
Trusted Computing

T rusted-computing (TC) initiatives potentially
give large organizations ways to control individu-
als’ use of their computers. Putting a physically
protected component on a user’s machine lets ex-

ternal organizations intrude on what previously had been
the user’s private space. However, we can turn the tables
and put physically protected components on a large orga-
nization’s machines—giving people some control over
such organizations.

In this article, we describe our experiments in design-
ing and prototyping TC at the server to enhance client
privacy. Drawing on diverse tools ranging from oblivious
RAM to switching networks to the Snort network intru-
sion detection system (NIDS), we have coded and tested
these ideas on commodity secure hardware validated to
the highest available level. Inspired by privacy problems
in centralized directories in an enterprise public-key in-
frastructure (PKI), we designed and prototyped a pri-
vacy-enhanced X.509 certificate directory (www.ietf.
org/rfc/rfc2459.txt) for a Dartmouth College-sized
population. Inspired by privacy problems in encrypted
archives of network traffic, we also built a system to en-
sure that access follows policy. (The code is available for
download at www.cs.dartmouth.edu/~sasho/privdir/
and www.cs.dartmouth.edu/~pkilab/code/vault.tar.gz.) 

Using TC at the server
Researchers have well documented the potential uses of
TC to control users’ behavior.1,2 Popular uses are untam-
perable controls on electronic media usage (usually re-
ferred to as digital rights management [DRM]) and lim-
iting which third-party programs can access data
generated by a given program. 

The flip side
of large central enti-
ties having some jurisdiction over people’s computers is
that individuals can in turn control some aspect of the
organizations’ electronic systems in which they have a
stake. We can achieve this control by using the same ideas
that define TC, with trusted hardware at the organiza-
tion’s site. The implications for protecting users’ privacy
are considerable.

We call the physically protected and trusted compo-
nent of a server K, after Franz Kafka’s main character in
The Trial and The Castle. (For the relevance of Kafka, and
The Trial in particular, to the privacy debate, see Daniel
Solove’s article arguing that The Trial provides a better
metaphor for the database problem than George Orwell’s
Big Brother.3) In any given client-server application, we
can view K as an extension of the client: from a trust per-
spective, K acts on the client’s behalf, but physically, K is
colocated with the server. Both points are important.
Clients can send any computation they would do them-
selves to K. Also, colocation with the server gives K a per-
formance advantage and, even more importantly, the
ability to be shared by many clients. This sharing makes
economies of scale possible—K can be a more powerful
and physically secure device than current TC initiatives
seek to put on user machines. 

To trust K so fully, clients must feel confident that K’s
computation is what they expected and that the server
operator can’t compromise or observe it—the server sees
K as a black box, observing its inputs and outputs but
none of the internal computation. (We elaborate on how
a real instantiation of K attempts to be trustable in the
next section.) 
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Another use of K is in securely storing sensitive user
data. The Recording Industry Association of America
(RIAA) and Motion Picture Association of America
(MPAA) would like to use TC to control how individu-
als use data (such as music recordings). In applications
where large organizations are storing user-sensitive data,
individuals could use K to control how organizations use
their data. One example is an archive of network traffic.
The people whose traffic it contains might want to limit
the ways in which organizations use it. Medical records of
individuals’ data stored electronically, for instance, need
strong protection from arbitrary access by the people and
organizations holding them.

Secure coprocessors
A secure coprocessor (SCOP) is generally defined as a
computing environment, colocated at a host machine,
which can safely house security-sensitive computation
with some assurance. SCOPs even defend against physi-
cal attacks by the host operator.

A SCOP typically has general-purpose computer
hardware in addition to some specialized additions, such
as cryptographic acceleration hardware and tamper de-
tection and reaction hardware. The classic example of a
secure coprocessor is the IBM 4758 platform,4 a PCI-
attached device with an Intel 486 CPU running at 99
MHz with 4 Mbytes of RAM, 4 Mbytes of Flash mem-
ory, 16 Kbytes of battery-backed RAM, triple DES ac-
celeration, and modular math acceleration for the RSA
and DSA algorithms. It was the first device to be vali-
dated to FIPS 140-1 level 4. It’s distinctly a server-ori-
ented device, costing approximately US$3,000. How-
ever, other candidate devices are also available.

An important aspect of using SCOPs (as well as newer,
smaller TC devices, such as the Trusted Computing Plat-
form Alliance [TCPA], now the  Trusted Computing
Group [TCG] platforms) is that they can safely hold and
use cryptographic keys that are somehow bound to a spe-
cific computational entity. In the IBM 4758, outbound au-
thentication7 binds private keys to a specific instance of soft-
ware on a particular untampered device; in this case, the
term software refers to all the programs executing in the
SCOP—boot loader, operating system, and application.
The SCOP security and certificate architecture ensures
that use of these keys is confined to this software entity. If
the SCOP is tampered with, or if the software is changed
in unauthorized ways, the private keys are erased by the
tamper-reaction mechanism or the firmware. Binding
keys to program instances lets users trust that 

• bits that they encrypted with a program P ’s public key
can only be decrypted by P running in an untampered
SCOP, and 

• bits signed by a program P’s private key must have actually
been produced by P running in an untampered SCOP. 

Potentially, newer TC devices can also be compelled to
provide similar types of behavior. 

PIR with secure coprocessors
One example of using a client extension inside a SCOP
at the server site is realizing private information retrieval
(PIR) of data from a server. PIR allows retrieval of infor-
mation from a server, without the server learning any-
thing about the data fetched. For example, we might
want to retrieve a book description from Amazon.com,
without Amazon being able to learn which book it was
or to incorporate that request into statistics about book
queries (for example, “everyone who asked about X also
asked about Y”). 

We call this approach hardware-assisted PIR, or hw-
PIR. (Earlier works referred to this approach as practical
PIR8,9 due to their motivation of being able to easily in-
tegrate PIR into the existing HTTP-over-SSL infra-
structure of remote information access; we compare hw-
PIR to the original PIR solutions in the “Previous work
on PIR” sidebar.)

Our initial motivation for working on this hw-PIR
server prototype was to add privacy protection to an
X.509 certificate directory. PIR would remove the ability
of the certificate directory to learn things about its users
depending on which certificates they request. Other di-
rectories also have this problem—for example, the At-
tribute Authority in a Shibboleth-using organization is in
a good position to observe and record where and when its
members access online resources, which is unfortunate for
a system that otherwise goes to great lengths to protect
privacy. Dartmouth is interested in both these application
areas because it has recently established a campus PKI and
participated in Shibboleth pilots.

Consider the privacy implications if an adversary,
Mallory, operates the certificate directory. Mallory learns
of a secret message from Alice to Bob when Alice re-
trieves Bob’s public key. She also learns of a signed mes-
sage from Alice to Bob when Bob retrieves (or verifies)
Alice’s public key. Mallory thus has an easy way to do traf-
fic analysis on secure communications, via the PKI at the
endpoints. (See David Kahn’s book Codebreakers for his-
torical examples of traffic analysis.10)

Further examples of where PIR can be useful
abound, usually where traffic analysis of encrypted data
can yield useful information. A medical doctor retrieving
medical records (even if encrypted) from a database
might reveal that the record’s owner has a disease in
which the doctor specializes. A company retrieving a
patent from a patent database might reveal that they’re
pursuing a similar idea. 

We note that anonymization solves an orthogonal
problem. In the X.509 certificates scenario, anonymiza-
tion would keep Mallory from knowing that Alice asked
for Bob’s certificate. Yet, Mallory would still know that
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someone was sending a private message to Bob, which
might be interesting to her. If the domain of possible
senders is small, Mallory can learn even more.

In contrast to preexisting schemes for solving the
PIR problem, our scheme uses trusted hardware at the
server and a preprocessed version of the database to ser-
vice retrievals. These extra provisions reduce both com-
munication and work, at the expense of servers having
to install, and users having to trust an additional party
(the SCOP). 

Modeling retrieval
We can model the retrieval problem this way: the host
contains a data set of N records each of size R, with
unique names. (If records are not all the same length,
they need to be padded. The pad contents are up to the
application.) The records can be encrypted with K’s
public key so the host can’t see their contents (who en-
crypts them and how they do it is beyond the scope of
this article), or they can be in the clear. K has only
enough memory to hold a small, fixed number of
records at a time, so all other storage is on the host. Re-
mote clients send queries for records by name, using an
encrypted channel to K. The aim is for K to retrieve a re-

quested record from the host, while hiding its identity
from the host, which can observe all record I/O opera-
tions performed by K. 

Modifications to the data set are outside this article’s
scope—they can be done before the data set is fed to the
algorithm. For example, an administrator of an X.509 di-
rectory might update expired and reissued certificates be-
fore the PIR session begins.

Overview of the algorithms
We use the square-root algorithm introduced in the
oblivious RAM (ORAM) work. For these algorithms,
the records must be contiguously numbered from 1 to
the database size N—prior hw-PIR/ORAM systems  as-
sumed that the client asked for a record by number. (We
discuss how we make this more usable later on.)

The scheme proceeds in sessions, each serving up to I
retrievals, for some I, where each session consists of

Randomly permuting the contents of records 1
through N. First, K encrypts each record in the data-
base. Then, K uniformly at random selects a permuta-
tion π of [1..N] and relocates the contents of each
record r, 1 � r � N, to record location π(r), changing the
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Theoretical computer scientists first formulated and solved the

private information retrieval (PIR) problem without assuming

the presence of trusted hardware. The initial solutions relied on the

database being held on multiple noncommunicating servers,1

which is a difficult assumption to assure in practice.

Eyal Kushilevitz and Rafail Ostrovsky first introduced the single

server scheme,2 which was followed by improved solutions in this

setting. In current single server schemes, the server handles queries

using only the cleartext database, so for every retrieval, it must

read each item in the database (or else an adversary can learn that

any untouched item is not the requested item). Thus, the server

must perform linear work (currently, with considerable constant

factors). On the other hand, the schemes have considerably sub-

linear (polylogarithmic) communication complexity between user

and server—meaning that polylog(N) bits are exchanged to

retrieve 1 bit from an N-bit database.

The scheme used in our prototype has a lineage of precursors:

• Oded Goldreich and Rafail Ostrovsky developed several algorithms

for the oblivious RAM problem.3 ORAM is concerned with hiding a

program’s pattern of memory accesses using a small trusted CPU

and a large but untrusted RAM. This problem is to a large extent iso-

morphic to hw-PIR, which we address—memory locations corre-

spond to records and the trusted CPU corresponds to the SCOP (to

whom users whisper their requests over a secure channel).

• With a colleague, one of the authors4 of this article pioneered using

secure coprocessors for hw-PIR, with the aim that clients using ex-

isting network protocols like HTTP and SSL could also use them—

that is, the client performs no other work besides negotiating a ses-

sion key in the standard SSL manner, and no parties other than the

server are involved. 

• The hw-PIR work of Dmitri Asonov5 aimed to improve the average

response time offered by the Smith and Safford scheme, which was

linear in the database size. (This was particularly problematic be-

cause the relatively slow SCOP had to do an amount of work linear

in the database size, although this work could be divided across sev-

eral devices.) Asonov suggested using the ORAM square-root algo-

rithm for hw-PIR. 
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encryption along the way as needed. (We elaborate on
the encryption used during the shuffle later in this sec-
tion.) The relocations must be done so that the host
can’t learn which permuted record corresponds to
which input record after having observed the pattern of
record accesses during the permutation. In other words,
the pattern observed by the host is independent of π (or
else the host could learn something about π).

Retrieving I records, one at a time. (In this section,
we say retrieve to mean the client-initiated action of
obtaining one record and fetch to mean the SCOP ac-
tion of reading a record off the host.) The first re-
trieval in a session is simple: K retrieves record r1 re-
quested by a client by fetching π(r1) from the shuffled
database on the host. The host doesn’t know anything
about π, so it can’t learn what r1 was. For i > 1, re-
trieval i in a session is more complicated. To retrieve
record ri, K could just fetch π(ri) from the host, but
that would reveal to the host one of two things: that ri
is the same as rj from some previous retrieval j, or that
ri is different from all the previous retrievals. To hide
the relationship among retrievals within a session,
every retrieval i after the first one requires K to refetch
every record rj already fetched in this session, in addi-
tion to fetching ri. If ri has in fact already been fetched,
then a randomly selected untouched record is fetched
instead. Thus, the desired record ri will be among the
i records fetched, so the client can get its data. The
host will be none the wiser about the identity of
record ri and its relation to the records fetched earlier
in the session. 

The running time of the ith retrieval is O(i). Thus, the
deployer can choose I to provide an upper bound on re-
trieval time; the session ends when I retrievals have been
handled, and we move to a new session with a freshly per-
muted database. If I becomes higher than N, retrievals
degenerate into linear running time because the SCOP
must fetch every record when servicing one retrieval.
Oded Goldreich and Rafail Ostrovsky called this the
square-root algorithm because they chose I to be , thus
minimizing the amortized work per query.11

Our prototype
Figure 1 shows our prototype’s design. K actually consists
of three coprocessors: one to continuously produce shuf-
fled databases, one to handle retrievals, and one to deal
with the Lightweight Directory Access Protocol (LDAP)
over SSL. We have not yet implemented the LDAP
SCOP, so LDAP handling is done by the OpenLDAP
slapd server (see www.openldap.org) running on the
host and the slapd shell backend, which interfaces with
our retrieval coprocessor. 

For our implementation, we used IBM 4758 Model 2
SCOPs running Linux and installed on Linux hosts. 

Improving shuffling
We use Beneš permutation networks, a shuffling algo-
rithm different from both previous suggestions of the
square-root algorithm. A Beneš network can produce
any permutation π of N items by performing O(N log
N) switches.12 A switch is the basic unit of a Beneš net-
work, and it works on two items, either swapping their
positions or leaving them as they were. The sequence of
item pairs to be switched is independent of π—π only
affects the switch settings. Figure 2 illustrates a small
Beneš network. 

To permute a database of records given a permutation
π, K must follow these steps: 

1. K internally computes all the switch settings to per-
form π. This can be done in O(N log N) time and

N
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Figure 1. Hardware-assisted private information retrieval (hw-PIR)
over LDAP system design. The system consists of three secure
coprocessors: one to continuously produce shuffled databases, one
to handle retrievals, and one to deal with the Lightweight Directory
Access Protocol (LDAP) over SSL.

LDAP
query

LDAP
response

Retrieval
LDAP
decoding/
encoding Encrypted

authenticated
channel

Shuffle

LDAP client

Host

Shuffled
database

SSL channel

Figure 2. A Beneš permutation network with four inputs, performing
the permutation �2, 3, 1, 0�. The dashed lines represent switch
settings, which depend on the permutation. The rest of the network
only depends on the number of inputs.
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space, although we’re working on reducing the space
bound. (Just storing an arbitrary permutation vector
for n items requires O(n log n) bits space—n integers
each of log n bits.)

2. K executes all the switches in an appropriate order—
we do it in column-major order, going down each
column of switches in order. K executes a switch by
fetching the two records being switched, internally
deciding whether to swap their locations, and then

writing them out again. The host should not be able
to tell whether the records were swapped or not; K
can ensure this, for example, by changing the en-
cryption key used. Thus, K uses a new encryption
key for each column of switches (there being 2lgN
columns in total) but only needs to have two keys
stored at a time for this purpose. (Straightforward
techniques let K derive these keys from a master se-
cret.) Also, K should use integrity checks during the
procedure to immediately catch any attempts by the
host to modify records or use old ones.

Thus, because π only affects the switch settings, and K
ensures that the host can’t deduce these settings, the host
can’t learn anything about π by observing the permuta-
tion proceedings. (See the “Other shuffling approaches”
sidebar for related work in this area.)

Improving naming
Users typically want to ask for a certificate with a distin-
guished name, not with an abstract record number. In
our design, K derives record numbers by hashing the
record name. In our current prototype, we use hashing
with chaining by using buckets of records; for this expo-
sition, we ignored the hashing details. The main effect of
the chaining is to introduce a runtime overhead of five to
six times for the ranges of N we were considering. 

We’re looking into alternative approaches without
this overhead, such as perfect hashing, which can provide a
compact 1–1 function from a known set of N strings to
the integers from 1 to N (see for example http://burtle
burtle.net/bob/hash/perfect.html).

Results
We tested the prototype by running it continuously for
some time and by having distributed LDAP clients
(ldapsearch from the OpenLDAP package) send
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The oblivious RAM work uses Kenneth Batcher’s sorting

network, which is structurally similar to a Beneš network but

consists of O(N lg2 N) elements (comparators). Its advantage is

that it can be performed using only O(log N) memory in the

SCOP. Dmitri Asonov1 suggested a O(N2) algorithm that consists

of scanning the whole data set N times. It was the unusable

running time of this algorithm—approximately three weeks on

10,000 records of 600 bytes each—that prompted us to find an

alternative—the Beneš network. 

Concurrently with our work, Asonov proposed another

approach to shuffling the data set2 that aims to reduce the number

of I/O operations between the host and the SCOP. It creates

database slices, each of which has one piece of a record. These

slices are then shuffled under the same permutation and

reassembled. This approach can reduce the number of communi-

cations between the host and SCOP from O(N2) to O(N ), and

because communications incur a high cost, it considerably

improves the time needed by the original O(N2) algorithm.
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Figure 3. Retrieval times of an LDAP client. It was one of five
independent clients, each sending randomly spaced queries, on
average one every 40 seconds. The database size was 1,024 records,
each about 1,500 bytes. (A Base64-encoded user certificate in the
Dartmouth CA is 1,250 bytes.) The server was set up with one secure
coprocessor (SCOP) continuously producing shuffled databases and
onehandling queries. The increase in response time as a retrieval
session progresses is clear, as well as the transition into fresh sessions.
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queries periodically, asking for randomly picked legal
names. Figure 3 gives the results, which indicate that the
system can handle one query every 8 seconds, with a ser-
vice time of 8 seconds in the worst case. 

Because database shuffling is the bottleneck of this
system, Figure 4 shows the running times of a single
shuffle against two parameters: database size and
record size.

Ongoing work
Currently, we are further mining the ORAM literature,
extending our design and prototype to let users privately
update records and reducing the internal SCOP memory
requirement from its current O(N log N) bits (for calcu-
lating the Beneš switch settings).13

We have not experimented with the more compli-
cated polylog solution  to the ORAM problem given by
Ostrovsky, because it has more overhead that the square-
root algorithm for the ranges of N we could handle. It
will be superior for larger N (the crossing point appears to
be about a half to 1 million records) than we’re currently
considering and thus might be useful if higher-perfor-
mance secure hardware becomes available. 

Dmitri Asonov suggests the potential for an O(N)
shuffle by slicing records and making use of the fact that if
all N pieces of a slice are inside the SCOP, they can be
shuffled in linear time. This shuffle, however, depends on
the record size; it might have large overhead because of
having to encrypt and decrypt many small blocks (smaller
than 64 bits), thus failing to take advantage of bulk cryp-
tography hardware. Experiments seem necessary to es-
tablish how it performs. 

Armored archive 
of network traffic
In private information retrieval, K protects the details of a
client’s request from the server. In contrast, in our ar-
mored data vault project,14 we used K to ensure that the
server’s use of sensitive data abides by the client’s policy,
which is bound to the data when its created. The data we
deal with here is archived network traffic, which can be
sensitive to the people who generate the traffic and, thus,
must be protected from inappropriate access.

Our prototype follows from the Packet Vault project
at the University of Michigan’s Center for Information
Technology Integration (CITI),15 which examined the
engineering question of how a central authority, such as
law enforcement or  university administration, might
archive traffic on a LAN for later forensic use. The
packet vault stores all traffic flowing on a LAN and en-
crypts it to protect against unauthorized access. Subse-
quent discussions with Charles Antonelli and Peter
Honeyman at CITI led to using a secure coprocessor to
armor the Packet Vault, thus improving the assurance of-
fered by the system.

In particular, the Packet Vault’s archives are en-
crypted by a master asymmetric key held by the highest
authority in the system (such as university trustees),
and this authority arbitrates all access requests, ideally
following an explicit policy. The possibility thus exists
for insider failure, perhaps indirectly through master
key compromise.

Benefits of armoring
By armoring the archive—having the archive master key
held inside a SCOP running a retrieval engine and policy
checker—we can ensure that the archive can only be ac-
cessed via the SCOP and, thus, according to the policy.
In the usual SCOP manner, the master key will be de-
stroyed if the policy-checking software is maliciously
modified or the SCOP is tampered with. This reduces
the potential for circumventing the data protection sys-
tem by social engineering or key compromise. 

Using a secure coprocessor to arbitrate access to the
traffic archive has advantages beyond providing high as-
surance that the policy must be followed. For example,
the policy can specify

• that only some data function information is released,
such as a statistical summary or sanitized version with-
out IP addresses (the SCOP can safely perform this
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Figure 4. Running times of a single database shuffle, against (a)
database size N, with record size fixed at 1,500 bytes and (b) record
size R, with database size fixed at 1,024 records.
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function internally to prevent exposing the raw data);
• that an audit trail must be kept, which the SCOP can

do, keeping an internal access log; and
• rate limiting, to make expansive searches through the

archive (or fishing expeditions) more difficult.

In theory, adding a SCOP could provide these proper-
ties. But to show this could work in practice, we needed to
actually demonstrate how a commodity SCOP can run a
policy-controlled network traffic analysis tool.

System architecture
Figure 5 illustrates our system, which has two parts, an en-
coder and a decoder. The encoder makes the archives. It
consists of a host and a SCOP that continuously collects
the network traffic, encrypts it for the decoder, binds it to
an access policy, and signs the whole lot to produce an
archive piece sized according to the storage medium—a
CD-ROM in the Packet Vault’s case.

The decoder is a host and a SCOP that fields access at-
tempts against the archive. Given an access request, it 

1. checks the encoder’s signature on the archive,
2. checks whether the access is allowed by the archive

policy and if not, rejects the request, 
3. finds the packets that match the request,
4. checks whether the matching packets violate the

archive policy (for example, if too many packets
matched),

5. performs any postprocessing specified by the policy
such as IP scrubbing, and

6. signs and returns the resulting data.

Thus, a relying party can verify that the released data was
obtained in accordance with the policy.

Prototype details
For our implementation, we used IBM 4758 Model 2
SCOPs running the production CP/Q++ OS and in-
stalled on Linux hosts. 

Access policy. We gather all information relating to
how archives can be accessed in an access policy. The pol-
icy is thus the central piece of the armored vault. The de-
coder will allow access to the archive only in accordance
with the access policy, and no one can extract any other
information because the coprocessor’s design precludes
circumventing its programmed behavior.

To represent access policies, we use a table with
rows that represent different entry points into the data
and columns that represent the parameters of each
point. Anyone seeking access must select which entry
point to use and then satisfy the requirements associ-
ated with it.

We define the parameters associated with an entry
point in the policy as:

• Request template. This is a template of a query selecting
the desired data, with parameters a particular access re-
quest must fulfill. We call the format of the query the
data selection language. An example is, “All email
to/from email address X.”

• Data subset. This is a fixed expression in the data selec-
tion language that limits this entry point to some subset
of all the archived data—for example, traffic between
dates A and B. The query generated by the request
template would then be matched only against data con-
tained in this subset. 

• Macro limits. This includes limits on various properties
of the query’s result, including the total number of
packets or bytes in the result, how many hosts are in-
volved in the resulting data, and the packet rate at the
time of archival. 

• Authorization. The authorization requirements for an
entry point can include, for example, that the request
must be signed by two district judges.

• Postprocessing. This procedure applies to the data chosen
by the query to produce the final result to hand back to
the requester, such as scrubbing all IP addresses or a sta-
tistical data summary. 

To request data from the archive, a user indicates an
entry point and provides parameters for its request tem-
plate. The request contains the authorization data
needed to satisfy the chosen entry point’s require-
ments—for example, signatures from all the parties spec-
ified in the policy.

The actual policy must satisfy all legal queries while
ensuring that no one, not even rogue insiders, can access
more data or information than was intended. For exam-
ple, failing to scrub IP addresses could result in an infor-
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Figure 5. Armored vault system design.
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mation leak. The task of allowing a query only if it’s legal
is complicated by the fact that what is legal must be de-
cided and expressed at the time of archival, while queries
occur a long time after that.

Data selection language. We use an existing package,
Snort version 1.7, to provide the packet selection capabil-
ity in our demo. Snort is a libpcap-based NIDS. It
selects packets using the Berkeley Packet Filter (BPF) lan-
guage as well as its own rule system, which selects packets
by their content as well as by header fields. This rule lan-
guage is our data selection language. The Snort rule sys-
tem is described in detail at www.snort.org/docs/
writing_rules/chap2.html. 

We chose Snort because it’s an open-source tool in ac-
tive development and use. Important features are IP de-
fragmentation, the capability to select packets by content,
and a developing TCP stream reassembly capability. 

In a simple selection example, we can select to log
TCP packets to the HTTP port with log tcp any
any -> any 80. This only performs matching on
packet headers. We can read it as “log TCP packets
coming from any host, any port, going to any host,
port 80.”

A more complicated example (from the Snort Web
site www.snort.org) uses content matching to produce an
alert of a potential attack:

alert tcp any any -> 192.168.1.0/24 143

(content: “|90C8 C0FF FFFF|/bin/sh”;

msg: “IMAP buffer overflow!”;)

The content option is given, as are all options, inside
parentheses. 

Prototype results
Snort was one of the successful aspects of this proto-
type. Thanks to its capable packet detection engine and
how well we could make it run inside the secure co-
processor, it will let us extend our policy capabilities
considerably, especially when we consider application-
level data selection and reassembled TCP streams be-
come important. 

High performance was not a goal of our prototype,
but some sample figures illustrate the state of our pro-
ject. The encoder could process a 1.6-Mbyte packet
dump to produce an archive in 6 seconds. A 630-Kbyte
dump took 2.3 seconds. The encoder performs every-
thing described in our design, but being an early proto-
type, it’s limited to processing only as much data as will
fit into the coprocessor at once (about 1.7 Mbytes with
our current prototype), so we have no numbers for
larger packet dumps. 

A decoder run on the 630-Kbyte archive (consisting
of 1,000 packets), which selected 105 packets, took 6.3

seconds. Future optimizations will clearly have to focus
on the encoder, which in practice will have to keep up
with a fast network. 

The community has long speculated about using se-
cure coprocessors for computational enforcement of rights
management. We carried this speculation one step further
by completing an implementation on a commercial plat-
form that could (in theory) be deployed on a wider scale
without adding to the technological infrastructure. 

A purported advantage of the coprocessor approach is
the ability to insert a computational barrier between the
end user and the raw data. To realize this, however, the
barrier must be able to support useful filter computation.

Future work
An interesting area for future work would be to take
some functionality out of the SCOP and put it onto the
untrusted host. Classic work on database security has ex-
amined using a trusted filter in front of an untrusted rela-
tional database.16 The aim was to keep the performance
advantage of a relational database system and use a min-
imal filter to enforce access control.

For our armored archive prototype, minimizing the
trusted component could involve extracting packet
header fields so that an untrusted component on the host
could handle retrieval by these fields, leaving the SCOP
with the easier task of access control. Translucent data-
base techniques17 could protect header fields extracted
in this manner.

On the other hand, the packet data could probably
not be easily handled in this manner on the untrusted
host because we have to support substring searches on the
packet payload. Recent work on searching in encrypted
data might be useful here.18 The SCOP would then need
to perform access control, query postprocessing, and
translation of request data for the translucent database and
encrypted-data search engine. 

C learly, practical secure hardware has some limita-
tions, such as limited memory, that must be dealt

with in a system’s design. We have made progress in fit-
ting as much as possible in these small embedded envi-
ronments, but it’s a safe bet that more ingenious designs
than we have presented will further advance the usability
and utility of SCOP-based privacy-enhancing systems. 

Abstract ideas need to be concretely demonstrated if
they are to have any impact on systems. We have pre-
sented two prototypes running in real secure coproces-
sors, thus hopefully bringing closer to reality actual use of
such systems. 
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