates
microrebooting: the procedure of retrofitting each component of a system with the ability
to crash and reboot safely as the default mode of operation. Despite its appeal as a design
principle, such an approach would be difficult to retrofit to legacy software. Although
restarting a particular service or application is disruptive enough, rebooting the operating
system itself multiplies this disruption. The need to avoid that kind of downtime helped
drive the creation of frameworks like Loadable Kernel Modules for Linux, which allow
for extending the kernel during runtime without a reboot. The ability to update the
running kernel (as opposed to adding or removing modules) without rebooting was
achieved at least ten years ago (Cesare, 1998) and recently rediscovered, albeit mostly for
research, rather than commodity, kernels (sd and devik, 2001, Baumann et al., 2007,
Soules et al., 2003)). Even so, dynamic updates of the kernel during runtime that don’t
require a reboot are difficult to apply to a commodity OS, although several efforts have
been successful for the K42 experimental system (Soules et al., 2003, Baumann et al.,
2005).

Software self-healing aims at ensuring continuous or increased availability for
systems subjected to exploited vulnerabilities, either by automatically generating
patches (Weimer et al., 2009, Sidiroglou et al., 2005) to gradually harden the application
or by seeking to avoid a restart altogether by modifying certain runtime aspects (e.g., the
memory subsystem (Rinard et al., 2004), properties of the execution environment (Qin
et al., 2005)), or selected control paths (Smirnov and Chiueh, 2005, Locasto et al.,

2007)) of the system in response to attacks. One major risk of employing self-healing in
production environments is that the semantics of follow-on execution remains largely
uncontrolled, although recent work in automatically correcting memory errors (Novark
et al., 2008) seems to achieve fairly reliable results. Both automated responses and
traditional patches can make it difficult for an administrator to understand the
implications of a particular fix (Rinard, 2008).

7 CONCLUSION

We introduce a method for hot patching: a technique we believe to be a promising
alternative to redundancy, ad hoc self–healing techniques, “patch and pray,” or other
approaches to dynamic software updates. Hot patching has the potential for aligning
actual practices with acknowledged “best practices” relating to critical security or
functionality updates. We hold that one major impediment to hot patching is the opaque
nature of most patches (be it proprietary or open software), and our method of patching,
along with the PO file format, is a first attempt at providing a basis for informed
reasoning about the structure and implications of a patch.

We present a reasoned approach to making patching a part of the standard tool chain.
We demonstrate a working binary userland patcher operating completely at the object
level. Our system is, to our knowledge, the first to utilize DWARF type information to
automate the transformation between old and new versions of a type. There yet remains
much work to be done, and our future work involves support for patching multithreaded
targets, better support for handling opaque types such as void*, and further
development of patch versioning and the ability to perform operations on patch objects.

REFERENCES
Arnold, J. and Kaashoek, M. F. (2009). Ksplice: Automatic Rebootless Kernel Updates.

In Proceedings of EuroSys.
Baumann, A., Appavoo, J., Wisniewski, R. W., Silva, D. D., Krieger, O., and Heiser, G.

(2007). Reboots Are for Hardware: Challenges and Solutions to Updating an
Operating System on the Fly. In Proceedings of the USENIX Annual Technical
Conference.

Baumann, A., Heiser, G., Appovoo, J., Silva, D. D., Krieger, O., Wisniewski, R., and
Kerr, J. (2005). Providing Dynamic Update in an Operating System. In Proceedings
of the USENIX Annual Technical Conference, pages 279–291.

Brown, A. and Patterson, D. A. (2002). Rewind, Repair, Replay: Three R’s to
dependability. In ACM SIGOPS European Workshop, Saint-Emilion, France.

Candea, G. and Fox, A. (2003). Crash-Only Software. In Proceedings of the Workshop
on Hot Topics in Operating Systems (HOTOS-IX).

Cesare, S. (1998). Runtime Kernel kmem Patching. http://vx.netlux.org/lib/vsc07.html.
Chen, H., Yu, J., Chen, R., Zang, B., and Yew, P.-C. (2007). Polus: A powerful live

updating system. In ICSE ’07: Proceedings of the 29th international conference on
Software Engineering, pages 271–281, Washington, DC, USA. IEEE Computer
Society.

Ikebe,Takashi and Kawarasaki, Yasuro. (2006). http://pannus.sourceforge.net/.
Locasto, M. E., Stavrou, A., Cretu, G. F., and Keromytis, A. D. (2007). From STEM to

SEAD: Speculative Execution for Automatic Defense. In Proceedings of the
USENIX Annual Technical Conference, pages 219–232.

Neamtiu, I. (2009). Ginseng user’s guide.
http://www.cs.umd.edu/projects/PL/dsu/software.shtml. Contained in source
distribution from the web page.

Neamtiu, I., Hicks, M., and Stoyle, G. (2006). Practical dynamic software updating for c.
In Proceedings of the ACM Conference on Programming Languages Design and
Implementation, pages 72–83.

Novark, G., Berger, E. D., and Zorn, B. G. (2008). Exterminator: Automatically
correcting memory errors with high probability. Commun. ACM, 51(12):87–95.

Qin, F., Tucek, J., Sundaresan, J., and Zhou, Y. (2005). Rx: Treating Bugs as Allergies –
A Safe Method to Survive Software Failures. In Proceedings of the Symposium on
Systems and Operating Systems Principles (SOSP).

Rinard, M., Cadar, C., Dumitran, D., Roy, D., Leu, T., and W Beebee, J. (2004).
Enhancing Server Availability and Security Through Failure-Oblivious Computing.
In Proceedings Symposium on Operating Systems Design and Implementation
(OSDI).

Rinard, M. C. (2008). Technical perspective patching program errors. Commun. ACM,
51(12):86–86.

sd and devik (2001). Linux on-the-fly Kernel Patching Without LKM.
http://doc.bughunter.net/rootkit-backdoor/kernel-patching.html.

Sidiroglou, S., Locasto, M. E., Boyd, S. W., and Keromytis, A. D. (2005). Building a
Reactive Immune System for Software Services. In Proceedings of the USENIX
Annual Technical Conference, pages 149–161.

Smirnov, A. and Chiueh, T. (2005). DIRA: Automatic Detection, Identification, and
Repair of Control-Hijacking Attacks. In Proceedings of the Symposium on Network
and Distributed System Security (NDSS).

Soules, C. A. N., Appavoo, J., Hui, K., Wisniewski, R. W., da Silva, D., Ganger, G. R.,
Krieger, O., Simon, M., Auslander, M., Ostrowski, M., Rosenburg, B., and Xenidis,
J. (2003). System Support for Online Reconfiguration. In Proceedings of the
USENIX Annual Technical Conference, pages 141–154.

Stefano, A. D., Pappalardo, G., and Tramontana, E. (2004). An infrastructure for runtime
evolution of software systems. Computers and Communications, IEEE Symposium
on, 2:1129–1135.

The ELF shell crew (2005). Embedded elf debugging : the middle head of cerberus.
Phrack Magazine, 11(63).

Ukai, F. (2004). http://ukai.jp/Software/livepatch/.
Vanegue, J., de Medeiros, J. A., Bisolfati, E., Desnos, A., Figueredo, T., Garnier, T.,

Lesniak, R., Palencia, J., Roy, S., Soudan, S., Woloszyn, M., and Zabrocki, A.
(2009). The eresi reverse engineering software interface. http://www.eresi-
project.org/.

Weimer, W., Nguyen, T., Goues, C. L., and Forrest, S. (2009). Automatically Finding
Patches Using Genetic Programming. In International Conference on Software
Engineering (ICSE).

Yamato, K. and Abe, T. (2009). A Runtime Code Modification Method for Application
Programs. In Proceedings of the Ottawa Linux Symposium.

Zhou, Y., Marinov, D., Sanders, W., Zilles, C., d’Amorim, M., Lauterburg, S., Lefever,
R. M., and Tucek, J. (2007). Delta Execution for Software Reliability. In
Proceedings of the Third Workshop on Hot Topics in System Dependability
(HotDep’07).

NOTES
1. By which we mean manual, human-level reasoning, although applying automated

reasoning methods is an interesting (and open) avenue of research.
2. For example, consider adding a new member to a C struct definition and an

additional clause to the logic that processes it.
3. http://dwarfstd.org

4. In reality, the choice of offset is still limited by the platform's alignment
requirements.

5. We note that saving this information about the post-relocation layout of the
process does not weaken “randomization,” for the latter does not assume the
attacker's ability to arbitrarily read process memory (in which case the address of
required symbols are easily found by scanning it for their code or data patterns),
but rather breaks hard-coding of these symbols' expected addresses.

