Appeared in Public Key Infrastructure: EuroPKI 2005.

CA-in-a-Box

Mark Franklin, Kevin Mitcham, Sean Smith, Joshua Stabiard Omen Wild

Dartmouth PKI Lab and Department of Computer Science
Dartmouth College, Hanover NH 03755 USA
Contact authoranark.franklin@dartmouth.edu, sws@cs.dartmouth.edu
http://www.dartmouth.edu/ pkilab/

Abstract. An enterprise (such as an institute of higher education) wishing to
deploy PKI must choose between several options, all expensivenakaard.

It might outsource certification to a third-party company; it might puseh@A
software and appliances from a third-party company; it might try to build a
maintain its own CA. In the latter two options, the enterprise faces the additional
challenge of showing sufficiently safe practices to have its CA certifiedosise
certified, for broader inter-operability.

This paper presents our research and development effort tosadtiie problem.

We use OpenCA to provide the basic functionality; we package it on a Linux
installation on a bootable CD; we use the 1.1b TCG trusted platform module
(standard on many desktop and laptop machines) to hold the privater&a}so

use the TPM to add assurance that the key can only be used when thre B/ste
correctly configured as the CA. This tool enables an enterprise totepei@A
possessing a degree of physical security and the ability to attest prapfeg.c
ration to a remote certifier simply by booting a CD in a commodity machine. The
code (and CD image) are all open-source, and will be available fer fre

1 Introduction

Deploying PKI has many advantages for an enterprise. As ragsrdf a university, we
are particularly receptive to (and practitioners of) seddPKI| evangelism directed to-
ward academic enterprises. Within the enterprise, PKI lesamcryption and signing
of e-mail and workflow documents, and identification and arigation for Web-based
information services and network access. An Educase Net@&Dvey [12] shows
several universities with production PKIs serving applaas including virtual private
networks, S/IMIME e-mail, and document signing. With cresstification (such as via
the Higher Education Bridge Certification Authorifg]), these services can extend to
permit applications such as resource sharing and documehérege between univer-
sities.

However, deploying PKI is one of the tougher and more experexercises a uni-
versity IT department can endur@ertification authorities (CAsgre the backbone of
most PKIs, but installing and maintaining them is notorlgumplicated. The need
to simplify the process of PKI setup has been apparent faraeyears and providing
this service has become a profitable industry. Many unitiesshave opted to outsource
their CA to such corporations; this choice increases firaeirden but limits headache
and responsibility. (More than one university CIO has egpeel frustration that certain

Appeared in Public Key Infrastructure: EuroPKI 2005.

commercial CAs cannot cleanly project a priori the perifieate cost the university
will face.) Other universities operate CAs in-house, bycpasing or licensing soft-
ware and cryptographic appliances and devoting IT mansiomuoperating it. Still oth-
ers try to reduce costs further by rolling their own CA froneagsource and commodity
machines—but end up spending far more than expected in ergamel support staff
time. The Educause survey cited above also showed that arsitywPKI’s financial
costs exceeded $50,000 per year—due to hardware, licetisaimgng, help-desk and
upkeep.
These costs create a substantial barrier to adoption.

Our Project This challenge motivated our project. As a university, wgdreour PKI
effort by exploring the various options and their costs, eledted to pursue the middle
option: operating our own CA from commercial CA tools. Howewhe costs of this
option were high—particularly since, in principle, a robyr-own option with open
source should have been easy and cheap.

As a side-project, we tried the open-source approach, andifit was neither easy
nor cheap. It took two software engineers two weeks to genOpanstalled and work-
ing. There are a lot of configurable options for OpenCA thgtine knowledge of the
concepts and design of the OpenCA code, which are not ttiviabme by. To make
this path easier for others, we first attempted to make a amklfDo X, thenY’, then
Z" We then realized we could automate it and get rid of manyefdpportunities for
mistakes.

In this paper, we attempt to lower the barrier to universky &loption, by produc-
ing tools that let a university set up a CA with hardware siézand integrity protection
simply by booting a CD. Furthermore, our tools provide ttafework for remote at-
testation about the system’s integrity, easing crossficaition.

The code and CD image will be available as open source.

This Paper Section 2 provides a brief background of certification arities and their
responsibilities. Section 3 presents the components we tasassemble our project;
Section 4 presents the design and implementation of “CA-Bex.” Section 5 reviews
related work. Section 6 discusses some directions for dutesearch, and Section 7
concludes.

2 Certification Authorities

Although variants such as PGP and SPKI/SDSI have appedititrzal X.509 PKI is
the basis for the common PKI applications that motivate aarsity to adopt PKI. In
this dominant paradigm, the enterprise depends on itdicatibn authority to act as
the intermediary between end users and relying parties (adobe other end users, or
special entities such as the “course registration Web)site”

In this standard framework, the CA acts as a trusted thirtyfmr using its private
key to sign certificates. Each certificate binds a public keynformation (typically
identity) about the holder of the corresponding private. Keéne CA attests to the cor-
rectness of this binding; the university will have some naeébm in place, perhaps via
a separateegistration authority (RA)to verify this binding.

Appeared in Public Key Infrastructure: EuroPKI 2005.

Any certificate holder can present his certificate as confionahat the University
CA claims the certificate contains valid information. Angowho trusts the CA as a
certificate issuer for this domain should trust that hisrinfation applies to any entity
that demonstrates knowledge of the certificate’s privaje ke

Given the central role the CA plays in holding together thist infrastructure, the
primary responsibilities of a CA are to ensure its privatg leeonly used for appro-
priately authorized operations—and to convince relyindipsaiand other stakeholders
that a significant barrier exists to keep it from being usedifmuthorized ones.

Much of the associated work with setting up a university Pi€hss from ensuring
the CA fulfills these responsibilities. We consider somaéss

Failure Any system that relies heavily on its hardware must accoarttie possibility
of hardware failure. CAs are no different in this case, paté#rly if the installation
includes some type of special tamper-resistant hardwahsltbthe private key. The
network environment might also be relevant. Some instafiatdepend on the CA being
online (in order to handle requests and post CRLs and suttferinsist (to minimize
the interfaces exposed to an adversary) that the CA renalatésl from the network.
One avenue of failure idenial of service (DOS)A distributed DOS attack from
another network (for online CAs) or a power failure can raritie CA temporarily
unavailable and cause user dissatisfaction. Howevere tfadlsires are temporary and
easily fixed. More critical are DOS failures that cause th&rdietion of the private root
key such as a fire in the room containing the CA machine, or ectléfi the secure
hardware containing the key. (We have also heard anecdbteg sendors of secure
hardware abandoning the product line and stranding thsitooers.) In these cases,
the ability to sign certificates and add users to the PKI is Jadditionally, if a CA root
key protects a list of escrowed user encryption keys, wetlwesedata as well.
Alternatively, if the adversargompromiseshe CA's private key, consequences can
cause chaos within a PKI. By learning the private key, theeeshry has given himself
the power to sign certificates as if he were the CA. The useltseoPKI, therefore, can
no longer trust the CA's signature. Each certificate signethb private root key must
be revoked and new certificates must be generated with a newWlke information leak
causes a breakdown in the trust between users, as well agdrethe CA and the PKI.

Human ElementIn addition to hardware failure, we must also consider thmém
element in certification. At some point in the certificateatien process, the CA must
determine if it is going to vouch for the person requestirggdértificate. The entire PKI
trusts the CA (perhaps in conspiracy with an RA) to identens correctly.

Consequently, the decision of how to architect the CA maarfyiholds great weight,
as the details of the architecture may influence how easyrdritia for an adversary—
including a rogue insider—to cause invalid certificates tesbaed. In a typical installa-
tion, even if we keep the private key inside a special detieehost machine determines
when the private key is used and what data it operates on, fteusonfiguration of this
machine becomes of paramount importance: Trojans, backdoopatched software,
or even extra accounts can subvert the system. The systennisiaator of the CA
hardware may have unigue power to sign or not to sign cer&tificates and establish
this trust between users.

Appeared in Public Key Infrastructure: EuroPKI 2005.

Cross-CertificationTo enable cross-certification, the CA operator also neells tible
to establish various properties about CA operation to thisfaation of the certifier.
These properties include practices such as how (and hoviuttgrehe CA verifies
identities of the entities for which it is issuing certifieat separation of duties so no
single individual can do bad things; physical and netwodusiéy; what is logged and
how the logs are kept; who has access and how access is texhtraw processes and
procedures are defined and enforced; and where the privais kiored and how it is
protected.

Design GoalsThis discussion leaves us with some design goals for ouegtroj

— To keep equipment costs cheap, we need to use free softwdmmammonly avail-
able commodity equipment.

— To ensure security of the CA private key when not in use, we t@exploit tamper-
resistant hardware.

— To ensure security of the CA private key when in operationnegd to ensure that
only a properly configured machine can request operatiotisthis key.

— To assist in cross-certification, we need to make it poséilla remote CA to draw
conclusions about the trustworthiness of this operation.

— To keep labor costs low, we need to make this easy to use.

3 Components

This section presents the components we used for this projec

3.1 OpenSSL

At its foundation, our CA needs to perform cryptographicragiens.

OpenSSilis an open-source cryptographic library used by many starajaplica-
tions that require cryptographic support [9]. OpenSSL iiacttred to permit use of
underlying special-purpose cryptographic hardware; ieftJS5L, arengineis a mod-
ule that enables OpenSSL to use some particular type of yimtehardware.

3.2 OpenCA

Our CA needs to carry out basic certification authority opens.

OpenCAis an open-source certification authority that uses Oper{85We use
OpenCA to manage the standard functionality of the CA: fietie generation, publi-
cation, revocation; we felt that OpenCA was the best chadeuild upon as it is the
most developed of the open source options. OpenCA suppobligshing certificates
and CRLs to LDAP. It provides an online RA component for harglkertificate re-
quests. Additionally, OpenCA is distributed with severatifnodules that can be used
by other scripts we might choose to write ourselves [1].

Appeared in Public Key Infrastructure: EuroPKI 2005.

3.3 Knoppix

Our CA needs to run on a properly configured system.

Proper configuration is necessary for basic operation.darth one can just install
OpenCA and possess a CA. In practice, we found this procelss tde with subtle
configuration issues. As discussed earlier, proper cordigur is also necessary for
secure operation.

We decided that a simple, easy-to-use way to ensure propéigooation would
be to provide a properly configured system as a bootable CDthiocomponent, we
choseKnoppix which provides a customizable framework for putting costplLinux
system (based on the Debian distribution) on a bootable Cigénii6].

3.4 USB Flash Drive

Our CA needs space for installation-specific state. Miniynale need space for static
state, such as the private key (perhaps encrypted); hoyee@k may accumulate dy-
namic state, such as logs of signed certificates.

To provide this, we configure the system to store its homesttirg on a removable
USB flash drive.

3.5 TCPA/TCG TPM

It would increase security if our CA could store its privatykn a safe place. However,
we would like to avoid the expense and awkwardness of sppaiglose equipment.

For this component, we chose tfieusted Platform Module (TPMSpecified by
the Trusted Computing Group (TCGlormerly the Trusted Computing Platform Al-
liance, TCPA, the TPM is a smart-card like chip that is attached to thehertoard of
many commodity PCs. We worked with the 1.1b version of the T8, since that
already comes by default with many desktops and laptops fiBivh and so is already
somewhat ubiquitous.

The TPM acts as a credential store, keyed tmltform configuration registers
(PCRs) The host machine can store a value in the TPM and key it tafsggebealues in
a specified subset of the PCRs. The TPM will then decrypt aledse that credential
only when those PCRs have those values. Additionally, ifdredential is an RSA
private key, the host can request the additional featuraaghly the TPM never actually
release the key—»but rather onlgeit internally, and only when the PCR conditions are
satisfied. The PCRs themselves are set in an interleavedsteating with the boot
ROM and BIOS, in order to reflect the configuration of that niaeh

3.6 Bear/Enforcer

For holding the CA's private key in a TPM to be effective, weaheed to take steps to
tie it to the correct configuration for the CA on that machi@emmercial support for
the TPM is still scarce, at this point; Linux support for tHéaal TCG Software Suite
(TSS)has recently been announced, but was not available. Fortiier besides talking
to the TPM, we need to figure out how to express “secure coffiigur’ as a suite of

Appeared in Public Key Infrastructure: EuroPKI 2005.

PCR values—which may be complicated by issues such as semldted software
updates, which change the configuration but are necessahef@A to remain secure.

For this component, we chose our laBsar/Enforcercode [7]. Bear/Enforcer is
an open-source Linux tool suite that works with the 1.1b TRMihd credentials to
dynamic system configuration. Bear/Enforcer divides data three important cate-
gories based lifespan. Long term data, like BIOS, the kearal Bear/Enforcer itself,
are protected by the TPM-witnessed boot process. Mediumdata, applications and
daemons, are protected via a database of hashes. At ir@tial time, Bear/Enforcer
checks that this database is current and properly signegbteatially remotesecurity
administrator at run time, aLinux Security Module (LSM)hecks these hashes when-
ever an inode is touched. Shorter term data, like configandiies, live on a loopback
filesystem that can be encrypted and unmounted when not in use.

4 Design and Implementation

This section discusses how we put the above componenthirdetsolve our problem.
Figure 1 sketches this design.

On CD
OpenCA : ; Signed _ ;
; Vo CA state configuration | CA private key| :
Re?late‘:d OpenSSL | ! ; database (encrypted)
applications ' '
TPM Engine | —F
eI ; On USB FLASH drive
Linux (protected via
LSM)
; (protected via
Enforcer LSM|<T loopback filesystem)
Bootloader
(protected via PCR hashes)
! BIOS N N TPM (plaintext protected within TPM)

Fig. 1. A sketch of the system architecture for “CA-in-a-Box.”

! This is a single file that the kernel will mount and treat as if it were a filegyste

Appeared in Public Key Infrastructure: EuroPKI 2005.

4.1 Putting the Pieces Together

Knoppix First, we remaster the Knoppix CD image by removing all uessary pack-
ages and features. This task both makes it easier to use|laswecreases thausted
computing base (TCB}e.g., if the kernel has no wireless extensions, then the @A ca
not be compromised via a wireless attack.

OpenCA Then, we need to automate the configuration and use of Ope@pénCA
works by having two or three bases of trust: the client enrelit base, the registration
authority, and the actual CA.

Different institutions have different enroliment needsl atrategies. For some, se-
curity is paramount, and this goal tends to drive thesetingins to aroffline CA The
design idea is that the actual CA lives offline and only comitabes with the world via
“sneakernet.” The enrollment tool sends requests to theA,makes some decisions
about them. If approved, the RA sends the data up to the CACRhactually issues the
certificate and sends it back to the RA; the RA delivers théfate to the client. This
offline approach is the use model OpenCA developers had id and is how OpenCA
works most naturally.

For other institutions, however, considerations such avexence, minimization
of administrator overhead, and immediate fulfillment ottifieate requests tip the bal-
ance in favor obnline CAs

We set out to adapt OpenCA to work in an online, immediatelliuléint with no
administrator intervention required mode but were onlyedbl get part way towards
this goal. We combined the RA and CA functions onto one ndtwagocessible system
and combined the RA and CA databases to reduce the numbemifisicator steps
needed to move certificates through the system (when RA andr€Aeparate, these
steps are necessary).

Unfortunately, we found that the architecture of OpenCAsprged us from being
able to make online enroliment totally automatic withoutlue engineering effort. For
some applications (or certificate assurance levels), neguadministrator intervention
for each enrollment is still desirable, but the number afkdiinvolved in our imple-
mentation is higher than would be possible in a fully refestiimplementation, and for
many mass end user certificate deployments it would be usehdve an enroliment
option that authenticates the end user and perhaps an RAdiagp and then totally
automatically finishes the enroliment.

To set this all up, one must manipulate a large configuratientfiat specifies all
behaviors and allows options such as changing the numbayerd (e.g., add extra RA
steps) or having multiple RAs. This configuration file wagylgrand documentation
was sparse. We eventually figured out how to modify it to hav®A and CA running
on the same machine without conflicting; the RA and CA comatei via file copy-
ing. This model best suited our installation, and we alsbtfelt universities looking
for low-barrier way to adopt PKI would not want the hassle afitiple machines and
“sneakernet.”

Private Key SecurityOne series of steps involves using the TPM to shelter the CA
private key, to have the CA call the TPM for operations witis tkey. As discussed

Appeared in Public Key Infrastructure: EuroPKI 2005.

earlier, OpenCA uses OpenSSL, and OpenSSL uses “engindilasofbr implemen-
tations of cryptographic operations. The default engopefss|) provides software
functionality for OpenSSL cryptographic methods such a8 RESA, and RAND. The
benefits of having this structure is the ease at which we cdmead engines. When the
user wishes to perform cryptographic operations on somgaled hardware device,
he can simply load that engine into OpenSSL and then use tae$%l. command-line
normally. The loaded Engine has knowledge of the hardwareeand how to interact
with it [5].

To enable easy use of a TPM-housed RSA private key by Open8Slbuilt a
TPM Engine module. We then built a custom compile of OpenSSL that cosattiis
engine, and OpenCA to use the Engine API to look for the TPM.

We used the IBM utilities to generate keys manually in the Téd then the engine
takes over operations from there.

Configuration Security\WWe also need to set up Bear/Enforcer to ensure that the TPM
only uses the private key when the system is properly cordayur

To initialize, the operator first boots the system and rursigtsto “take ownership”
of the TPM. The operator then inserts the CD and FLASH driveraboots the system.
The BIOS, the boot-loader on CD-ROM, the kernel, and the @peconfiguration all
get hashed into the PCRs; the filesystem is initialized orexternal device. If running
in “local” mode, the operator can run a script here to geedtst Enforcer database and
sign it; if running in a scenario where a remote party spex#feaxure configurations, we
check the validity of the database this party has signed. &Nergte the symmetric key
for the encrypted loopback filesystem and set that up, amd Hte key as a credential
bound to this PCR suite. The operator then runs our OpenCAgtmation scripts,
which stores its state in the loopback, and generates the rivAt@ key within the
TPM itself, bound to this PCR suite. The CA config files alonghwiublic keys are
stored on this removeable device in the loopback filesysidms.allows us to keep that
information encrypted, on removable media, whenever gisimuse.

In normal boot, the BIOS, boot-loader and kernel are hasftedfie PCRs. The OS
gets loaded into system RAM. If Enforcer and the TPM deteentiire system configu-
ration are satisfactory, the encrypted loopback filesyssamounted so the CA config-
uration can be retrieved. OpenCA initializes and Enfordeyoks the OpenCA binary.
OpenCA tells openSSL to use the TPM Engine; if the configonas still satisfactory,
the encrypted private key is loaded into the TPM, which wi#tt provide private key
services to the CA.

Subsequent operation requires the CD, the FLASH drive, laaichiost machine.

4.2 Analysis

Security By reducing the amount of hardware being used we are able te diectly
protect the hardware we do use. Because our CA does noteatisikraccess, we do not
need to worry about viruses or Trojans the CA machine migke picked up while per-
forming non-CA duties; furthermore, the use of the boot&ilesimplifies the problem
of trying to maintain a special-purpose clean installatarthat machine.

Appeared in Public Key Infrastructure: EuroPKI 2005.

Denial of service can be a possibility if the TPM is destrogedf hardware alter-
ations fundamentally change the PCR values establishéwduwot; Section 6 consid-
ers that further.

Protecting against a rogue system administrator is nevexasy task. However,
our approach provides us with an easy way to implement tlageption. There are
several components necessary for the “CA-in-a-Box” to warkecret to help unlock
the TPM’s storage root key, the private key of the signer efEmforcer database, and
the dongle that contains the removable storage. We caibdistithese elements among
multiple people; potentially, we might distribute the dsdae signer’s key a remote site
(see Section 6).

There are several parts of OpenCA that an adversary caniexpienCA depends
on OpenRA to manage certificate requests. It needs a MyS@lbase to store com-
pleted certificates pre-signing. It uses Perl to procesyeeguest. OpenSSL is essen-
tial to signing every certificate. Even the Web browser pkaksy role by acting as the
user interface to the CA.

Our Enforcer/TPM integration adds several additional tayef protection. If the
adversary discreetly replaced any of these binaries witHified versions, he could
easily trick the CA into signing a certificate that the adaeysgenerated. However,
when Enforcer is active, this is not possible: the Enforseseét up to monitor each
of these programs and cause a kernel panic (and tell the TR&htter the private key
unusable) when any of them changes in a way not permittedasidgimed configuration
file.

Suppose an adversary gains access to our CA and inserts igmadsertificate
into the MySQL database. Then the adversary modifies soma@p®@erl scripts so
the next certificate exported from the database to be signbis.i As soon as the ad-
ministrator loads OpenCA and the scripts are touched, Eafawill detect the change
and cause a kernel panic, shutting down the CA and stoppaagttack. Likewise, if
an adversary tried the same attack by modifying the MySQAhyithe same response
occurs. Enforcer provides an extra layer of protection mevipusly part of any open
source CA.

Scalability The total number of users this system might support wouldopstcained
by the database used to store the information, and the CAatupirtime necessary to
enroll them. If we assume one-year certificate lifetimes, tiat a trained operator can
reliably process an enrollment in five minutes, we projeetgiistem could get about
10,000 users in circulation (with 20 hours/week of opertitne). OpenCA enrollment
takes a lot of clicking, however; a more realistic projectimight 1000 users/certs as
it stands now. Processing twenty requests a week is enougemthings moving, but
not overwhelm the operator.

Streamlining and batching the enrollment process is anfardature work. E.g.,
here at Dartmouth College, we issue students certificatemn whey first matriculate.
However, these newly matriculated students go through ro#dmgr physical processes
where their identities have been validated and they arénbdttogether in a room—
perhaps even after they have been issued College ID cardfRWID chips. Consider-
able potential for streamlining exists; we plan to expldnis tn future work.

Appeared in Public Key Infrastructure: EuroPKI 2005.

5 Related Work

Jeff Schiller at MIT suggested building an offline CA from atiep and Dallas iBut-
ton [10]. In addition to OpenCA, other open-source CA omgiorcludeXCA a graph-
ical front-end to OpenSSL [4pyCA not currently in active development [11]; and
Papyrus based on PHP [2].

Other experimental CA projects include COCA [15] and MOCA]|1

6 Future Work

In future work, we plan both to finish some necessary feataewell as integrate and
test new ones.

In the former category, we need to design and implement a wagdk up the CA
configuration for a second machine, should changes to tti@ imbst render it unusable.
We should be able to accomplish this task with a fairly strf@yward application of the
TCG design of exporting one TPM’s secrets to be used by a detesignated back-up
machine, perhaps in combination with secret-sharing anusgees. We also need to
examine the failure scenario of the USB token being remoeéarb our code unmounts
it; plaintext data may remain there. For this problem, we aegrypt into RAM instead.
(This should not be a significant security issue, howevacgesthe primary secret—the
CA private key—is protected by the TPM; what matters for thaplmack filesystem is
integrity.) We also want to stay abreast of ongoing work inBear/Enforcer project—
such as for ensuring freshness of sighed configuration &led.our recent integration
of Enforcer with SE/Linux.

In the latter category, we want to finish building and testiogls to harness the
configuration control and attestation features of BeadEmdr on the TPM in cross-
certification. We plan to modify our Enforcer configuratipreparation tool for use by
a bridge CA to establish signed databases for suitable CAgroations. We can then
use the Bear/Enforcer attestation to communicate thigshatck to the bridge CA, thus
easing enrollment in the bridge. We also plan to explore ntakiis configuration in-
formation available to other relying parties, perhaps ligirggup an attribute authority
within Bear/Enforcer and having it sign attribute certifesmabout the CA configura-
tion. We also plan to revisit the design decision to combiserenrollment, the RA,
and the CA in one machine.

Eventually, we plan to validate these ideas in a broadet, pievhaps in conjunction
with HEBCA.

7 Conclusions

To conclude, our “CA-in-a-Box” project uses existing opentse tools and commonly
available commodity equipment to produce a CA that easystaiinand use, but which

also exploits hardware protections for the CA private keg software configuration.

We offer this work to the community, in hopes that this helpsnpote broader use of
PKI (at least by fellow universities) by easing the burderstfablishing an enterprise
PKI and having it cross-certified.

Appeared in Public Key Infrastructure: EuroPKI 2005.

Acknowledgments and Availability

This work was supported in part by the Mellon Foundation HeyNISF (CCR-0209144),
by Internet2/AT&T, by Sun, by Cisco, by Intel, and by the Cdfifor Domestic Pre-
paredness, U.S. Dept of Homeland Security (2000-DT-CX40The views and con-
clusions do not necessarily represent those of the sponsors

The authors are grateful to our many helpful colleagues—icudatly here in the
PKI Lab, and in the greater higher education PKI community—tieir helpful sug-
gestions and comments.

We are currently preparing our code for release. For momnmdtion, please con-
tactmark.franklin@dartmouth.edu

References

1. Chris Covell and Michael Bell. OpenCA Guides for 0.9.2http://www.openca.
org/openca/docs/online/

2. John Douglass. The Papyrus Project (Version 4), 2008p://www.cren.net/
crencal/crencapages/papyrus.html

3. Higher Education Bridge Certification Authority. http://www.educause.edu/

hebca/ .

. Christian Hohnstadt. XCA, 2008ittp://xca.sourceforge.net/

. Pravir Chandra John Viega, Matt Messiddetwork Security with OpenSSLO Reilly &

Associates, Sebastopol, CA, 2002.

. Knoppix linux. http://www.knoppix.net/

7. J. Marchesini, S.W. Smith, O. Wild, A. Barsamian, and J. Stabineencgource Applica-
tions of TCPA Hardware. 120th Annual Computer Security Applications ConfereeEE
Computer Society, December 2004.

8. OpenCA PKI Development Projedittp://www.openca.org/openca/

9. OpenSSL: the Open Source toolkit for SSL/TLL#tp://www.openssl.org/

10. Personal communication.
11. pyCA-X.509 CA, 2003http://www.pyca.de/
12. Barry R Ribbeck. The PKI Working Group End User Deploymentri¥a2004. https:

(20 8

(e2}

/lwebspace.uth.tmc.edu/bribbeck/public/PKIWMATRIX.h tml .
13. Trusted Computing Platform Alliance. Main Specification, Version .1Http://www.
trustedcomputinggroup.org , February 2002.

14. Seung Yi and Robin Kravets. MOCA:Mobile Certificate Authority for Wiss Ad Hoc
Networks. In2nd Annual PKI Research Worksh@®02.

15. Lidong Zhou, Fred B. Schneider, and Robert Van Renesse. ACBGecure Distributed
Online Certification Authority. ACM Transactions on Computer Syster?8(4):329-368,
2002.

