
CA-in-a-Box

Mark Franklin, Kevin Mitcham, Sean Smith, Joshua Stabiner,and Omen Wild

Dartmouth PKI Lab and Department of Computer Science
Dartmouth College, Hanover NH 03755 USA

Contact authors:mark.franklin@dartmouth.edu, sws@cs.dartmouth.edu
http://www.dartmouth.edu/˜pkilab/

Abstract. An enterprise (such as an institute of higher education) wishing to
deploy PKI must choose between several options, all expensive andawkward.
It might outsource certification to a third-party company; it might purchase CA
software and appliances from a third-party company; it might try to build and
maintain its own CA. In the latter two options, the enterprise faces the additional
challenge of showing sufficiently safe practices to have its CA certified or cross-
certified, for broader inter-operability.
This paper presents our research and development effort to address this problem.
We use OpenCA to provide the basic functionality; we package it on a Linux
installation on a bootable CD; we use the 1.1b TCG trusted platform module
(standard on many desktop and laptop machines) to hold the private key;we also
use the TPM to add assurance that the key can only be used when the system is
correctly configured as the CA. This tool enables an enterprise to operate a CA
possessing a degree of physical security and the ability to attest proper configu-
ration to a remote certifier simply by booting a CD in a commodity machine. The
code (and CD image) are all open-source, and will be available for free.

1 Introduction

Deploying PKI has many advantages for an enterprise. As members of a university, we
are particularly receptive to (and practitioners of) standard PKI evangelism directed to-
ward academic enterprises. Within the enterprise, PKI enables encryption and signing
of e-mail and workflow documents, and identification and authorization for Web-based
information services and network access. An Educase Net@EDU survey [12] shows
several universities with production PKIs serving applications including virtual private
networks, S/MIME e-mail, and document signing. With cross-certification (such as via
theHigher Education Bridge Certification Authority[3]), these services can extend to
permit applications such as resource sharing and document exchange between univer-
sities.

However, deploying PKI is one of the tougher and more expensive exercises a uni-
versity IT department can endure.Certification authorities (CAs)are the backbone of
most PKIs, but installing and maintaining them is notoriously complicated. The need
to simplify the process of PKI setup has been apparent for several years and providing
this service has become a profitable industry. Many universities have opted to outsource
their CA to such corporations; this choice increases financial burden but limits headache
and responsibility. (More than one university CIO has expressed frustration that certain

Appeared in Public Key Infrastructure: EuroPKI 2005. 1

commercial CAs cannot cleanly project a priori the per-certificate cost the university
will face.) Other universities operate CAs in-house, by purchasing or licensing soft-
ware and cryptographic appliances and devoting IT man-hours to operating it. Still oth-
ers try to reduce costs further by rolling their own CA from open source and commodity
machines—but end up spending far more than expected in engineer and support staff
time. The Educause survey cited above also showed that a university PKI’s financial
costs exceeded $50,000 per year—due to hardware, licensing,training, help-desk and
upkeep.

These costs create a substantial barrier to adoption.

Our Project This challenge motivated our project. As a university, we began our PKI
effort by exploring the various options and their costs, andelected to pursue the middle
option: operating our own CA from commercial CA tools. However, the costs of this
option were high—particularly since, in principle, a roll-your-own option with open
source should have been easy and cheap.

As a side-project, we tried the open-source approach, and found it was neither easy
nor cheap. It took two software engineers two weeks to get OpenCA installed and work-
ing. There are a lot of configurable options for OpenCA that require knowledge of the
concepts and design of the OpenCA code, which are not trivialto come by. To make
this path easier for others, we first attempted to make a cookbook: “Do X, thenY , then
Z.” We then realized we could automate it and get rid of many of the opportunities for
mistakes.

In this paper, we attempt to lower the barrier to university PKI adoption, by produc-
ing tools that let a university set up a CA with hardware security and integrity protection
simply by booting a CD. Furthermore, our tools provide the framework for remote at-
testation about the system’s integrity, easing cross-certification.

The code and CD image will be available as open source.

This Paper Section 2 provides a brief background of certification authorities and their
responsibilities. Section 3 presents the components we used to assemble our project;
Section 4 presents the design and implementation of “CA-in-a-Box.” Section 5 reviews
related work. Section 6 discusses some directions for future research, and Section 7
concludes.

2 Certification Authorities

Although variants such as PGP and SPKI/SDSI have appeal, traditional X.509 PKI is
the basis for the common PKI applications that motivate a university to adopt PKI. In
this dominant paradigm, the enterprise depends on its certification authority to act as
the intermediary between end users and relying parties (whomay be other end users, or
special entities such as the “course registration Web site”).

In this standard framework, the CA acts as a trusted third party by using its private
key to sign certificates. Each certificate binds a public key to information (typically
identity) about the holder of the corresponding private key. The CA attests to the cor-
rectness of this binding; the university will have some mechanism in place, perhaps via
a separateregistration authority (RA), to verify this binding.

Appeared in Public Key Infrastructure: EuroPKI 2005. 2

Any certificate holder can present his certificate as confirmation that the University
CA claims the certificate contains valid information. Anyone who trusts the CA as a
certificate issuer for this domain should trust that his information applies to any entity
that demonstrates knowledge of the certificate’s private key.

Given the central role the CA plays in holding together this trust infrastructure, the
primary responsibilities of a CA are to ensure its private key is only used for appro-
priately authorized operations—and to convince relying parties and other stakeholders
that a significant barrier exists to keep it from being used for unauthorized ones.

Much of the associated work with setting up a university PKI stems from ensuring
the CA fulfills these responsibilities. We consider some issues.

Failure Any system that relies heavily on its hardware must account for the possibility
of hardware failure. CAs are no different in this case, particularly if the installation
includes some type of special tamper-resistant hardware tohold the private key. The
network environment might also be relevant. Some installations depend on the CA being
online (in order to handle requests and post CRLs and such); others insist (to minimize
the interfaces exposed to an adversary) that the CA remain isolated from the network.

One avenue of failure isdenial of service (DOS). A distributed DOS attack from
another network (for online CAs) or a power failure can render the CA temporarily
unavailable and cause user dissatisfaction. However, these failures are temporary and
easily fixed. More critical are DOS failures that cause the destruction of the private root
key such as a fire in the room containing the CA machine, or a defect in the secure
hardware containing the key. (We have also heard anecdotes about vendors of secure
hardware abandoning the product line and stranding their customers.) In these cases,
the ability to sign certificates and add users to the PKI is lost. Additionally, if a CA root
key protects a list of escrowed user encryption keys, we losethat data as well.

Alternatively, if the adversarycompromisesthe CA’s private key, consequences can
cause chaos within a PKI. By learning the private key, the adversary has given himself
the power to sign certificates as if he were the CA. The users ofthe PKI, therefore, can
no longer trust the CA’s signature. Each certificate signed by the private root key must
be revoked and new certificates must be generated with a new key. The information leak
causes a breakdown in the trust between users, as well as, between the CA and the PKI.

Human ElementIn addition to hardware failure, we must also consider the human
element in certification. At some point in the certificate creation process, the CA must
determine if it is going to vouch for the person requesting the certificate. The entire PKI
trusts the CA (perhaps in conspiracy with an RA) to identify users correctly.

Consequently, the decision of how to architect the CA machinery holds great weight,
as the details of the architecture may influence how easy or hard it is for an adversary—
including a rogue insider—to cause invalid certificates to beissued. In a typical installa-
tion, even if we keep the private key inside a special device,the host machine determines
when the private key is used and what data it operates on. Thus, the configuration of this
machine becomes of paramount importance: Trojans, backdoors, unpatched software,
or even extra accounts can subvert the system. The system administrator of the CA
hardware may have unique power to sign or not to sign certain certificates and establish
this trust between users.

Appeared in Public Key Infrastructure: EuroPKI 2005. 3

Cross-CertificationTo enable cross-certification, the CA operator also needs tobe able
to establish various properties about CA operation to the satisfaction of the certifier.
These properties include practices such as how (and how carefully) the CA verifies
identities of the entities for which it is issuing certificates; separation of duties so no
single individual can do bad things; physical and network security; what is logged and
how the logs are kept; who has access and how access is controlled; how processes and
procedures are defined and enforced; and where the private key is stored and how it is
protected.

Design GoalsThis discussion leaves us with some design goals for our project.

– To keep equipment costs cheap, we need to use free software and commonly avail-
able commodity equipment.

– To ensure security of the CA private key when not in use, we need to exploit tamper-
resistant hardware.

– To ensure security of the CA private key when in operation, weneed to ensure that
only a properly configured machine can request operations with this key.

– To assist in cross-certification, we need to make it possiblefor a remote CA to draw
conclusions about the trustworthiness of this operation.

– To keep labor costs low, we need to make this easy to use.

3 Components

This section presents the components we used for this project.

3.1 OpenSSL

At its foundation, our CA needs to perform cryptographic operations.
OpenSSLis an open-source cryptographic library used by many standard applica-

tions that require cryptographic support [9]. OpenSSL is structured to permit use of
underlying special-purpose cryptographic hardware; in OpenSSL, anengineis a mod-
ule that enables OpenSSL to use some particular type of underlying hardware.

3.2 OpenCA

Our CA needs to carry out basic certification authority operations.
OpenCAis an open-source certification authority that uses OpenSSL[8]. We use

OpenCA to manage the standard functionality of the CA: certificate generation, publi-
cation, revocation; we felt that OpenCA was the best choice to build upon as it is the
most developed of the open source options. OpenCA supports publishing certificates
and CRLs to LDAP. It provides an online RA component for handling certificate re-
quests. Additionally, OpenCA is distributed with several Perl modules that can be used
by other scripts we might choose to write ourselves [1].

Appeared in Public Key Infrastructure: EuroPKI 2005. 4

3.3 Knoppix

Our CA needs to run on a properly configured system.
Proper configuration is necessary for basic operation. In theory, one can just install

OpenCA and possess a CA. In practice, we found this process tobe rife with subtle
configuration issues. As discussed earlier, proper configuration is also necessary for
secure operation.

We decided that a simple, easy-to-use way to ensure proper configuration would
be to provide a properly configured system as a bootable CD. For this component, we
choseKnoppix, which provides a customizable framework for putting complete Linux
system (based on the Debian distribution) on a bootable CD image [6].

3.4 USB Flash Drive

Our CA needs space for installation-specific state. Minimally, we need space for static
state, such as the private key (perhaps encrypted); however, a CA may accumulate dy-
namic state, such as logs of signed certificates.

To provide this, we configure the system to store its home directory on a removable
USB flash drive.

3.5 TCPA/TCG TPM

It would increase security if our CA could store its private key in a safe place. However,
we would like to avoid the expense and awkwardness of special-purpose equipment.

For this component, we chose theTrusted Platform Module (TPM). Specified by
the Trusted Computing Group (TCG)(formerly theTrusted Computing Platform Al-
liance, TCPA), the TPM is a smart-card like chip that is attached to the motherboard of
many commodity PCs. We worked with the 1.1b version of the TPM[13], since that
already comes by default with many desktops and laptops fromIBM, and so is already
somewhat ubiquitous.

The TPM acts as a credential store, keyed to itsplatform configuration registers
(PCRs). The host machine can store a value in the TPM and key it to specified values in
a specified subset of the PCRs. The TPM will then decrypt and release that credential
only when those PCRs have those values. Additionally, if thecredential is an RSA
private key, the host can request the additional feature of having the TPM never actually
release the key—but rather onlyuseit internally, and only when the PCR conditions are
satisfied. The PCRs themselves are set in an interleaved way,starting with the boot
ROM and BIOS, in order to reflect the configuration of that machine.

3.6 Bear/Enforcer

For holding the CA’s private key in a TPM to be effective, we also need to take steps to
tie it to the correct configuration for the CA on that machine.Commercial support for
the TPM is still scarce, at this point; Linux support for the official TCG Software Suite
(TSS)has recently been announced, but was not available. Furthermore, besides talking
to the TPM, we need to figure out how to express “secure configuration” as a suite of

Appeared in Public Key Infrastructure: EuroPKI 2005. 5

PCR values—which may be complicated by issues such as security-related software
updates, which change the configuration but are necessary for the CA to remain secure.

For this component, we chose our lab’sBear/Enforcercode [7]. Bear/Enforcer is
an open-source Linux tool suite that works with the 1.1b TPM to bind credentials to
dynamic system configuration. Bear/Enforcer divides data into three important cate-
gories based lifespan. Long term data, like BIOS, the kernel, and Bear/Enforcer itself,
are protected by the TPM-witnessed boot process. Medium term data, applications and
daemons, are protected via a database of hashes. At initialization time, Bear/Enforcer
checks that this database is current and properly signed by apotentially remotesecurity
administrator; at run time, aLinux Security Module (LSM)checks these hashes when-
ever an inode is touched. Shorter term data, like configuration files, live on a loopback
filesystem1 that can be encrypted and unmounted when not in use.

4 Design and Implementation

This section discusses how we put the above components together to solve our problem.
Figure 1 sketches this design.

Related

applications

OpenCA

OpenSSL

TPM Engine

Linux

Enforcer LSM

Bootloader

BIOS TPM

CA state

Signed

configuration

database

CA private key

(encrypted)

On host

On CD

On USB FLASH drive

(protected via

LSM)
(protected via

loopback filesystem)

(plaintext protected within TPM)

(protected via PCR hashes)

Fig. 1.A sketch of the system architecture for “CA-in-a-Box.”

1 This is a single file that the kernel will mount and treat as if it were a filesystem.

Appeared in Public Key Infrastructure: EuroPKI 2005. 6

4.1 Putting the Pieces Together

Knoppix First, we remaster the Knoppix CD image by removing all unnecessary pack-
ages and features. This task both makes it easier to use, as well as decreases thetrusted
computing base (TCB)—e.g., if the kernel has no wireless extensions, then the CA can-
not be compromised via a wireless attack.

OpenCA Then, we need to automate the configuration and use of OpenCA.OpenCA
works by having two or three bases of trust: the client enrollment base, the registration
authority, and the actual CA.

Different institutions have different enrollment needs and strategies. For some, se-
curity is paramount, and this goal tends to drive these institutions to anoffline CA. The
design idea is that the actual CA lives offline and only communicates with the world via
“sneakernet.” The enrollment tool sends requests to the RA,who makes some decisions
about them. If approved, the RA sends the data up to the CA. TheCA actually issues the
certificate and sends it back to the RA; the RA delivers the certificate to the client. This
offline approach is the use model OpenCA developers had in mind and is how OpenCA
works most naturally.

For other institutions, however, considerations such as convenience, minimization
of administrator overhead, and immediate fulfillment of certificate requests tip the bal-
ance in favor ofonline CAs.

We set out to adapt OpenCA to work in an online, immediate fulfillment with no
administrator intervention required mode but were only able to get part way towards
this goal. We combined the RA and CA functions onto one network accessible system
and combined the RA and CA databases to reduce the number of adminstrator steps
needed to move certificates through the system (when RA and CAare separate, these
steps are necessary).

Unfortunately, we found that the architecture of OpenCA prevented us from being
able to make online enrollment totally automatic without undue engineering effort. For
some applications (or certificate assurance levels), requiring administrator intervention
for each enrollment is still desirable, but the number of clicks involved in our imple-
mentation is higher than would be possible in a fully refactored implementation, and for
many mass end user certificate deployments it would be usefulto have an enrollment
option that authenticates the end user and perhaps an RA “approver” and then totally
automatically finishes the enrollment.

To set this all up, one must manipulate a large configuration file, that specifies all
behaviors and allows options such as changing the number of layers (e.g., add extra RA
steps) or having multiple RAs. This configuration file was large, and documentation
was sparse. We eventually figured out how to modify it to have an RA and CA running
on the same machine without conflicting; the RA and CA communicate via file copy-
ing. This model best suited our installation, and we also felt that universities looking
for low-barrier way to adopt PKI would not want the hassle of multiple machines and
“sneakernet.”

Private Key SecurityOne series of steps involves using the TPM to shelter the CA
private key, to have the CA call the TPM for operations with this key. As discussed

Appeared in Public Key Infrastructure: EuroPKI 2005. 7

earlier, OpenCA uses OpenSSL, and OpenSSL uses “engine” modules for implemen-
tations of cryptographic operations. The default engine (openssl) provides software
functionality for OpenSSL cryptographic methods such as RSA, DSA, and RAND. The
benefits of having this structure is the ease at which we can add new engines. When the
user wishes to perform cryptographic operations on some specialized hardware device,
he can simply load that engine into OpenSSL and then use the OpenSSL command-line
normally. The loaded Engine has knowledge of the hardware device and how to interact
with it [5].

To enable easy use of a TPM-housed RSA private key by OpenSSL,we built a
TPM Engine module. We then built a custom compile of OpenSSL that contains this
engine, and OpenCA to use the Engine API to look for the TPM.

We used the IBM utilities to generate keys manually in the TPMand then the engine
takes over operations from there.

Configuration SecurityWe also need to set up Bear/Enforcer to ensure that the TPM
only uses the private key when the system is properly configured.

To initialize, the operator first boots the system and runs a script to “take ownership”
of the TPM. The operator then inserts the CD and FLASH drive and reboots the system.
The BIOS, the boot-loader on CD-ROM, the kernel, and the OpenCA configuration all
get hashed into the PCRs; the filesystem is initialized on theexternal device. If running
in “local” mode, the operator can run a script here to generate the Enforcer database and
sign it; if running in a scenario where a remote party specifies secure configurations, we
check the validity of the database this party has signed. We generate the symmetric key
for the encrypted loopback filesystem and set that up, and store the key as a credential
bound to this PCR suite. The operator then runs our OpenCA configuration scripts,
which stores its state in the loopback, and generates the CA private key within the
TPM itself, bound to this PCR suite. The CA config files along with public keys are
stored on this removeable device in the loopback filesystem.This allows us to keep that
information encrypted, on removable media, whenever it’s not in use.

In normal boot, the BIOS, boot-loader and kernel are hashed into the PCRs. The OS
gets loaded into system RAM. If Enforcer and the TPM determine the system configu-
ration are satisfactory, the encrypted loopback filesystemis mounted so the CA config-
uration can be retrieved. OpenCA initializes and Enforcer checks the OpenCA binary.
OpenCA tells openSSL to use the TPM Engine; if the configuration is still satisfactory,
the encrypted private key is loaded into the TPM, which will then provide private key
services to the CA.

Subsequent operation requires the CD, the FLASH drive, and that host machine.

4.2 Analysis

Security By reducing the amount of hardware being used we are able to more directly
protect the hardware we do use. Because our CA does not require disk access, we do not
need to worry about viruses or Trojans the CA machine might have picked up while per-
forming non-CA duties; furthermore, the use of the bootableCD simplifies the problem
of trying to maintain a special-purpose clean installationon that machine.

Appeared in Public Key Infrastructure: EuroPKI 2005. 8

Denial of service can be a possibility if the TPM is destroyedor if hardware alter-
ations fundamentally change the PCR values established during boot; Section 6 consid-
ers that further.

Protecting against a rogue system administrator is never aneasy task. However,
our approach provides us with an easy way to implement this protection. There are
several components necessary for the “CA-in-a-Box” to work: a secret to help unlock
the TPM’s storage root key, the private key of the signer of the Enforcer database, and
the dongle that contains the removable storage. We can distribute these elements among
multiple people; potentially, we might distribute the database signer’s key a remote site
(see Section 6).

There are several parts of OpenCA that an adversary can exploit. OpenCA depends
on OpenRA to manage certificate requests. It needs a MySQL database to store com-
pleted certificates pre-signing. It uses Perl to process every request. OpenSSL is essen-
tial to signing every certificate. Even the Web browser playsa key role by acting as the
user interface to the CA.

Our Enforcer/TPM integration adds several additional layers of protection. If the
adversary discreetly replaced any of these binaries with modified versions, he could
easily trick the CA into signing a certificate that the adversary generated. However,
when Enforcer is active, this is not possible: the Enforcer is set up to monitor each
of these programs and cause a kernel panic (and tell the TPM torender the private key
unusable) when any of them changes in a way not permitted by the signed configuration
file.

Suppose an adversary gains access to our CA and inserts an unsigned certificate
into the MySQL database. Then the adversary modifies some OpenCA Perl scripts so
the next certificate exported from the database to be signed is his. As soon as the ad-
ministrator loads OpenCA and the scripts are touched, Enforcer will detect the change
and cause a kernel panic, shutting down the CA and stopping the attack. Likewise, if
an adversary tried the same attack by modifying the MySQL binary the same response
occurs. Enforcer provides an extra layer of protection not previously part of any open
source CA.

Scalability The total number of users this system might support would be constrained
by the database used to store the information, and the CA operator’s time necessary to
enroll them. If we assume one-year certificate lifetimes, and that a trained operator can
reliably process an enrollment in five minutes, we project the system could get about
10,000 users in circulation (with 20 hours/week of operatortime). OpenCA enrollment
takes a lot of clicking, however; a more realistic projection might 1000 users/certs as
it stands now. Processing twenty requests a week is enough tokeep things moving, but
not overwhelm the operator.

Streamlining and batching the enrollment process is an areafor future work. E.g.,
here at Dartmouth College, we issue students certificates when they first matriculate.
However, these newly matriculated students go through manyother physical processes
where their identities have been validated and they are batched together in a room—
perhaps even after they have been issued College ID cards with RFID chips. Consider-
able potential for streamlining exists; we plan to explore this in future work.

Appeared in Public Key Infrastructure: EuroPKI 2005. 9

5 Related Work

Jeff Schiller at MIT suggested building an offline CA from a laptop and Dallas iBut-
ton [10]. In addition to OpenCA, other open-source CA options includeXCA, a graph-
ical front-end to OpenSSL [4];pyCA, not currently in active development [11]; and
Papyrus, based on PHP [2].

Other experimental CA projects include COCA [15] and MOCA [14],

6 Future Work

In future work, we plan both to finish some necessary features, as well as integrate and
test new ones.

In the former category, we need to design and implement a way to back up the CA
configuration for a second machine, should changes to the initial host render it unusable.
We should be able to accomplish this task with a fairly straightforward application of the
TCG design of exporting one TPM’s secrets to be used by a second designated back-up
machine, perhaps in combination with secret-sharing amongtrustees. We also need to
examine the failure scenario of the USB token being removed before our code unmounts
it; plaintext data may remain there. For this problem, we maydecrypt into RAM instead.
(This should not be a significant security issue, however, since the primary secret—the
CA private key—is protected by the TPM; what matters for the loopback filesystem is
integrity.) We also want to stay abreast of ongoing work in our Bear/Enforcer project—
such as for ensuring freshness of signed configuration files,and our recent integration
of Enforcer with SE/Linux.

In the latter category, we want to finish building and testingtools to harness the
configuration control and attestation features of Bear/Enforcer on the TPM in cross-
certification. We plan to modify our Enforcer configuration-preparation tool for use by
a bridge CA to establish signed databases for suitable CA configurations. We can then
use the Bear/Enforcer attestation to communicate this status back to the bridge CA, thus
easing enrollment in the bridge. We also plan to explore making this configuration in-
formation available to other relying parties, perhaps by setting up an attribute authority
within Bear/Enforcer and having it sign attribute certificates about the CA configura-
tion. We also plan to revisit the design decision to combine user enrollment, the RA,
and the CA in one machine.

Eventually, we plan to validate these ideas in a broader pilot, perhaps in conjunction
with HEBCA.

7 Conclusions

To conclude, our “CA-in-a-Box” project uses existing open source tools and commonly
available commodity equipment to produce a CA that easy to install and use, but which
also exploits hardware protections for the CA private key and software configuration.
We offer this work to the community, in hopes that this helps promote broader use of
PKI (at least by fellow universities) by easing the burden ofestablishing an enterprise
PKI and having it cross-certified.

Appeared in Public Key Infrastructure: EuroPKI 2005. 10

Acknowledgments and Availability

This work was supported in part by the Mellon Foundation, by the NSF (CCR-0209144),
by Internet2/AT&T, by Sun, by Cisco, by Intel, and by the Office for Domestic Pre-
paredness, U.S. Dept of Homeland Security (2000-DT-CX-K001). The views and con-
clusions do not necessarily represent those of the sponsors.

The authors are grateful to our many helpful colleagues—particularly here in the
PKI Lab, and in the greater higher education PKI community—for their helpful sug-
gestions and comments.

We are currently preparing our code for release. For more information, please con-
tactmark.franklin@dartmouth.edu .

References

1. Chris Covell and Michael Bell. OpenCA Guides for 0.9.2+.http://www.openca.
org/openca/docs/online/ .

2. John Douglass. The Papyrus Project (Version 4), 2005.http://www.cren.net/
crenca/crencapages/papyrus.html .

3. Higher Education Bridge Certification Authority. http://www.educause.edu/
hebca/ .

4. Christian Hohnstadt. XCA, 2003.http://xca.sourceforge.net/ .
5. Pravir Chandra John Viega, Matt Messier.Network Security with OpenSSL. O’Reilly &

Associates, Sebastopol, CA, 2002.
6. Knoppix linux.http://www.knoppix.net/ .
7. J. Marchesini, S.W. Smith, O. Wild, A. Barsamian, and J. Stabiner. Open-Source Applica-

tions of TCPA Hardware. In20th Annual Computer Security Applications Conference. IEEE
Computer Society, December 2004.

8. OpenCA PKI Development Project.http://www.openca.org/openca/ .
9. OpenSSL: the Open Source toolkit for SSL/TLS.http://www.openssl.org/ .

10. Personal communication.
11. pyCA–X.509 CA, 2003.http://www.pyca.de/ .
12. Barry R Ribbeck. The PKI Working Group End User Deployment Matrix, 2004. https:

//webspace.uth.tmc.edu/bribbeck/public/PKIWMATRIX.h tml .
13. Trusted Computing Platform Alliance. Main Specification, Version 1.1b. http://www.

trustedcomputinggroup.org , February 2002.
14. Seung Yi and Robin Kravets. MOCA:Mobile Certificate Authority for Wireless Ad Hoc

Networks. In2nd Annual PKI Research Workshop, 2002.
15. Lidong Zhou, Fred B. Schneider, and Robert Van Renesse. COCA: A Secure Distributed

Online Certification Authority.ACM Transactions on Computer Systems, 20(4):329–368,
2002.

Appeared in Public Key Infrastructure: EuroPKI 2005. 11

